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Abstract
This paper presents an enhanced transillumination radiosity method that can provide accurate solutions at rel-
atively low computational cost. The proposed algorithm breaks down the double integral of the gathered power
to an area integral that is computed analytically and to a directional integral that is evaluated by quasi-Monte
Carlo or Monte-Carlo techniques. The paper also analyses the requirements of the convergence, presents theoret-
ical error bounds and proposes error reduction techniques. The theoretical bounds are compared with simulation
results.
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1. Introduction

Classical radiosity algorithms, including the hemisphere22,
the hemicube6 or the cubic-tetrahedron methods2, assume
that the double integral of the form factor or the exchanged
power can be approximated by the inner integral multiplied
by the area of the patch. This approximation introduces er-
rors proportional to the size of patches. In exact or semi-
exact methods1,20, on the other hand, the computational
overhead is significant.

In order to make a radiosity method both accurate and fast,
surface and directional integrals must be computed effec-
tively. Recently Keller9 proposed the application of quasi-
Monte Carlo quadrature17 for the radiosity problem as a
promising alternative to Monte-Carlo or classical integration
rules.

For the normalized,s-dimensional integration domain
[0;1]s, the quasi-Monte Carlo approximation is:

Z

[0;1]s

f (x) dx� 1
M

M

∑
i=1

f (xi): (1)

Sample pointsx1;x2; : : : ;xM should be selected to minimize
the error of the integral quadrature.

If the integrandf has finite variation in the sense of Hardy
and Krause, then the error of the quasi-Monte Carlo quadra-
ture can be bounded using the Koksma-Hlawka inequality:

j
Z

[0;1]s

f (x) dx� 1
M

M

∑
i=1

f (xi)j �VHK( f ) �D�(x1;x2; : : :xM);

(2)
whereVHK is the variation in the sense of Hardy and Krause
andD�(x1;x2; : : :xM) is the star-discrepancy of the sample
points17. The star-discrepancy is defined by

D�(x1;x2; : : :xM) = sup
A
jm(A)

M
�V(A)j (3)

whereA is as-dimensional “brick” parallel to the coordinate
axes and originating at the center, andm(A) is the number of
sample points inside this “brick”.

For carefully selected sample points, called low-
discrepancy sequences, the discrepancy and consequently
the error can be in the order ofO(logd�1 M=M), which is
much better than theO(1=

p
M) probabilistic error bound of

Monte Carlo methods. Moreover, quasi-Monte Carlo meth-
ods quarantee this accuracy in a deterministic way, unlike
Monte Carlo methods where the error bound is also proba-
bilistic.

However, functionf that needs to be integrated in render-
ing problems is usually discontinuous and thus has infinite
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variation (a function of finite variation can have discountinu-
ities parallel to the coordinate axes only4). Although prac-
tical experiences show that quasi-Monte Carlo methods can
still be better than Monte-Carlo methods10, their advantages
seem to be less than predicted by the theory for functions of
finite variation.

In order to overcome this problem, this paper reformu-
lates the radiosity equations to make the integrands have
finite variation. The new formulation is based on the con-
tinuous version of the transillumination method originally
proposed in15. In the new algorithm, the inner integral of
the form factors is evaluated exactly by analytic techniques,
while the outer integral is approximated by a quasi-Monte
Carlo quadrature formula. Since the integrand of outer inte-
gral is continuous and its mixed derivatives are bounded and
piece-wise continuous, its variation is finite24, thus it is well
suited for quasi-Monte Carlo techniques.

The paper also examines the convergence and error char-
acteristics of the new method.

2. Transillumination method

Radiosity algorithms calculate the power exchange taking
polygonal patches one-by-one and evaluating the gathered or
shot energy by determining an integral of other surfaces visi-
ble in the directions of the hemisphere above the given patch.
The transillumination method, on the other hand, takes the
directions first, and evaluates the power exchange in this di-
rection for all patches. In order to introduce the transillumi-
nation method, let us examine the power radiated onto patch
Ai :

Φin
i =

Z

Ωi

Z

Ai

I in(~x;ω)cosθi(ω) d~x dω (4)

whereΩi is the set of directions from where patchAi can
be lit (it is actually a hemisphere above the plane of patch
Ai), I in(~x;ω) is the intensity of the radiation at point~x from
directionω,~x andω are the running vectors on patchAi and
in Ωi respectively andθi(ω) is the angle between direction
ω and the surface normal of patchAi (see figure 1).
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Figure 1: The power radiated onto patch Ai

The directional integral can be extended to the full sphere
H if the function is multiplied by a characteristic function
hi(ω) that indicates whetherω is in the upper hemisphere of
the given patch (hi(ω) = 1) or not (hi(ω) = 0). Assume that
directions on the sphere are defined by two scalarsu;v which
are points in the domain of[0;1]2. Sincedω = dθ dψsinθ
whereθ andψ are the polar angles, we get:

dω = det

2
64

∂ψ
∂u

∂ψ
∂v

∂θ
∂u

∂θ
∂v

3
75 �sinθ(ω(u;v)) du dv: (5)

Let us denote the determinant of the Jacobi matrix multi-
plied with sinθ(ω(u;v)) by J(u;v). Using this substitution,
the incoming power is:

Φin
i =

1Z

u=0

1Z

v=0

Z

Ai

I in(~x;ω)cosθi(ω) d~x �hi �J du dv: (6)

Integral
R
Ai

I in(~x;ω)cosθi(ω) d~x expresses the power ar-

riving at patchAi from directionω. This direction playes an
important role in this method and is called thetransillumi-
nation direction.

Let us place a plane perpendicular to the transillumination
direction above patchAi. This plane is called thetransillu-
mination plane. The same power reaching patchAi can also
be computed on this transillumination plane, just the range
of integration should be changed fromAi to the projection of
Ai on the transillumination plane, which is denoted byAproj

i :

Z

Ai

I in(~x;ω)cosθi(ω) d~x=
Z

Aproj
i

I in(~x 0;ω) d~x 0 (7)

since cosθi(ω) dAi = dAproj
i .

Let us turn our attention to the power emitted or reflected
by patchAi , denoted byΦout

i . If patchAi is diffuse (which
is a general restriction of radiosity methods), its reflection
coefficient isρi and the emission density isEi , then the total
power is:

Φout
i = Ei �Ai +ρi �Φin

i : (8)

By definition, the radiosity of patchi is the power of a unit
surface area, that is:

Bi = Ei +
ρi

Ai
�

1Z

u=0

1Z

v=0

Z

Aproj
i

I in(~x 0;~V) d~x 0 �hi �J du dv: (9)

The source of intensityI in(~x 0;ω) is also a patch that is
also assumed to be diffuse and to have radiosityB(~x 0;ω).
For diffuse radianceB= Iπ 26, thus equation (9) can also be
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written in the following form:

Bi = Ei +
ρi

πAi
�

1Z

u=0

1Z

v=0

Z

Aproj
i

B(~x 0;ω) d~x 0 �hi �J du dv: (10)

This is an alternative form of the radiosity equation. As the
classical radiosity equation, the alternative form can also be
used as a basis of an iterational solution:

B(n+1)
i =Ei +

ρi

πAi
�

1Z

u=0

1Z

v=0

Z

Aproj
i

B(n)(~x 0;ωd) d~x 0 �hi �J du dv:

(11)
Since the integral operator in equation (11) is a contractive
mapping for physically correct models, this iteration scheme
is convergent. The effective evaluation of this formula is the
key to find an efficient algorithm. First thedirectional inte-
gral is approximated by a finite sum using some quadrature
formula:

1Z

u=0

1Z

v=0

Z

Aproj
i

B(~x 0;ω) d~x 0 �hi �J du dv�

1
M
�

M

∑
d=1

Z

Aproj
i

B(~x 0;ωd) d~x 0 �hi;d �Jd (12)

whereωd, hi;d and Jd are calculated fromω(u;v), hi(u;v)
andJ(u;v) taking samples in[0;1]2. The samples of the unit
square are mapped onto the directional sphere to findωd.

In order to generate a uniform distribution on the surface
of the directional sphere, the following transformation can
be used23:

ψ = 2πu; θ = arccos(1�2v): (13)

In this casedω = J(u;v) �du dv= 4π �du dv, thus the distri-
bution is uniform on the sphere if it was in the unit square.

Integrating over the whole sphere with the rejection of
the lower hemisphere by functionh and the application of
uniform distribution may seem to be less efficient then the
integration over just the upper hemisphere and the use of
cosine or sine distributions incorporating importance sam-
pling as applied in12 or 11. However, in the transillumina-
tion method the same set of directions are used parallely for
all the patches, thus the distribution of directions cannot de-
pend on the orientation of individual patches. It is obviously
a disadvantage, which is compensated for by the possibility
of handling all patches simultaneously.

According to the orientation relative to the transillumina-
tion direction, that is according to the value ofhi;d, patches
can be classified asfront facing (hi;d = 1) andback facing
(hi;d = 0). Obviously, back facing patches cannot receive en-
ergy from a transillumination direction, thus only front fac-
ing patches must be examined. In order to numerically com-

pute the integral
R

Aproj
i

B(~x 0;ωd) d~x 0 for a front facing patch,

discrete or continuous methods can be used.

If discrete methods are applied, then the transillumination
plane is discretized into finite rectangles of sizeδA, called
“pixels”. This discretization enables us to replace the in-
tegral of equation (12) by an approximation sum, which,
in turn, can be evaluated by a generalised z-buffer15 that
holds lists of patches instead of depth values, or by us-
ing the painter’s algorithm25. The latter has the advantage
that the generated transillumination plane can be reused for
subsequent patches, resulting in a radiosity algorithm of
O(N logN) time-complexity (N is the number of patches
in the scene). However, for complex and highly reflective
scenes, the required resolution of the transillumination plane
can be quite high. Thus, an objective of this paper is to
present an approach that uses continuous computation on the
transillumination plane. Two closely related versions, called
the global and local visibility map methods, are presented.
Then the algorithm of the discrete approximation of the di-
rectional integral is discussed.

3. Integration on the transillumination plane

object
space

transillumination
plane

transillumination
direction

patch

patches 
in front of patch

patches
behind patch

back
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front
patches

B(x,V )

i

i
i

d

Figure 2: Relation of the patches, the transillumination di-
rection and the transillumination plane

Let us first assume that the patches have constant radios-
ity, thus radiosity is approximated by a piece-wise constant
function (piece-wise linear or polynomial approximation can
also be handled easily). A piece-wise constant function can
be integrated in closed form, thus we obtain:

Z

Aproj
i

B(n)(~x 0;ωd) d~x 0 =
N

∑
j=1;i 6= j

A(i; j ;ωd) �B(n)
j � (1�hj;d)

(14)
whereA(i; j ;ωd) is the area of patchj that is visible from
inside of patchi at directionωd. Note that the term(1�hj;d)
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Figure 3: Interpretation of A(i; j ;ωd)

is necessary since only back facing patches may contribute
to the radiosity of a front facing patch.

In order to compute equation (14), a continuous visibil-
ity problem26 must be solved assuming the transillumination
plane to be the plane of the window. It requires the construc-
tion of the visibility map 3 of polygons in front of patchi
on the transillumination plane. The visibility map is a pla-
nar graph that is generated by an orthogonal projection of
patches onto the transillumination plane and by identifying
those regions in which one patch is seen or no patch is seen.
Having the visibility map of patches visible fromAi , the
computation ofA(i; j ;ωd) requires to determine which re-
gions are inside the projection ofAi and to sum the areas
weighted by the radiosity values of the associated patches.

The visibility map containing only the patches visible
from Ai at the transillumination direction is called the local
visibility map. The local visibility maps of different patches
are obviously included in the global visibility map that con-
tains all the patches. Thus generally we have two options to
construct the visibility map seen from patchi:

1. A single, global visibility map is constructed for all
patches.

2. Thelocal visibility mapsare constructed incrementally as
the patches sorted in the transillumination direction are
processed.

In the following subsections both the global and local vis-
ibility map methods are discussed. These methods can cal-
culate the radiosity contribution of a single transillumination
direction.

3.1. Global visibility map

This alternative constructs a single visibility map for all
patches. Algorithms5 are available that can do it inO((N+
i) logN) 5 time where N is the number of patches (or
edges) andi is the number of edge intersections, or even in
O(N1+εpk) time3 wherek is the number of edges in the vis-
ibility map. The number of intersectionsi and the number of
edgesk are inO(N2) in the worst-case, but are inO(N) in
practical environments.

According to the properties of the visibility map, each re-
gion either corresponds to some patches that are completely

visible in the region or corresponds to no patch at all. In each
region there is a well-defined order of patches. Thus the eval-
uation of equation (14) requires the scanning of the list of
patches in the different regions and finding where patchj is
next to patchi. The algorithm of the global visibility map
method is:

Compute the visibility map corresponding to directionωd
for each regionRof the visibility map

A(R) = area of regionR
L = Sorted list of patches visible at regionR
for each front facing patchi in L do

patch j = next of patchi in L
if patch j is back facingthen

B(n+1)
i += A(R)

Ai

ρi
πM �Jd �B(n)

j
endfor

endfor

Note that in neighbouring regions the lists of patches may
differ in a single patch. Thus the data-structure of the sorted
lists can be updated efficiently as the visibility graph is tra-
versed.

3.2. Local visibility map

The determination of the regions inside the projection ofAi
can also be considered as a 2D clipping problem where the
projections of patches should be clipped onto each-other. Let
us assume that the patches are sorted in the transillumination
direction. Such sorting is not always trivial because patches
may overlap in this direction and cyclic overlapping might
also occur, but the painter’s algorithm16 or the Binary Space
Partitioning (BSP) trees18 can handle this problem.

Suppose that the visibility map should be updated with
patchi. Since the patches are sorted, all those patches must
be clipped out from the visibility map, which fall into the
interior of patchi since these parts will be hidden from sub-
sequent patches. Then, if patchi can reflect energy onto the
next patch (it is a back facing patch with respect to the tran-
sillumination direction), then patchi should be added to the
visibility map, otherwise, the place of the projection of patch
i will be empty. The local visibility map method is as fol-
lows:

list L = Sort patches in directiond
visibility mapV = f g
for each patchi in L do

Clip patches inV onto patchi
and generate:O = outside list,I = inside list

if patchi is front facingthen
// update with patches of the inside list

B(n+1)
i += ∑ j2I

A( j)
Ai

ρi
πM �Jd �B(n)

j
V = O

else
V = O + patchi

endif
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endfor

3.3. Integration on the directional hemisphere

In order to consider all transillumination directions, the
B(n+1)

i (d) values of different directions must be summed.
This is summarised in the following algorithm:

for each patchi do B(0)
i = Ei ;

for n= 0 to nmax

for each patchB(n+1)
i = Ei

for each directiond
execute the global or local visibility map method

endfor

The presented algorithm consists of an iterational loop
that, in turn, considers all directions. For a single direction,
the visibility maps from all patches are determined. Thus
the complexity of the algorithm will be proportional to the
product of the number of iterational loops, directions and the
complexity of the applied visibility map algorithm. Since the
number of directions is constant, so is the number of itera-
tional loopsnmax needed to decrease the error below a given
limit as it will be proven in the next section, the complexity
of the algorithm is determined by the applied visibility map
algorithm.

4. Convergence and number of iterational loops

The iteration scheme uses an equation that approximates the
directional integral by a finite quadrature, which introduces
some error in each step. Obviously, if this error is too big, not
even the convergence of the iteration can be expected. In this
section requirements are presented that can guarantee the
convergence of the iteration of the approximated radiosity
equation. It is also shown that if the iteration is convergent,
then the number of iterational loops required to decrease the
relative error between the actual and the limiting value of
the radiosity vector below a given limit is independent of the
number of patches.

Assume that the radiosity of patchi is B(n)
i in iteration

stepn. Thus, if the limiting radiosity value of the iteration at
patchi wereB�i , then the error between the actual radiosity
and the solution of the approximate equation in stepn would

be∆B(n)
i =B(n)

i �B�i . Let∆B(n) be the maximum of absolute
values of error in the radiosity estimates of all patches in step
n. Substituting this into equation (11), the error in the next
step can be computed as:

j∆B(n+1)
i j � ρi

MAiπ
�

M

∑
d=1

Z

Aproj
i

∆B(n) d~x 0 �hi;d �Jd =

∆B(n) � ρi

Mπ

M

∑
d=1

cosθi;d �hi;d �Jd: (15)

Note that the sum 1=M ∑M
d=1 cosθi(ωd) � hi;d � Jd is an ap-

proximation of the following integral:

1Z

u=0

1Z

v=0

cosθi(ω(u;v)) �hi (u;v) �J(u;v) du dv= π: (16)

The absolute error of quadrature depends on the number
of sample pointsM, the distribution of the sample points and
function J(u;v) that describes how these sample points are
mapped onto the surface of the directional hemisphere. As-
sume that the mapping keeps the uniform distribution, which
makesJ(u;v) is constant and is equal to 4π, thus the follow-
ing error formula can be obtained:

jε(M)j= j
1Z

u=0

1Z

v=0

cosθi �hi �4π du dv� 1
M

M

∑
d=1

cosθi;d �hi;d �4πj:

(17)
To bound this error, the Koksma-Hlawka inequality17 is
used. Krause is finite. For a 2-dimensional functionf (u;v)
which is continuous and has piece-wise continuous and
bounded mixed derivatives, the variation in the sense of
Hardy-KrauseVHK( f (u;v)) can also be expressed in the fol-
lowing form:

1Z

0

1Z

0

����∂
2 f (u;v)
∂u∂v

���� du dv+

1Z

0

����∂ f (u;1)
∂u

���� du+

1Z

0

����∂ f (1;v)
∂v

���� dv:

(18)
Using the mapping defined by equation (13) and assuming
thathi selectsv2 [0;0:5], function f is

f (u;v)= cosθi(u;v)�hi(u;v)�4π =

8<
:

(1�2v) �4π if v� 0:5;

0 otherwise,
(19)

thus it is continuously differentiable except forv=0:5 where
it is only continuous. Since∂2 f (u;v)=∂u∂v and∂ f (u;1)=∂u
are zero, andj∂ f (1;v)=∂vj= 8π if v� 0:5 and 0 otherwise,
the Hardy-Krause variation is 4π.

The star-discrepancyD�([ud;vd]) depends on the selec-
tion of the sample points in the unit square. For example, for
the two-dimensionalHammersley sequence17 applying 2 as
base number, the discrepancy is bounded by:

D�([ud;vd])�
1

2M
� (log2M+7): (20)

Substituting this into the equation (17), the following in-
equality can be established:

ε(M)� 2π
M
� (log2M+7): (21)

Using this error term, inequality (15) can also be written in
the following form:

j∆B(n+1)
i j � ∆B(n) �ρi � (1+

jε(M)j
π

): (22)

Let ρmax be maxi ρi . Since∆B(n+1) = maxi j∆B(n+1)
i j, we
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get:

∆B(n+1) � ∆B(n) �ρmax� (1+
jε(M)j

π
); (23)

which means that the maximal error of patch radiosities
is limited by a geometric series of coefficientρmax � (1+
jε(M)j=π). In order to make the bounding series convergent,
the error term should satisfy:

ρmax� (1+
jε(M)j

π
)< 1 ) jε(M)j< π(

1
ρmax

�1): (24)

This imposes a constraint on the number of samples used
in the discrete approximation of the directional integration.
Table (1) summarises the calculated minimum values of the
number of transillumination directionsM for environments
of different maximum reflectivity.

ρmax M

0.2 5

0.3 9

0.4 15

0.5 24

0.6 37

0.7 61

0.8 111

0.9 272

Table 1: Required number of transillumination directions to
converge for differentρmax values

If this error constraint is satisfied, then the coefficient of
the geometric series is less than 1, providing convergence for
any arrangements. It should be noted that this error bound
is theoretical and it does not mean that if this constraint is
not met, then the iteration is not convergent, and in practical
cases significantly less severe conditions may also work.

Suppose that the termination criterion of the iteration
is that the relative error between the actual value and the
limiting value of the radiosity vector, which is defined by
jj∆B(n)jj=jjB�jj, must be lower than a predefined limit. If
B(0) = 0 and the infinite norm is used, then

jj∆B(n)jj
jjB�jj =

∆B(n)

maxB�i
=

∆B(n)

∆B(0)
� (ρmax� (1+

jε(M)j
π

))n:

(25)
Note that the bound of the relative error is independent of the
number of patches and their geometrical arrangements, thus
the number of iterational steps required to generate estimates
with some predefined precision is constant.

5. Error analysis

The presented approach follows an iteration scheme to deter-
mine the radiosities which satisfy an approximation of the
original radiosity formula (equation (10)). In the presented
method the approximation is due to the discretization of the
directional hemisphere. Since not the real radiosity equation
is iterated, some error is introduced in each step. At the end
of the iteration the radiosity will be distorted by the total ac-
cumulated error. This error is estimated in this section.

The further analysis is based on the assumption that the
iteration is convergent. Let us suppose that the following lin-
ear equation needs to be solved by iteration:

B = E+F �B: (26)

Let us denote the solution of this equation byB̃. Suppose
that matrixF is available only in an approximate form, thus
the iterational formula used instead is:

B(n+1) = E+F� �B(n) (27)

where the error of the matrix isδF = F��F. For the time
being, assume that the approximate matrixF� is constant
during the iteration. Using the terminology of the transillu-
mination method, this means that the same set of transillu-
mination directions is used in every iteration. Let us denote
the norm of the approximate matrix byr:

r = jF�j: (28)

Let us assume that both the original and the approximate
iterations are convergent, thus the norms ofF and F� are
less than 1. In this case, the iteration of the approximate form
will converge to someB� from any starting vector. The total
accumulated error isjjB�� B̃jj= limn!∞ jjB(n)� B̃jj.

Since any starting vector can be selected, let us assume
that the starting vector is the solution of the exact equation,
thus B(0) = B̃. Using the triangle inequality valid for any
norm, we have:

jjB(n)� B̃jj= jjB(n)�B(n�1)+B(n�1)� : : :+B(1)� B̃jj �

n

∑
i=1

jjB(i)�B(i�1)jj: (29)

Taking into account that̃B=E+F �B̃, the following equality
can be established fori = 1:

jjB(1)�B(0)jj= jjE+F� �B̃�(E+F �B̃)jj= jjδF �B̃jj: (30)

For anyi > 1, on the other hand:

jjB(i)�B(i�1)jj= jjF� � (B(i�1)�B(i�2))jj=

jj(F�)i�1 � (B(1)� B̃)jj � r i�1 � jjδF � B̃jj (31)

if the matrix and vector norms are compatible. Substituting
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this into equation (29), we get:

jjB�� B̃jj= lim
n!∞

jjB(n)� B̃jj � jjδF � B̃jj �
∞

∑
i=1

r i =
jjδF � B̃jj

1� r
:

(32)

In the transillumination method, the absolute value of the
ith element ofδF � B̃ is:

j
1Z

u=0

1Z

v=0

fi(u;v) du dv� 1
M

M

∑
d=1

fi(ud;vd)j: (33)

where

fi(u;v) =
4ρi

Ai

N

∑
j=1

A(i; j ;ω(u;v)) � B̃j � (1�hj(u;v)) �hi(u;v):

(34)
Note that the integrandfi(u;v) has bounded and piece-
wise continuous mixed derivatives, which guarantees that
the variation in the sense of Hardy and Krause is finite. This
fact makes the integrand really appropriate for quasi-Monte
Carlo integration, and also allows for quantitative error anal-
ysis.

The error of the integral quadrature depends on two inde-
pendent factors according to the Koksma-Hlawka inequal-
ity: the discrepancy of the sample points describing how
uniformly they are distributed, and the variation of the in-
tegrand. The variation of functionfi(u;v) is also due to two
different reasons. On the one hand, for different directions
the projected area ofAi changes, thus∑N

j=1 A(i; j ;ω(u;v))
decreases as the angle between the patch normal and the
transillumination direction increases. On the other hand, in
different directions different patches may be visible which
may have significantly different radiosities.

Unfortunately, the integrandfi(u;v) is too complex to es-
timate its variation in the “general” case. Instead, two ex-
treme cases are examined.

5.1. Error analysis in homogeneous-like environments

First, let us assume that in the variation offi(u;v) the size
of the projected areas is dominant, while the radiosity is ap-
proximately the same from every direction. This means that
the environment consists of large, homogeneous areas (ex-
amples are a room, a terrain, the sky, etc). In this case the
variation of f can be estimated by the variation of the fol-
lowing function:

f 0i (u;v) =
4ρi

Ai
�Ai �cosθi(ω(u;v)) � B̃max�hi(u;v): (35)

The error of the integral quadrature off 0i is

4ρi �B̃max�j
1Z

u=0

1Z

v=0

cosθi �hi du dv� 1
M

M

∑
d=1

cosθi(ωd)�hi;d)j=

ρi � B̃max�
ε(M)

π
(36)

whereε(M) is the error of integral quadrature introduced in
the section on convergence (equation (17)). Substituting this
into equation (32), we get:

jjB�� B̃jj � ρmax

1� r
� ε(M)

π
� jjB̃jj � ρmax

1�ρmax
� ε(M)

π
� jjB̃jj

(37)
sinceρmax� r. Using this inequality, the required number
of directionsM for different maximum reflectivity and ac-
curacy can be calculated. Table (2) presents the results for
jjB�� B̃jj=jjB̃jj � 10�2.

ρmax M

0.2 900

0.3 1600

0.4 2500

0.5 3800

0.6 5700

0.7 9000

0.8 15200

0.9 34000

Table 2: Required number of transillumination directions in
homogeneous-like environment

5.2. Error analysis in strongly heterogeneous
environments

In this section, the effect of seeing different patches in dif-
ferent directions is supposed to be dominant and the envi-
ronment is assumed to be as “bad” as possible. Obviously,
in the worst environment where the variation off is max-
imal, f (u;v) consists of separated peaks due to the contri-
butions of other patches andf (u;v) returns to 0 in between
these peaks. Such an environment can be imagined as a set
of stars - that is bright, small and separated objects.

Using equation 18, we obtain the following upper bound
for the variation:

VHK( fi)�max
u;v

����∂
2 fi(u;v)
∂u∂v

����+max
u

����∂ fi(u;1)
∂u

����+max
v

����∂ fi(1;v)
∂v

���� :
(38)

Let the maximum distance between patchesAi and Aj
be R, and let the maximum of the diameter of the circum-
circle of patch bel . Using simple geometric argumens for
A(i; j ;ω(u;v)) we obtain:

max

����∂
2 fi(u;v)
∂u∂v

����� 4ρi

Ai
�max

j;u;v

�
B̃j �

����∂
2A(i; j ;ω(u;v))

∂u∂v

����
�
�
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16πρi �max
j

B̃ j �
R2

Ai
; (39)

max
u

����∂ fi(u;1)
∂u

����� 4ρi

Ai
�max

j;u

�
B̃j �

����∂A(i; j ;ω(u;1)
∂u

����
�
�

8πρi �max
j

B̃ j �
lR
Ai

; (40)

max

����∂ fi(1;v)
∂u

����� 4ρi

Ai
�max

j;v

�
B̃j �

����∂A(i; j ;ω(1;v)
∂v

����
�
�

8ρi �max
j

B̃ j �
lR
Ai

; (41)

Since usuallyR>> l , the last two terms are negligible,
thus we have:

Var( fi(u;v))� 16π �ρi �
R2

Ai
�max

j
B̃ j : (42)

Sinceρmax� r and maxj B̃ j = jjB̃jj, the norm of the radiosity
error is

jjB�� B̃jj � 16πρmax

(1�ρmax)
�max

i

R2

Ai
�D� � jjB̃jj: (43)

Note that maxR2=Ai expresses the ratio of the size of the
scene and the size of the patches. From this inequality, in
order to guarantee thatjjB�� B̃jj=jjB̃jj � 10�2 for a scene
where the ratio maxR2=Ai is 150, the required number of
necessary transillumination directions is:

ρmax M

0.2 3�106

0.3 5�106

0.4 8�106

0.5 12�106

0.6 18�106

0.7 29�106

0.8 52�106

0.9 120�106

Table 3: Required number of transillumination directions in
strongly heterogeneous environment

These numbers are significantly higher than that of
homogeneous-like environments. Thus we can conclude that
the transillumination method is good for scenes consisting
of large homogeneous patches but becomes inefficient for
scenes of small, separated patches. However, if the scene is
generally homogeneous, but has a few small objects with

high emission power (like stars), then the transillumination
method can still be used after preprocessing. In an appropri-
ate preprocessing step, the power of the small sources should
be shot onto the larger surfaces. Since these small objects re-
ceive just a small amount of power, they can be neglected in
the further calculations when the transillumination method
is applied.

6. Error reduction

So far, we have assumed that the approximate matrix is con-
stant, that is, the same set of transillumination directions is
used during the iteration. This means that if an accurate so-
lution is required, then a large number of transillumination
directions should be computed in each iteration step.

However, the computational burden can be reduced if dif-
ferent transillumination directions are used in different iter-
ation steps. This means formally that the iteration formula
is

B(n+1) = E+F(n) �B(n) (44)

whereF(n) is the matrix used in stepn. Note thatF(n) is
computed fromM number of transillumination directions. If
limn!∞ F(n) = F, then the iteration will converge to the real
solution. It means practically that the number of directions
must be increased in each step.

There is another alternative, however, that keeps the num-
ber of directions constant but uses a different set of tran-
sillumination directions in each iteration step. Let us note
thatF(n) is not convergent in this case, thus neither can the
iteration be convergent. However, applying asemi-iterative
scheme15, the iteration can be made convergent. The semi-
iterative scheme at stepK takes the average of the previous
radiosity approximations:

B̂(K) =
1
K

K

∑
n=1

B(n+1) =

1
K

� K

∑
n=1

F(n) �E+
K

∑
n=2

F(n) �F(n�1) �E++ : : :
�
: (45)

Obviously, if for anyi = 1;2;3: : :

lim
K!∞

1
K

K

∑
n=i

F(n) �F(n�1) �F(n�2) � : : : �F(n�i+1) �E = Fi �E;
(46)

thenB̂(K) will converge to the real solution (B̃). Intuitively,
this means that theK �M number of sample points can be
distributed inK iteration steps if the directions used in dif-
ferent iterations steps are appropriate for 2K-dimensional
quadrature (factor 2 comes from the fact that the transil-
lumination direction is a 2-variate function). Note that the
proposed 2-dimensional Hammersly sequence does not meet
this requirement since its coordinate isun = n=M, thus it
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can generate only thoseF(n) �F(n�1) � : : : �F(n�i+1) �E prod-
ucts where theu-coordinate of transillumination direction in-
creases forF(n�i+1); : : : ;F(n�1);F(n). In order to avoid this
effect, other sequences must be applied, or the Hammersley
sequence must be scrambled.

Note that this problem is specific to quasi-Monte Carlo
integration and does not occur when classical Monte Carlo
method is used to select the sample points. A random matrix
sequence of independent random variablesF(n) satisfying

EfF(n)xg= F �x (47)

for anyx also meets the requirement of equation (46).

7. Simulation results

The presented algorithm has been implemented and tested
with different scenes and using different number of tran-
sillumination directions. In the actual implementation the
simpler local visibility map method has been incorporated.
In the simulations the error was approximated by the dif-
ference of the actual solution and a solution incorporating
so high number of directions for which a further increase
would cause only a negligible difference. It turned out that
as long as the scene is not very inhomogeneous, the formula
of homogeneous-like environments predicted the error quite
accurately.

An image of a test scene and the simulation results are
shown in figure 4, and in figure 5, respectively. The test scene
consists of 145 diffuse spheres that are lit by an enclosing
sphere which is divided into two hemispheres of different
colours (lightsources cannot be seen in the image).

Figure 4: A test scene: the “sphere-flake” (19976 patches,
ρmax= 0:6)
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Figure 5: Simulation results
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8. Conclusions and future work

This paper has presented a radiosity method where the dou-
ble integral of the incoming power is calculated partly by
analytical and partly by numerical, quasi-Monte Carlo tech-
niques. The analytical integration prepared a function that
is well suited for the quasi-Monte Carlo integration and er-
ror analysis. Theoretical bounds have been given for the re-
quired number of samples in the numerical integration to
guarantee convergence and to find the solution with a given
accuracy. In the error analysis two environment types were
examined. We concluded that the presented method is effi-
cient for environments that consists of large, homogeneous
faces. For strongly heterogeneous environments of separated
bright patches, the algorithm is recommended only if we can
get rid of these separated bright patches by the proposed pre-
processing.

The discussed semi-iteration step is promising, but more
research needs to be done to find even more appropriate
equidistribition sequences.

The actual implementation uses the local visibility map
method that hasO(N2) time and storage complexity. A fu-
ture enhancement is the modification of this algorithm to
avoid the majority of the cuttings of the patches. Instead of
cutting, the radiosity of the patch can be corrected, resulting
in aO(N logN) algorithm.

Another promising direction is the extension to non-
diffuse environments. Since a transillumination step can
be considered as tracing infinitely many parallel rays, the
fundamental ideas of photon-tracing? or bi-directional ray-
tracing12 can be combined with this method. Unlike these
stochastic ray tracing techniques, the non-diffuse transillu-
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mination method would require meshing, but could compute
the contribution of infinitely many random walks.
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dapest, 1995.

c The Eurographics Association 1997


