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1. Introduction 

Many types of natural phenomena belong to participating media, including fire, smoke, 
explosions, fog, cloud, etc., which can be simulated by animating and rendering a population 
of individual particles forming a particle system. A particle is an animation and rendering 
primitive, whose geometric extent is small, but which possess certain properties such as 
position, speed, color, and opacity. Formally, a particle system is a discretization of a 
continuous medium, where a particle represents a spherical, locally homogeneous  
neighborhood. This allows us to replace differentials of the equations governing the motion 
and light scattering by finite differences during simulation and rendering. In this article we 
focus on real-time rendering such systems, which means the solution of the volumetric 
rendering equation.  
 
Let us consider a ray going through a particle sphere and examine how the radiance is 
modified by the particle. Denoting the length of the ray segment intersecting the sphere of 
particle j by js∆ , and the density, albedo, and phase function of this particle by jjj Pa ,,τ , 
respectively, the discretization of the volumetric rendering equation leads to the following 
equation expressing outgoing radiance ),( ω

r
jL  of particle j at direction ω

r
:  
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is the opacity that expresses the decrease of radiance caused by this particle due to extinction, 
e
jL  is the emission radiance, and  
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is the total contribution from in-scattering.  
 
Having approximated the in-scattering term somehow, the volume can efficiently be rendered 
from the camera using splatting and alpha blending. Splatting substitutes particles with semi-
transparent, camera-aligned rectangles, called billboards. When a billboard is rasterized, the  
in-scattering term is attenuated according to the total opacity of the particles that are between 
the camera and this particle. This requires particles to be sorted in the view direction before 
sending them to the frame buffer in back to front order. At a given particle, the evolving 
image is decreased according to the opacity of the particle and increased by its in-scattering 
and emission terms (equation 1).  



1.1 Billboard clipping and popping artifacts 

 
 

Figure 1. Billboard clipping artifact. When the billboard rectangle intersects an opaque object, transparency 
becomes spatially discontinuous. 

 
Billboards are planar rectangles having no extension along one dimension. This can cause 
artifacts when billboards intersect opaque objects making the intersection of the billboard 
plane and the object clearly noticeable (figure 1). The core of this clipping artifact is that a 
billboard fades those objects that are behind it according to its transparency as if the object 
were fully behind the sphere of the particle. However, those objects that are in front of the 
billboard plane are not faded at all, thus transparency changes abruptly at the object–billboard 
intersection.  
 

 
 

Figure 2. Billboard popping artifact. Where the billboard gets to the other side of the front clipping plane, the 
transparency is discontinuous in time (the figure shows two adjacent frames in an animation). 

 
On the other hand, when the camera moves into the media, billboards also cause popping 
artifacts. In this case, the billboard is either behind or in front of the front clipping plane, and 
the transition between the two stages is instantaneous. The former case corresponds to a fully 
visible, while the latter to a fully invisible particle, which results in an abrupt change during 
animation (figure 2).  



 
To solve the problems of clipping and popping we introduce spherical billboards in section 2. 
The proposed idea is used then to render realistic explosions in section 3.  

2. Spherical billboards 

Billboard clipping artifacts are solved by calculating the real path length a light ray travels 
inside a given particle since this length determines the opacity value to be used during 
rendering. The traveled distance is obtained from the spherical geometry of particles instead 
of assuming that a particle can be represented by a planar rectangle. However, in order to 
keep the implementation simple and fast, we still send the particles through the rendering 
pipeline as quadrilateral primitives, and take into account the spherical shape only during 
fragment processing. 
  
To find out where opaque objects are during particle rendering, first these objects are drawn 
and the resulting depth buffer storing camera space z coordinates is saved in a texture. Having 
rendered the opaque objects, particle systems are processed. The particles are rendered as 
quads perpendicular to axis z of the camera coordinate system. These quads are placed at the 
farthest point of the particle sphere to avoid unwanted front plane clipping. Disabling depth 
test is also needed to eliminate incorrect object–billboard clipping.  
 
When rendering a fragment of the particle, we compute the interva l the ray travels inside the 
particle sphere in camera space. This interval is obtained considering the saved depth values 
of opaque objects and the camera’s front clipping plane distance. From the resulting interval 
we can compute the opacity for each fragment in such a way that both fully and partially 
visible particles are displayed correctly, giving the illusion of a volumetric medium. During 
opacity computation we assume that the density is uniform inside a particle sphere.  
 

 

Figure 3. Computation of length s∆  the ray segment travels inside a particle sphere in camera space. 

 
Let us use the notations of figure 3. We consider the fragment processing of a particle of 
center ),,( ppp zyxP = , which is rendered as a quad perpendicular to axis  z. Suppose that the 

current fragment corresponds to the visibility ray cast through point ),,( qqq zyxQ =  of the 
quadrilateral. Although visibility rays start in the origin of the camera coordinate system and 
thus form a perspective bundle, for the sake of simplicity, we consider them as being parallel 



with axis z. This approximation is acceptable if the perspective distortion is not too strong. If 
the visibility ray is parallel with axis z, then the z coordinates of P

r
 and Q

r
 are identical, 

i.e. qp zz = .  
 
The radius of the particle sphere is denoted by r. The distance between the ray and the particle 

center is 22 )()( pp yyxxd −+−= . The closest and the farthest points of the particle sphere 

on the ray from the camera are F
r

 and B
r

, respectively. The distances of these points from the 
camera can be obtained as  

 ω−≈ pzF
r

 

where 22 dr −=ω . The ray travels inside the particle in interval[ ]BF
rr

, .  

 
Taking into account the front clipping plane and the depth values of opaque objects, these 
distances may be modified. First to eliminate popping artifacts, we should ensure that F

r
 is 

not smaller than the front clipping plane distance f, thus the distance the ray travels in the 
particle before reaching the front plane is not be included. Secondly we should also ensure 

that B
r

 is not greater than sZ which is the stored object depth at the given pixel, thus the 

distance traveled inside the object is not considered.  
 
From these modified distances we can obtain the real length the ray travels in the particle:  
 ),max(),min( FfBZs s
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Assuming that the density is homogeneous inside a particle and using equation 2 to obtain the 
respective opacity value correspond to the piece-wise constant finite-element approximation. 
While constant finite-elements might be acceptable from the point of view of numerical 
precision, their application results in annoying visual artifacts. The problem is that although 
the accumulated opacity at the contour of the particle sphere becomes zero, but it does not 
diminish smoothly, which makes the contour of the particle sphere clearly visible for the 
human observer. This artifact can be eliminated if we use piece-wise linear rather than piece-
wise constant finite-elements, that is, the density is supposed to be linearly decreasing with 
the distance from the particle center. The effects of piece-wise linear finite elements can be 
approximated by modulating the accumulated density by this linear function. It means that 
instead of equation 2 we use the following formula to obtain the opacity of particle j :  
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j e ∆−−−≈ )/1(1 τα  

where d is the distance between the ray and the particle center, and jr  is the radius of this 
particle. Note that this approach is very similar to the trick applied in radiosity methods. 
While computing the patch radiosities piece-wise constant finite-elements are used, but the 
final image is presented with Gouraud shading, which corresponds to linear filtering.  

2.1 GPU Implementation of spherical billboards 

The evaluation of the length the ray travels in a particle sphere and the computation of the 
corresponding opacity can be efficiently executed by a custom fragment shader program. The 
fragment program gets some of its inputs from the vertex shader: the particle position in 
camera space (P), the shaded billboard point in camera space (Q), the particle radius (r), and 



the screen coordinates of the shaded point (screen). The fragment program also gets 
uniform parameters, including the texture of the depth values of opaque objects (Depth), the 
density (tau), and the camera’s front clipping plane distance (f). The fragment program calls 
the following function to compute the particle opacity at the shaded fragment: 
 
float Opacity(float3 P, float3 Q, float r, float2 screen) { 
  float alpha = 0; 
  float d = length(P.xy - Q.xy); 
  if(d < r) {        // if ray intersects the particle sphere 
    float w  = sqrt(r*r - d*d); 
    float F  = P.z - w;               // entry 
    float B  = P.z + w;    // exit 
    float Zs = tex2D(Depth, screen); // get depth of opaque objects 
    float ds = min(Zs, B) - max(f, F); // traveled length 
    alpha = 1 - exp(-tau * (1-d/r) * ds); // accumulated opacity 
  } 
  return alpha; 
} 
 
With this simple calculation the shader program obtains the real ray segment length (ds) and 
computes opacity alpha of the given particle  that controls blending of the particle into the 
frame buffer. The consideration of the spherical geometry during fragment processing 
eliminates clipping and popping artifacts (see figure 6).  

 

  

 Figure 4. Particle system rendered with planar (left) and with spherical (right) billboards. 

3. Rendering explosions 

An explosion consists of dust, smoke, and fire, which are modeled by specific particle 
systems. Dust and smoke absorb light, fire emits light. These particle systems are rendered 
separately, and the final result is obtained by compositing their rendered images.  

3.1. Dust and smoke 

Smoke particles are responsible for absorbing light in the fire. These particles typically have 
low albedo values ( )4.0,2.0 == τa . High albedo ( )4.0,9.0 == τa  dust that is swirling in the 



air, on the other hand, is added to improve the realism of the explosion (figure 7).  
 
When rendering dust and smoke we assume that these particles do not emit radiance so their 
emission term is zero. To calculate the in-scattering term, the length the light travels in the 
particle sphere, the albedo, the density, and the phase function (see equation 1) are needed. 
We use the Henyey-Greenstein phase function [?,?]:  
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where )1,1(−∈g is a material property describing how strongly the material scatters forward 
or backward. To speed up rendering, these function values are fetched from a prepared 2D 
texture addressed by ωωθ

rr
⋅′=cos  and g, respectively. We have found that setting g to 

constant zero gives satisfactory results for dust and smoke. 
 
The real length the light travels inside a smoke or dust particle is computed by the proposed 
spherical billboard method.  

 

  

 Figure 5. High albedo dust (left) and low albedo smoke (right). 

 
In order to maintain high frame rates, the number of particles should be limited, which may 
compromise high detail features. To cope with this problem, the number of particles is 
reduced while their radius is increased. The variety needed by the details is added by 
perturbing the opacity values computed by spherical billboards. Each particle has a unique, 
time dependent perturbation pattern. The perturbation is extracted from a grey scale texture, 
called detail image, which depicts real smoke or dust (figure 8). The perturbation pattern of a 
particle is taken from a randomly placed, small quad shaped part of this texture. This 
technique has been used for a longer time by off- line renderers of the motion picture industry 
[?]. As time advances this texture is dynamically updated to provide variety in the time 
domain as well. Such animated 2D textures can be obtained from real world videos and stored 
as a 3D texture since inter-frame interpolation and looping can automatically be provided by 
the graphics hardware’s texture sampling unit [?].  

 



  

Figure 6. Images from real smoke and fire video clips, which are used to perturb the billboard fragment opacities 
and temperatures. 

3.2. Fire 

Fire is modeled as a black-body radiator rather than participating medium, i.e. the albedo in 
equation 1 is zero, so only the emission term is needed. The color characteristics of fire 
particles are determined by the physics theory of black-body radiation. For wavelengthλ , the 
emitted radiance of a black-body can be computed by Planck’s formula:  
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where 216
1 107418.3 WmC −⋅= , KmC o2

2 104388.1 −⋅= , and T is the absolute temperature of the 
radiator [?]. For different temperature values, the RGB components can be obtained by 
integrating the spectrum multiplied by the color matching functions. These integrals can be 
precomputed and stored in a texture.  
 
High detail features are added to fire particles similarly to smoke and dust particles. However, 
now not the opacity, but the emission radiance should be perturbed. We could use a color 
video and take the color samples directly from this video, but this approach would limit the 
freedom of controlling the temperature range and color of different explosions. Instead, we 
decided to store the temperature variations in the detail texture (figure 8), and its stored 
temperature values are scaled and are used for color computation on the fly. A randomly 
selected, small quadrilateral part of a frame in the detail video is assigned to a fire particle to 
control the temperature perturbation of the fragments of the particle billboard. The 
temperature is scaled and a bias is added if required. Then the resulting temperature is used to 
find the color of this fragment in the black-body radiation function.  
 
The fragment program gets fire particle position in camera space (P), the  shaded billboard 
point in camera space (Q), the particle radius (r), the screen coordinates of the shaded point 
(screen), and the position of the detail image in the texture (detail) and the starting time 
of the animation in time. The fragment program also gets uniform parameters, including the 
texture of the fire video (FireVideo), the black body radiation (BBRad), the depth values 
of opaque objects (Depth), the density (tau), the camera's front clipping plane distance (f), 



and the temperature scale and bias in T1 and T0, respectively. The fragment program calls 
the Opacity function and computes the color of the fire particle with the following Cg 
program: 
 
float alpha = Opacity(P, Q, r, scr);  // opacity of the particle 
float3 detuvw = detail + float3(0,0,time); // texcoords of the detail 
float T = T0 + T1 * tex3D(FireVideo, detuvw); // temperature 
return float4(tex1D(BBRad, T).rgb, 1) * alpha; // emitted color 

4. Layer composition 

To combine the particle systems together and with the image of opaque objects, a layer 
composition method has been used. This way we should render the opaque objects and the 
particle systems into separate textures, and then compose them. This leads to three rendering 
passes: one pass for opaque objects, one pass for dust, fire, and smoke, and one final pass for 
composition. The first pass computes both the color and the depth of opaque objects.  
 
One great advantage of rendering the participating medium into a texture is that we can use 
floating point blending. Another advantage is that this render pass may have smaller 
resolution rendering target than the final display resolution, which considerably speeds up 
rendering since blending needs a huge amount of pixel processing power to overdraw a pixel 
many times (see figure 11).  

 

    
 

 Figure 7. Particles rendered to render targets of screen (30 FPS), half (40 FPS), quarter (50 FPS), and and one 
eights (60 FPS) of the screen resolution. 

  

 Figure 8. Heat noise texture and the final distorted image 



 
To enhance realism, we also simulated heat shimmering that distorts the image [?]. This is 
done by rendering particles of a noisy texture. This noise is used in the final composition as u, 
v offset values to distort the image. With the help of multiple render targets, this pass can also 
be merged in the pass of rendering of fire particles.  
 
The final effect that could be used through composition is motion blur, which can easily be 
done with blending, letting the new frame fade into previous frames. The complete rendering 
process is shown in figure 9. 
  

 

Figure 9. Rendering algorithm 
 

5. Results 

The presented algorithm has been implemented in OpenGL/Cg environment on an 
NV6800GT graphics card. The dust, the fire, and the smoke consist of 16, 115, and 28 
animated particles, respectively. Note that small number of larger particles can be simulated 
very efficiently, but thanks to the opacity and temperature perturbation, the high frequency 
details are not compromised. The frame rate strongly depends on the number of overwritten 
pixels. For comparison, the scene without the particle system is rendered at 70 FPS, and the 
classic billboard rendering method would also run at about 40 FPS. This means that the 
performance lost due to the more complex spherical billboard calculations can be regained by 
decreasing the render target resolution during particle system drawing.  



   
 

Figure 10. Rendered frames from the animation sequence. 
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