
Spherical Billboards and their Application to Rendering Explosions

Tamás Umenhoffer∗ László Szirmay-Kalos† Gábor Szijártó‡

Department of Control Engineering and Information Technology
Budapest University of Technology, Hungary

Planar Spherical Planar Spherical

Figure 1: Comparison of the classical planar and the proposed spherical billboards

ABSTRACT

This paper proposes an improved billboard rendering method that
splats particles as aligned quadrilaterals similarly to previous tech-
niques, but takes into account the spherical geometry of the parti-
cles during fragment processing. The new method can eliminate
billboard clipping and popping artifacts of previous techniques,
happening when the participating medium contains objects, or the
camera flies into the volume. This paper also discusses how to use
spherical billboards to render high detail explosions made of fire
and smoke at high frame rates.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]

Keywords: Billboards, particle systems, shader programming

1 INTRODUCTION

Participating media [2] or volumetric models are often represented
by particle systems [12]. The basic idea of particle systems is to
build complex models from a large population of simple entities,
whose geometric extent is small, but which possess certain proper-
ties used in animation (position, speed, acceleration) and in render-
ing (e.g. color, opacity). Particle systems can be used to simulate
and render natural phenomena, including fire, smoke, explosions,
fog, cloud, etc [13, 17, 4, 10, 5, 9].

Formally, a particle system is a discretization of a continuous
medium, which allows us to replace differentials of the equations
governing the motion and light scattering by finite differences dur-
ing simulation and rendering. In this paper we focus on real-time
rendering such systems, which means the solution of the volumetric
rendering equation. In the continuous volume the optical proper-
ties on a single wavelength are described by the emission radiance,

∗umitomi@freemail.hu
†szirmay@iit.bme.hu
‡szijarto.gabor@freemail.hu

density τ , i.e. the reciprocal of the expected free run length of a
photon, albedo a, i.e. the probability that the collided photon is not
absorbed, and phase function P(�ω ′, �ω), i.e. the probability density
of the photon direction �ω after collision, provided that the photon
came from direction �ω ′ before collision and is reflected.

To solve the volumetric rendering equation efficiently, the do-
main is discretized using a particle system. A particle represents a
spherical neighborhood where the volume is locally homogeneous,
thus the particle neighborhood can be represented by a single set
of optical properties. Denoting the length of the ray segment in-
tersecting the sphere of particle j by ∆s j, and the density, albedo,
and phase function of this particle by τ j,a j,Pj, respectively, the
discretization of the volumetric rendering equation leads to the fol-
lowing equation expressing outgoing radiance L(j,�ω) of particle j
at direction �ω :

L(j, �ω) = I(j, �ω) ·(1−α j)+α j ·a j ·Cj +α j ·(1−a j) ·Le
j(�ω), (1)

where I(j, �ω) is the incoming radiance from direction �ω ,

α j = 1− e
−∫

∆s j
τ(s)ds

= 1− e−τ j∆s j (2)

is the opacity, which equals to the decrease of radiance caused by
this particle due to extinction (i.e. the sum of absorption and out-
scattering), Le

j is the emission radiance, and

Cj =
∫

Ω′

I(j,�ω ′) ·Pj(�ω ′, �ω) dω ′

is the total contribution of in-scattering from all possible directions
�ω ′ of directional sphere Ω′. Equation 1 can be interpreted as fol-
lows. Radiance I of the light ray in direction �ω is decreased because
photons may collide with the media. The probability that colli-
sion occurs in a particle sphere equals to opacity α j, which also
expresses the amount of participating media enclosed by the parti-
cle. On the other hand, the intensity is increased by the in-scattering
term α j ·a j ·Cj, which means that photons traveling in other direc-
tions �ω ′ collide and are scattered into direction �ω , and by emission
α j · (1−a j) ·Le

j(�ω) of the participating media enclosed by the par-
ticle. Here a j ·Pj(�ω ′, �ω) is the subcritical probability density that

the photon is scattered into direction �ω after collision, provided it
came from direction �ω ′. We have to consider all incoming direc-
tions, therefore the in-scattering term contains an integral in the
directional domain. Since particles are small, multiple scattering
inside a particle sphere is ignored.

Having approximated the in-scattering term somehow [19], the
volume can efficiently be rendered from the camera using alpha
blending. The in-scattering term and the emission of a particular
particle are attenuated according to the total opacity of those parti-
cles which are between the camera and this particle. This requires
particles be sorted in the view direction before sending them to the
frame buffer in back to front order. At a given particle, the evolv-
ing image is decreased according to the opacity of the particle and
increased by its in-scattering and emission terms (equation 1).

Particle system rendering methods usually splat particles onto
the screen [12, 21]. Splatting substitutes particles with semi-
transparent, camera-aligned rectangles, called billboards [14].

1.1 Billboard clipping and popping artifacts

billboard

visible

billboard

invisible

object

Figure 2: Billboard clipping artifact. When the billboard rectangle
intersects an opaque object, transparency becomes spatially discon-
tinuous.

Billboards are planar rectangles having no extension along one
dimension. This can cause artifacts when billboards intersect
opaque objects making the intersection of the billboard plane and
the object clearly noticeable (figure 2). The core of this clipping
artifact is that a billboard fades those objects that are behind it ac-
cording to its transparency as if the object were fully behind the
sphere of the particle. However, those objects that are in front of
the billboard plane are not faded at all, thus transparency changes
abruptly at the object–billboard intersection.

On the other hand, when the camera moves into the media, bill-
boards also cause popping artifacts. In this case, the billboard is ei-
ther behind or in front of the front clipping plane, and the transition
between the two stages is instantaneous. The former case corre-
sponds to a fully visible, while the latter to a fully invisible particle,
which results in an abrupt change during animation (figure 3).

The issue of billboard clipping artifacts has been addressed in
[6, 7] where the splitting of the intersected billboards is proposed.
Instead of using the z-buffer to identify the visible fragments, a back
to front rendering is executed, which draws two billboards instead
of a single intersected billboard, one before, and the other after the
object rendering. While this approach eliminates artifacts in case of
a single object, it gets unmanageable for many included objects.

If billboard pixels are either fully visible or fully opaque, then
another possibility exists to mix billboards and conventional 3D ob-
jects. To avoid incorrect clipping, billboards are equipped with per
pixel depth information as happens, for example in nailboards [15]
and 2.5D impostors [18, 20].

billboard

Frame A billboard

fully

visible

Frame B
billboard

fully

invisible

front plane

front plane

billboard

Frame A Frame B

Figure 3: Billboard popping artifact. Where the billboard gets to the
other side of the front clipping plane, the transparency is discontinu-
ous in time (the figures show two adjacent frames of an animation).

In this paper we propose a novel solution for including objects
into the participating medium without billboard clipping and pop-
ping artifacts. The basic idea of spherical billboards is introduced
in section 2. Unlike nailboards, the proposed method can also han-
dle semi transparent billboards needed for natural phenomena, such
as fire, smoke, clouds, and explosions. Instead of associating depth
textures to billboards, we obtain two depth values analytically, one
for the front, and another one for the back surfaces, and compute
the opacity according to the real distance the light travels inside the
particle. The proposed idea is used then to render realistic explo-
sions in real-time in section 3. In our explosion rendering system
fire and smoke particles are animated and colored in a physically
plausible way similarly to [10, 11].

2 SPHERICAL BILLBOARDS

Billboard clipping artifacts are solved by calculating the real path
length a light ray travels inside a given particle since this length
determines the opacity value to be used during rendering. The trav-
eled distance is obtained from the spherical geometry of particles
instead of assuming that a particle can be represented by a planar
rectangle. However, in order to keep the implementation simple
and fast, we still send the particles through the rendering pipeline
as quadrilateral primitives, and take into account the spherical shape
only during fragment processing.

To find out where opaque objects are during particle rendering,
first these objects are drawn and the resulting depth buffer storing
camera space z coordinates is saved in a texture.

Having rendered the opaque objects, particle systems are pro-
cessed. The particles are rendered as quads perpendicular to axis
z of the camera coordinate system. These quads are placed at the
farthest point of the particle sphere to avoid unwanted front plane
clipping. Disabling depth test is also needed to eliminate incorrect
object–billboard clipping.

When rendering a fragment of the particle, we compute the inter-
val the ray travels inside the particle sphere in camera space. This
interval is obtained considering the saved depth values of opaque
objects and the camera’s front clipping plane distance. From the
resulting interval we can compute the opacity for each fragment in
such a way that both fully and partially visible particles are dis-
played correctly, giving the illusion of a volumetric medium. Dur-
ing opacity computation we assume that the density is uniform in-
side a particle sphere.

billboard

P
d

w

r

F Q B
O
x,y

x

z

front

clipping plane

f Zs
s

object

particle sphere

Figure 4: Computation of length ∆s the ray segment travels inside a
particle sphere of radius r and of center �P.

For the formal discussion of the processing of a single particle,
let us use the notations of figure 4. We consider the fragment pro-
cessing of a particle of center �P = (xp,yp,zp) and of radius r. The
particle is rendered as a quad perpendicular to axis z. Suppose that
the current fragment corresponds to the visibility ray cast through
point �Q = (xq,yq,zq) of the quadrilateral. Although visibility rays
start in the origin of the camera coordinate system and thus form
a perspective bundle, for the sake of simplicity, we consider them
as being parallel with axis z. Note that it would also be possible
to trace rays not parallel with axis z, or even rotating billboards to
be perpendicular at their centers with the viewing direction. How-
ever, we have found that the orthographic projection approximation
is acceptable if the perspective distortion is not too strong, and re-
quires the simplest formulae to implement. If the visibility ray is
parallel with axis z, then the z coordinates of �P and �Q are identical,
i.e. zq = zp. The distance between the ray and the particle center is

d =
√

(xq − xp)2 +(yq − yp)2.

The closest and the farthest points of the particle sphere on the
ray from the camera are �F and �B, respectively. The distances of
these points from the camera can be obtained as

|�F| ≈ zp −w, |�B| ≈ zp +w,

where w =
√

r2 −d2. The ray travels inside the particle in interval
[|�F|, |�B|].

Taking into account the front clipping plane and the depth values
of opaque objects, these distances may be modified. First to elimi-
nate popping artifacts, we should ensure that |�F| is not smaller than
the front clipping plane distance f , thus the distance the ray trav-
els in the particle before reaching the front plane is not be included.
Secondly we should also ensure that |�B| is not greater than Zs which
is the stored object depth at the given pixel, thus the distance trav-
eled inside the object is not considered.

From these modified distances we can obtain the real length the
ray travels in the particle:

∆s = min(Zs, |�B|)−max(f , |�F|).

2.1 “Gouraud shading” for spherical billboards

Assuming that the density is homogeneous inside a particle and us-
ing equation 2 to obtain the respective opacity value correspond to
piece-wise constant finite-element approximation. While constant
finite-elements might be acceptable from the point of view of nu-
merical precision, their application results in annoying visual arti-
facts.

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1
d

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1
d

Figure 5: The accumulated density of a ray (left) and its seen opacity
(right) as the function of the distance of the ray and the center in a
unit sphere with constant, unit density.

Figure 5 depicts the accumulated density (
∫

∆s j
τ(s)ds) and the

respective opacity as a function of ray–particle distance d, assuming
constant finite-elements. Note that at the contour of the particle
sphere (d = 1) the accumulated density and the opacity become
zero, but they do not diminish smoothly. The accumulated density
has a significant derivative at this point, which makes the contour
of the particle sphere clearly visible for the human observer.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
d

Figure 6: The accumulated density of a ray as the function of the
distance of the ray and the center in a unit sphere with density
function linearly decreasing with the distance from the particle center.

This artifact can be eliminated if we use piece-wise linear rather
than piece-wise constant finite-elements, that is, the density is sup-
posed to be linearly decreasing with the distance from the particle
center. The accumulated density computed with this assumption is
shown by figure 6. Note that this function is very close to a linear
function, thus the effects of piece-wise linear finite elements can be
approximated by modulating the accumulated density by this linear
function. It means that instead of equation 2 we use the following
formula to obtain the opacity of particle j:

α j ≈ 1− e−τ j(1−d/r j)∆s j

where d is the distance between the ray and the particle center, and
r j is the radius of this particle. Note that this approach is very sim-
ilar to the trick applied in radiosity methods. While computing the
patch radiosities piece-wise constant finite-elements are used, but
the final image is presented with Gouraud shading, which corre-
sponds to linear filtering.

2.2 GPU Implementation of spherical billboards

The length the ray travels in a particle sphere and the correspond-
ing opacity can be computed by a custom fragment shader pro-
gram. The fragment program gets some of its inputs from the ver-
tex shader: the particle position in camera space (P), the shaded
billboard point in camera space (Q), the particle radius (r), and
the screen coordinates of the shaded point (scr). The fragment
program also gets uniform parameters, including the texture of the
depth values of opaque objects (Depth), the density (tau), and the
camera’s front clipping plane distance (f). The fragment program
calls the following function to compute the particle opacity at the
shaded fragment:

float Opacity(float3 P, float3 Q, float r, float2 scr) {

float alpha = 0;

float d = length(P.xy - Q.xy);

if(d < r) {

float w = sqrt(r*r - d*d);

float F = P.z - w;

float B = P.z + w;

float Zs = tex2D(Depth, scr);

float ds = min(Zs, B) - max(f, F);

alpha = 1 - exp(-tau * (1-d/r) * ds);

}

return alpha;

}

With this simple calculation the shader program obtains the real
ray segment length (ds) and computes opacity alpha of the given
particle that controls blending of the particle into the frame buffer.
The consideration of the spherical geometry during fragment pro-
cessing eliminates clipping and popping artifacts (see figures 1 and
7).

Figure 7: Particle system rendered with spherical billboards.

3 RENDERING EXPLOSIONS

The proposed spherical billboard technique can replace planar bill-
boards in all participating media rendering application. In this sec-
tion, we consider a single example, the explosion rendering. Ex-
plosions consist of dust, smoke, and fire, which are modeled by
specific particle systems. Dust and smoke absorb light, fire emits
light. These particle systems are rendered separately, and the final
result is obtained by compositing their rendered images.

3.1 Dust and smoke

Smoke particles are responsible for absorbing light in the fire.
These particles typically have low albedo values (a = 0.2,τ = 0.4).
High albedo (a = 0.9,τ = 0.4) dust that is swirling in the air, on
the other hand, is added to improve the realism of the explosion

(figure 8). When rendering dust and smoke we assume that these
particles do not emit radiance so their emission term is zero. To
calculate the in-scattering term, the length the light travels in the
particle sphere, the albedo, the density, and the phase function (see
equation 1) are needed. We use the Henyey-Greenstein phase func-
tion [8, 3]:

P(�ω ′, �ω) =
1

4π
· 3(1−g2) · (1+(�ω ′ ·�ω)2)

2(2+g2) · (1+g2 −2g(�ω ′ ·�ω))3/2
,

where g∈ (−1,1) is a material property describing how strongly the
material scatters forward or backward. To speed up rendering, these
function values are fetched from a prepared 2D texture addressed by
cosθ = �ω ′ · �ω and g, respectively. We have found that setting g to
constant zero gives satisfactory results for dust and smoke.

The real length the light travels inside a smoke or dust particle is
computed by the proposed spherical billboard method.

Figure 8: High albedo dust and low albedo smoke.

In order to maintain high frame rates, the number of particles
should be limited, which may compromise high detail features. To
cope with this problem, the number of particles is reduced while
their radius is increased. The variety needed by the details is added
by perturbing the opacity values computed by spherical billboards.
Each particle has a unique, time dependent perturbation pattern.
The perturbation is extracted from a grey scale texture, called de-
tail image, which depicts real smoke or dust (figure 9). The pertur-
bation pattern of a particle is taken from a randomly placed, small
quad shaped part of this texture. This technique has been used for a
longer time by off-line renderers of the motion picture industry [1].
As time advances this texture is dynamically updated to provide
variety in the time domain as well. Such animated 2D textures can
be obtained from real world videos and stored as a 3D texture since
inter-frame interpolation and looping can automatically be provided
by the graphics hardware’s texture sampling unit [11].

Figure 9: Images from real smoke and fire video clips, which are used
to perturb the billboard fragment opacities and temperatures.

3.2 Fire

Fire is modeled as a black-body radiator rather than participating
medium, i.e. the albedo in equation 1 is zero, so only the emission
term is needed. The color characteristics of fire particles are de-
termined by the physics theory of black-body radiation. For wave-
length λ , the emitted radiance of a black-body can be computed by
Planck’s formula:

Le(λ) =
2C1

λ 5(eC2/(λT) −1)

where C1 = 3.7418 · 10−16Wm2, C2 = 1.4388 · 10−2m◦K, and T
is the absolute temperature of the radiator [16]. Figure 10 shows
the spectral radiance of black-body radiators at different temper-
atures. Note that the higher the temperature is, the more blueish
the color gets. For different temperature values, the RGB compo-
nents can be obtained by integrating the spectrum multiplied by the
color matching functions. These integrals can be precomputed and
stored in a texture. To depict realistic fire, the temperature range of
T ∈ [2500◦K,3200◦K] needs to be processed (see figure 11).

1,0

0,8

0,6

0,4

0,2

380 480 580 680 780

2000 K

4000 K

6000 K

8000 K

10 000 K

wavelength (nm)

n
o
rm

a
li

z
e
d
 i

n
te

n
s
it

y

Figure 10: Black-body radiator spectral distribution

0 K 2500 K−3200 K 10 000 K

Figure 11: Black-body radiator colors from 0◦K to 10000◦K. Fire
particles belong to temperature values from 2500◦K to 3200◦K.

The opacity of fire particles is calculated by the spherical bill-
boards. High detail features are added to fire particles similarly
to smoke and dust particles. However, now not the opacity, but
the emission radiance should be perturbed. We could use a color
video and take the color samples directly from this video, but this
approach would limit the freedom of controlling the temperature
range and color of different explosions. Instead, we decided to store
the temperature variations in the detail texture (figure 9), and its
stored temperature values are scaled and are used for color compu-
tation on the fly. A randomly selected, small quadrilateral part of a
frame in the detail video is assigned to a fire particle to control the
temperature perturbation of the fragments of the particle billboard.
The temperature is scaled and a bias is added if required. Then the
resulting temperature is used to find the color of this fragment in
the black-body radiation function.

The fragment program gets fire particle position in camera space
(P), the shaded billboard point in camera space (Q), the parti-
cle radius (r), the screen coordinates of the shaded point (scr),
and the position of the detail image in the texture (detail) and
the starting time of the animation in time. The fragment pro-
gram also gets uniform parameters, including the texture of the fire
video (FireVideo), the black body radiation function of figure 11
(BBRad), the depth values of opaque objects (Depth), the density
(tau), the camera’s front clipping plane distance (f), and the tem-
perature scale and bias in T1 and T0, respectively. The fragment
program calls the Opacity function of subsection 2.2 and com-
putes the color of the fire particle with the following Cg program:

float alpha = Opacity(P, Q, r, scr);

float3 detuvw = detail + float3(0,0,time);

float T = T0 + T1 * tex3D(FireVideo, detuvw);

return float4(tex1D(BBRad, T).rgb, 1) * alpha;

4 LAYER COMPOSITION

To combine the particle systems together and with the image of
opaque objects, a layer composition method has been used. This
way we should render the opaque objects and the particle systems
into separate textures, and then compose them. This leads to three
rendering passes: one pass for opaque objects, one pass for dust,
fire, and smoke, and one final pass for composition. The first pass
computes both the color and the depth of opaque objects.

Figure 12: Particles rendered to render targets of different resolu-
tions. Upper left: particle render target with screen resolution (35
FPS). Upper right, lower left, lower right: render target with half
(60 FPS), quarter (110 FPS) and one eights (185 FPS) of the screen
resolution.

One great advantage of rendering the participating medium into
a texture is that we can use floating point blending. Another advan-
tage is that this render pass may have smaller resolution rendering
target than the final display resolution, which considerably speeds
up rendering since blending needs a huge amount of pixel process-
ing power to overdraw a pixel many times (see figure 12).

To enhance realism, we also simulated heat shimmering that dis-
torts the image [11]. This is done by rendering particles of a noisy

texture. This noise is used in the final composition as u,v offset
values to distort the image (figure 13). With the help of multiple
render targets, this pass can also be merged in the pass of rendering
of fire particles.

The final effect that could be used through composition is mo-
tion blur, which can easily be done with blending, letting the new
frame fade into previous frames. The complete rendering process
is shown in figure 14.

Figure 13: Heat noise texture and the final distorted image.

Scene depthPass1 Scene color

Fire color Fire heat

Pass2

Pass3

Dust Smoke

Final Composited Image

Figure 14: Rendering algorithm

5 RESULTS

The presented algorithm has been implemented in OpenGL/Cg en-
vironment on an NV7800GT graphics card. The dust, the fire, and

the smoke consist of 16, 135, and 112 animated particles, respec-
tively. Note that these small number of larger particles can be sim-
ulated very efficiently, but thanks to the opacity and temperature
perturbation, the high frequency details are not compromised. The
modeled scene consists of 16800 triangles. The scene is rendered
with per pixel Phong shading. During particle simulation we de-
tected collisions between particles and a simplified scene geome-
try. Our algorithm offers real-time rendering speed (70 FPS) in
512× 512 resolution windowed mode, providing high details (see
figure 15). The frame rate strongly depends on the number of over-
written pixels. For comparison, the scene without the particle sys-
tem is rendered at 370 FPS, and the classic billboard rendering
method would run at about 80 FPS. This means that the perfor-
mance lost due to the more complex spherical billboard calculations
can be regained by decreasing the render target resolution during
particle system drawing.

Frame rate data measured with different particle numbers are
shown by table 1, having set the resolution of the render target
for the opacity to the half of the final image resolution. Note that
when higher number of particles are used, the billboard sizes are
decreased proportionally. This means that only the particle simula-
tion and vertex processing time are proportional to the number of
particles, the fragment processing time remains constant.

particles 0 263 526 1052 1578
Planar 370 80 FPS 60 FPS 45 FPS 40 FPS
Spherical 370 70 FPS 56 FPS 40 FPS 35 FPS

Table 1: Frame rates with different particle numbers

6 CONCLUSION

This paper proposed to consider particles as spheres rather than
planar billboards during fragment processing, while still rendering
them as billboards. Spherical billboards eliminated billboard clip-
ping and popping artifacts. The paper also introduced an efficient
method to display explosions composed of fire, smoke, and dust.
The discussed method also used post rendering effects and runs at
high frame rates.

ACKNOWLEDGEMENTS

This work has been supported by OTKA (T042735), GameTools
FP6 (IST-2-004363) project, and by Hewlett-Packard and the Na-
tional Office for Research and Technology (Hungary).

REFERENCES

[1] A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating CGI for
Motion Picture. Academic Press, 2000.

[2] J. F. Blinn. Light reflection functions for simulation of clouds and
dusty surfaces. In SIGGRAPH ’82 Proceedings, pages 21–29, 1982.

[3] W. Cornette and J. Shanks. Physical reasonable analytic expression
for single-scattering phase function. Applied Optics, 31(16):31–52,
1992.

[4] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In
ACM SIGGRAPH 2001, pages 15–22, 2001.

[5] B. E. Feldman, J. F. O’Brien, and O. Arikan. Animating suspended
particle explosions. In ACM SIGGRAPH 2003, pages 708–715, 2003.

[6] M. Harris and A. Lastra. Real-time cloud rendering. Computer Graph-
ics Forum, 20(3), 2001.

[7] M. J. Harris. Real-time cloud rendering for games. In Game Develop-
ers Conference, 2002.

Figure 15: Rendered frames from the animation sequence.

[8] G. Henyey and J. Greenstein. Diffuse radiation in the galaxy. Astro-
physical Journal, 88:70–73, 1940.

[9] J. Krüger and R. Westermann. GPU simulation and rendering of vol-
umetric effects for computer games and virtual environments. Com-
puter Graphics Forum, 24(3):685–693, 2005.

[10] D. C. Nguyen, R. Fedkiw, and H. W. Jensen. Physically based model-
ing and animation of fire. In ACM SIGGRAPH 2002, 2002.

[11] H. Nguyen. Fire in the vulcan demo. In Fernando R., editor, GPU
Gems, pages 359–376. Addison-Wesley, 2004.

[12] W. T. Reeves. Particle systems - techniques for modelling a class of
fuzzy objects. In SIGGRAPH ’83 Proceedings, pages 359–376, 1983.

[13] H. Rushmeier, A. Hamins, and M. Y. Choi. Volume rendering of pool
fire data. IEEE Computer Graphics and Applications, 15(4):62–67,
1995.

[14] G. Schaufler. Dynamically generated impostors. In I Workshop - Vir-
tual Worlds - Distributed Graphics, pages 129–136, 1995.

[15] G. Schaufler. Nailboards: A rendering primitive for image caching
in dynamic scenes. In Eurographics Workshop on Rendering, pages
151–162, 1997.

[16] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemi-
sphere Publishing Corp., Washington, D.C., 1981.

[17] J. Stam and E. Fiume. Depiction of fire and other gaseous phenomena
using diffusion processes. In ACM SIGGRAPH 95, pages 129–136,
1995.

[18] G. Szijártó. 2.5 dimensional impostors for realistic trees and forests.
In Kim Pallister, editor, Game Programming Gems 5, pages 527–538.
Charles River Media, 2005.

[19] L. Szirmay-Kalos, M. Sbert, and T. Umenhoffer. Real-time multiple
scattering in participating media with illumination networks. In Pro-
ceedings of the 2005 Eurographics Symposium on Rendering, pages
277–282, 2005.

[20] T. Umenhoffer and L. Szirmay-Kalos. Real-time rendering of cloudy
natural phenomena with hierarchical depth impostors. In Eurograph-

ics Conference. Short papers., 2005.
[21] X. Wei, W. Li, K. Mueller, and A. Kaufman. Simulating fire with

texture splats. In IEEE Visualization ’02, 2002.

