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Abstract—TFiltering the activity estimate during the iterative
Positron Emission Tomography (PET) reconstruction process has
several benefits. It works as a regularization eliminating high
frequency components mainly due to overfitting, and it also
suppresses noise due to the numerical computation of projections.
A proper filtering scheme should maintain the true activity,
not blur sharp edges, but eliminate noisy artifacts. A filter
meeting this requirement is the bilateral filter, but it requires
the knowledge of the variance of the local activity, which is not
available. To attack this problem, we propose a statistical filtering
method that automatically sets this variance locally based on the
current activity distribution. We demonstrate that the new filter
outperforms Gaussian filtering both for a simple 2D PET model
and also for fully-3D human PET reconstruction. The presented
model is built into the TeraTomo™ system.

I. INTRODUCTION

In iterative PET reconstruction forward and back projections
alternate. Forward projection computes the expected number
of hits in detector pairs called LORs, ¥ = (71, -, INpor )
from the current tracer density estimation z(¥) defining the
number of decays in unit volume around point ¥, while
back projection corrects this estimation. The tracer density is
expressed by voxel coefficients x = (z1,...,2n,,.,). The
correspondence between voxels and LORs is established by
the system matrix Ay where an element gives the probability
that LOR L detects a decay happening in voxel V.

The ML-EM scheme searches the voxel coefficients that
maximize the probability of measurement results y =
(Y1, -+ YNLor )» iteratively updating voxel estimates x%}l ) of
iteration step n by scaling factors sy obtained from the
measured and expected LOR values [8]:
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Operator B is called back projection. The reconstruction pro-
cess can also be interpreted as a control loop (Fig. 1), including
the back projection and the following forward projection

Nyoxel
gL :f(X) = Z ALVxV-
V=1

This loop is stabilized when x(n+l) — x("), i.e. when
scaling factors sy are 1, which means that the iteration loop
solves the following equation for x:

B(F(x)) = 1. 2

Several authors proposed the inclusion of a voxel space
filtering step in the reconstruction loop [9], [3] and it turned

1: Mediso Ltd. (laszlo.papp@mediso.hu).

2: Budapest University of Technology and Economics (e-mail: szir-

may @iit.bme.hu).

iyL
5, NCE)

B ()

Fig. 1. The reconstruction as a control loop. Forward projection F takes the
actual voxel values xg/n ) and computes the expectation of LOR events 3.
Back projection B calculates a correction ratio sy for every voxel from the
expected LOR events g7, and the measured LOR hits yr,.
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Fig. 2. The modified reconstruction loop. Forward projection F computes
the expected LOR hits g7, from the filtered voxel values 2y that are computed
as by applying filter G to the result of previous iteration xi/"). Back projector
B calculates scaling factor sy for each voxel from ratios yr, /Jr..
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out that it is equivalent to the method of sieves that seeks to
constrain the EM solution to a bandwidth limited subspace of
all possible solutions [10], [11], [16]. To see how this pre-
filtering affects the reconstruction loop, let us include filtering
operator G before forward projection F (Fig. 2). Filtering
operator G maps the iteration result zy, to filtered voxel value
Zy. The modified system also stabilizes when the scaling
factors sy are 1, thus we get

sy = B(F(x)) = B(F(¢(x))) = L.

Note that this is the same equation for X as the original one
(Eq. 2) for x, thus considering X to be the output of the control
system, the modified system would behave similarly to the
original one if the result could be represented by the filtering
of x. However, in our case both x and % are represented by
discrete samples, thus these functions must be band-limited,
which prohibits the generation of arbitrary output function Z.
Our modified loop can converge to solutions z that can be
the filtered version of z that can be represented by the voxel
samples. It means that the search space is limited and the
inclusion of a filter acts as a regularization.

Low pass filters, like the Gaussian, are good for regulariza-
tion because high frequency components caused by overfitting
are automatically eliminated, but they also blur sharp edges.
This problem can be attacked by Bilateral filters [15], [7],
which is a non-linear, edge-preserving and noise-reducing
smoothing filter for images. Unlike in linear filters, the weights



depend not only on Euclidean distance of voxels, but also on
the range differences, which is the tracer density differences
in PET. This preserves sharp edges by systematically looping
through each voxel and adjusting weights to the adjacent
voxels accordingly.

Bilateral filtering of input x(¥) is defined as

sy I GolllT = TINGe (@) —a@))a(m)aT
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with G denoting the one-dimensional Gaussian function of
standard deviation A. The amount of blur is controlled by
spatial variance parameter o, while the amount of detail kept is
determined by intensity variance parameter £. The intensity-
dependent Gaussian weight ensures that neighboring voxels
placed on the same side of a step-like signal as the centering
voxel ¢ get higher weights while voxels from the other side
of the edge give less contribution to the filter output, better
preserving an edge. However, the appropriate value of £ is
not straightforward to find, since it is given in intensity space
which is object dependent.

This paper proposes and adaptive statistical filter to solve
this problem and automatically finds the intensity variance
parameter for the bilateral filter.

II. METHODS

The filtering step of the new method is a sequence of
operations to determine the local intensity variance and finally
executing the bilateral filter with locally varying parameter
(the steps are illustrated by Fig. 3 for a 1D step-like function
corrupted by noise):

1) Spatial activity average a(%¥) is determined by separable

Gaussian convolutions (denoted by ):

a(v) = z(0) * G,.

Resulting spatial average a(?) is free from high fre-
quency noise but the edges and the true signal are also
blurred.

2) Standard deviation of the difference between the average
and the signal is computed again with Gaussian convo-
lutions:

d(v) = \/(fv(ﬁ) —a()? * Gy — ((2(7) - a(¥)) * Go)*.

This standard deviation is roughly constant everywhere
but around edges and significant changes of the true
signal, thus it can be used to find these features.
3) Maximum
dmax = max d(7)

is obtained.
4) The spatial standard deviation and its maximum are used
to obtain the local intensity smoothness factor:

i) = (1_;@()&*@0

where « controls edge preservation. The smoothness
factor is in the [0, 1] interval and has value close to zero
where the most significant changes are in the signal and

the value is close to one where the true signal is smooth
and is close to constant.

5) Finally, the bilateral filtering step is executed setting the
intensity variance £(¢) = [d(¥)i(¥) to the product of
spatial standard deviation d(%), local intensity smooth-
ness i(¥) and a user defined factor of filter strength
B. Note that spatial standard deviation d(¥) would be
the standard deviation if the process were stationary.
However, it is an overestimate where the true signal
changes, so we scale this with the smoothness parameter.
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Fig. 3. Steps of the statistical filtering method applied for a 1D step function
corrupted with Perlin noise [6]. We set 0 = 15, a = 3, and = 5. The
Average corresponds to standard Gaussian filtering, which reduces noise but
also blurs the edge. The computed smoothness factor gets small around the
step, prohibiting the blurring of the edge.

Note that steps 1, 2 and 4 apply the standard 3D Gaussian
filter, which is separable and thus can be efficiently executed
on the GPU [14]. The maximum in step 3 is also obtained
with a parallel algorithm. The more expensive step here is the
bilateral filter, which is not separable.

III. REsuLTS: 2D PET MODEL

First we examine a simple 2D PET model [13] where
Nior = 2115 and Nyoxe = 1024 (Fig. 4).

We considered four phantoms, the Three Squares where
each square has 64 Bq activity, the Three Pyramids where
constant squares are replaced by linearly changing activity,
the Point Source of 20 Bq activity, the Homogeneity of 2-10*
Bq activity and using a Monte Carlo particle transport method,
we simulated a 5 sec long measurement for all these phantoms
(Fig. 5).

It means that the Three Squares and Three Pyramids phan-
toms are projected with about 1000 photon pairs, the Point
source with 100 photon pairs, and the Homogeneity with
10° photon pairs, resulting in measured data having 1.21
Signal-to-Noise ratio (SNR) for the Three Squares, 1.07 SNR
for the Point source and 1.69 SNR for the Homogeneity.
Only geometric effects were simulated, we ignored scattering
and absorbtion in the phantom. The Three Squares phantom
is formed by three active squares of increasing size, and
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Fig. 4. 2D tomograph model: The detector ring contains 90 detector crystals
and each of them is of size 2.2 in voxel units and participates in 47 LORs
connecting this crystal to crystals being in the opposite half circle, thus
the total number of LORs is 90 x 47/2 = 2115. The voxel array to be
reconstructed is in the middle of the ring and has 32 x 32 resolution, i.e.
1024 voxels. The ground truth voxel array of the Three Squares phantom has
th2ree hot squares of activity densities 1, 4, and 16 and of sizes 82,42 and
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Fig. 5. The four phantoms used in the experiments, their random projections
in sinogram parametrization, and the reconstructions without regularization.

represents a realistic example. The Point Source and the
Homogeneity represent two extreme cases. Point Source has a
high variation since it has just a single voxel where the activity
is non-zero and is well determined by the measurement. Thus,
the reconstruction of Point Source would not need regulariza-
tion, and regularization would just slow down the convergence.
Homogeneity is formed by four constant activity squares, so
the activity distribution is rather flat and the measurement is
quite noisy. Such cases badly need regularization.
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Fig. 6. Lo error curves of the Three Squares reconstruction, o = 1, o = 2,

B=5.
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Fig. 7. Lo error curves of the Three Pyramids reconstruction, 0 = 1, a = 1.

The Three Squares phantom is reconstructed with different
methods setting 0 = 1, a = 2, § = 5 (Figs. 6 and 10). Note
that the unfiltered reconstruction is very noisy while Gaussian
filtering causes strong blurring. Bilateral filter is a good com-
promise between these cases. The error curves also indicate
that the unfiltered solution reduces the error quickly at the
beginning but later the error increases due to overfitting. Gauss
filter slows down and even stops convergence but can avoid
diverging reconstruction. The speed of initial convergence of
the Bilateral filter is similar to the unfiltered case, but the error
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Fig. 10. Reconstructions of the Three Squares phantom.
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Fig. 8. Lo error curves of the Point Source reconstruction, o = 1, oo = 1.
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Fig. 9. Lo error curves of the Homogeneity reconstruction, 0 = 1, o« = 1.

gets reduced more and the diverging part due to overfitting is
also less significant.

The Three Pyramids, Point, and the Homogeneity phantoms
are reconstructed with different methods setting 0 = 1, a = 1,
and with two different § parameters (Figs. 7-9 and 11-13).
Note that Gaussian removes noise but also blurs the true signal,
while the Bilateral filter preserves edges while reducing noisy
artifacts. The error curves also show the error of the recon-
structed signal before filtering. Note that this is not a valid

Bilateral, 8 = 2
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output but can be considered as a sharpened version of the
reconstruction. This sharpened version converges faster at the
beginning but later behaves poorer than the filtered signal. The
Point is a high statistics measurement where no regularization
is needed, so Gaussian results in large blurring and in stopping
the convergence after a few steps. Bilateral filter, however,
provides similar results as the unfiltered case. Both the Three
Pyramids and the Homogeneity need regularization, so even
Gaussian helps on the longer run, but its initial convergence
is slower than that of the unfiltered solution or the Bilateral
filtering. As these are worse in eliminating overfitting, if the
iteration is not stopped in time, Gaussian can become better
later, which can be observed when the Homogeneity phantom
is reconstructed.

We also included the error curves of the “sharp” versions
of the Gaussian and bilateral filters, which represent the data
before the filter. Note that it is not the theoretically valid
output, but a signal from which the output can be generated
by a low pass filter, i.e. the sharpened version of the real
output. Thus the error of the sharpened version is larger than
the valid output after many iteration steps or may even diverge,
but the initial behavior of the sharpened version is quite good,
especially for the Point Phantom. It means that combining the
sharpened version with the real output for the first few iteration
steps can speed up the reconstruction.

IV. FULLY-3D RECONSTRUCTION

The proposed method has been implemented in CUDA and
integrated into the TeraTomo ™ fully-3D system [1], [12].
Due to the high arithmetic performance and bandwidth of the
GPU, the execution time of the filtering step is negligible
comparing to the projection operators even for higher reso-
lution volumes. Thus, our proposed method has practically no
overhead.

The method is demonstrated with the reconstruction of
Small animal IQ phantom projected by GATE [2] simulating
the NanoPET/CT pre-clinical PET-CT system [5] (Fig. 14).
Note that the noise has been eliminated by the Bilateral filter
without the blurring effect of the Gaussian filter. The resolution
of the reconstructed volume is 200 x 200 x 200 voxels with
edge size of 0.4 [mm].

The Derenzo phantom has also been projected with GATE
assuming the NanoPET/CT pre-clinical PET-CT system and
reconstructed without filtering, with Gaussian and finally with
the adaptive bilateral filter (Fig. 15). The resolution of the
reconstructed volume is 128 x 144 x 144 voxels of 0.234 [mm)].
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Fig. 11. Reconstructions of the Three Pyramids phantom.
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Fig. 12. Reconstructions of the Point Source phantom.
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Fig. 13. Reconstructions of the Homogeneity phantom.
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Fig. 17. Reconstructions of the Human IQ phantom.
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Fig. 15. Reconstruction of the Derenzo phantom

The method is also tested with the reconstruction of the
NEMA NU2-2007 human IQ phantom projected with GATE
[2] simulating the Mediso AnyScan PET/CT system [4]. The
resolution of the reconstructed volume is 166 x 166 x 75 voxels
with edge size of 2 [mm]. The error curves and the reconstruc-
tions are in Figs. 16 and 17. This data requires regularization
because the error of the unfiltered reconstruction diverges after
10 iteration steps. Both the Gaussian and Bilateral filtering
can eliminate divergence, but the error curve of the Bilateral
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Fig. 16. L2 error curve of the reconstructions of the Human IQ phantom.

filter is below that of the Gaussian. The reconstruction results
also explain this because the unfiltered reconstruction is noisy,
the Gaussian is blurred, while the proposed adaptive bilateral
scheme combines the low noise of Gaussian filtering and the
high contrast of unfiltered reconstruction.

V. CONCLUSION

We studied the inclusion of non-linear bilateral filter into the
PET reconstruction loop and concluded that this filter acts as
a regularization that preserves edges but smoothes noise. The
main problem of bilateral filters is the determination of the
intensity range filter parameters, which are object dependent.
This paper proposed an adaptive, statistical filtering method.
Unlike in the classical bilateral filter, our method automatically
estimates the intensity variance. All steps are implemented
on the GPU where the added computational cost of filtering
is negligible with respect to forward and back projection
calculations.

Acknowledgement

This work has been supported by OTKA K-104476. The
authors are grateful to Gergely Patay for the GATE simula-
tions.

REFERENCES

[1] M. Magdics et al. TeraTomo project: a fully 3D GPU based recon-
struction code for exploiting the imaging capability of the NanoPET/CT
system. In World Molecular Imaging Congress, 2010.

[2] S. Jan and et al. GATE: A simulation toolkit for PET and SPECT.
Physics in Medicine and Biology, 49(19):4543-4561, 2004.

[3] M. Magdics, L. Szirmay-Kalos, B. Té6th, and T. Umenhoffer. Filtered
sampling for PET. In IEEE Nuclear Science Symposium Conference
Record (NSS/MIC), 2012.

[4] http://www.mediso.com/products.php?fid=1,9&pid=73.

[5] http://www.mediso.com/products.php?fid=2,11&pid=86.

[6] K. Perlin. An image synthetisizer. In Computer Graphics, pages 287—
296, 1985.

[7]1 1. Rodrigues, J. Sanches, and J. Bioucas-Dias. Denoising of medical im-
ages corrupted by poisson noise. In /5th IEEE International Conference
on Image Processing, 2008. ICIP 2008. , pages 1756—1759, 2008.

[8] L. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission
tomography. IEEE Trans. Med. Imaging, 1:113-122, 1982.

[9]1 E.T.P. Slijpen and R. J. Beekman. Comparison of post-filtering and

filtering between iterations for SPECT reconstruction. /EEE Trans. Nuc.

Sci., 46(6):2233-2238, 1999.

D. L. Snyder and M.I. Miller. The use of sieves to stabilize images

produced with the em algorithm for emission tomography. IEEE Trans.

on Nuc. Sci., 32(5):3864-3872, 1985.

D. L. Snyder, M.I. Miller, L. J. Thomas, and D.G. Politte. Noise

and edge artifacts in maximum-likelihood reconstructions for emission

tomography. IEEE Trans. on Med. Imaging, 6(3):228-238, 1987.

L. Szirmay-Kalos, M. Magdics, and B. Téth. Multiple importance

sampling for PET. IEEE Trans. Med. Imaging, 33(4):970-978, 2014.

L. Szirmay-Kalos, M. Magdics, B. Té6th, and T. Biikki. Averaging and

metropolis iterations for positron emission tomography. [EEE Trans.

Med. Imaging, 32(3):589-600, 2013.

L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based Techniques

for Global Illumination Effects. Morgan and Claypool Publishers, San

Rafael, USA, 2008.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.

In Proceedings of the Sixth International Conference on Computer

Vision, ICCV ’98, pages 839—, 1998.

E. Veklerov and J. Llacer. The feasibility of images reconstructed with

the methods of sieves. IEEE Trans. Nuc. Sci., 37(2):835-841, 1990.

[10]

[11]

[12]

[13]

[14]

[15]

[16]



