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Abstract
This paper proposes a deterministic importance sampling algorithm that is based on the recognition that delta-
sigma modulation is equivalent to importance sampling. We propose a generalization for delta-sigma modulation
in arbitrary dimensions, taking care of the curse of dimensionality as well. Unlike previous sampling techniques
that transform low-discrepancy and highly stratified samples in the unit cube to the integration domain, our error
diffusion sampler ensures the proper distribution and stratification directly in the integration domain. We also
present applications, including environment mapping and global illumination rendering with virtual point sources.

1. Introduction

In computer graphics we often need to evaluate high-
dimensional integrals. Classical quadrature rules fail in
higher dimensions due to the curse of dimensionality, which
means that the sample number required for a given accu-
racy grows exponentially with the dimension. This prob-
lem can be avoided by Monte Carlo or quasi-Monte Carlo
quadrature, which transforms random or quasi-random sam-
ples uniformly filling a high-dimensional unit cube to the
integration domain. The error of the quadrature is smaller if
the transformation mimics the integrand, i.e. it places more
samples to regions where the integrand is large. Finding such
a transformation is called importance sampling.

An alternative method of finding samples for integral
quadratures is adaptive sampling that uses the samples to
define a piece-wise constant approximation of the integrand,
which is then analytically integrated. The error is small if the
samples carry information where the integrand changes sig-
nificantly. In contrast to important sampling that puts sam-
ples where the original integrand is large, adaptive sampling
places samples where its derivative (gradient) is high.

In order to reduce the cost of dealing with the integrand
during sampling and to allow vector valued functions where
terms like “large” are meaningless, we define a scalar valued
importance function, which should be cheaper to evaluate
than the original function. The importance function mimics
the integrand in case of importance sampling. For sample
generation, we need the normalized version of the impor-

tance function, which is called the target density. The nor-
malization factor is obtained as the integral of the impor-
tance function, possibly also by a numerical quadrature.

In this paper we propose a general high-dimensional sam-
pling scheme that is called error diffusion sampling to high-
light the similarities with error diffusion halftoning and
delta-sigma modulation. The main novelty of the proposed
sampling method is that it takes care of the proper distri-
bution and stratification simultaneously and directly in the
integration domain. We do not impose requirements on the
importance function that would prohibit it to well mimic
the integrand. In particular, unlike most of the previous
approaches, we do not require the importance function to
be analytically integrable with an invertible integral. The
method is consistent, i.e. the error converges to zero if the
number of samples goes to infinity. The paper is organized as
follows. In Section 2 the previous work is surveyed in related
fields like importance and adaptive sampling, and halftoning.
Section 3 discusses delta-sigma modulation and Section 4
proposes the error diffusion sampler. Section 5 presents ap-
plications in the context of global illumination rendering.

2. Previous work

Uniform sample generation: The quality of uniform sam-
ple distributions can be described by their discrepancy
[Shi91], which expresses the distance of the empirical cu-
mulative distribution of the finite number of samples and
the required theoretical uniform distribution. Random sam-
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ples are distributed in a unit cube more uniformly than
regular grids in D-dimensions if D ≥ 3, i.e. their discrep-
ancy is asymptotically O(

√
log logN/N) while the discrep-

ancy of a regular grid isO(N−1/D). Low-discrepancy series
developed for quasi-Monte Carlo integration [Nie92], e.g.
the Halton, Hammersly, Sobol, etc. series, or (t,m,s)-nets
[Nie92, KK02] have better discrepancy O(logD N/N) than
that of the random points. Poisson-disk distribution is known
to have very good quality, but its generation involves many
dart-throwing trials or lengthy iterative refinement [Coo86].
Recent papers proposed faster methods for Poisson-disk
[DH06] or Poisson-disk-like [KCODL06, LD06, Ost07] dis-
tributions with the help of sophisticated tiling, but consid-
ered only 2D domains like a planar or spherical square.

Nonuniform sample generation: Importance sampling
should place samples more densely where the integrand is
large. The simplest approach is to find an analytical map-
ping from the integration domain to the unit cube such that
important regions of the domain correspond to larger vol-
umes in the unit cube. The problem with this approach is that
it requires the analytical integration of the target density and
its inversion during sample generation, thus, only relatively
simple functions can be used. Rejection sampling can gen-
erate samples according to an arbitrary target density g by
accepting or rejecting tentative samples proposed by another
source density p. Rejection sampling requires a preferably
small constant upperbound for ratio g/p and it may throw
an unlimited number of samples away before it obtains a
real sample. Bi-directional importance sampling [BGH05],
Importance resampling [TCE05] or Hierarchical threshold-
ing [ARBJ03, ODJ04, RCL+08] also generate samples with
an easy source density, then the samples are randomly re-
jected and re-weighted to better mimic the target distribu-
tion. The Metropolis method [VG97] samples according to a
target density that is the stationary distribution of an appro-
priately defined Markov chain. That is, it only converges to
the target density, thus it suffers from initial bias. The Popu-
lation Monte Carlo [GmMR04, LFCD07] approach mutates
a set of samples to get the sample set in the next iteration and
weights them to compensate that they were not drawn from
the target distribution.

Sample relaxation: Importance sampling algorithms dis-
cussed so far ignore the problem that the samples are not
well stratified, i.e. the empirical distribution of their finite
number of samples may be far from the prescribed distri-
bution. Even if they start from a low-discrepancy series,
the transformation distorts the original distribution, thus its
stratification is corrupted. To address this problem in the
context of environment mapping, Kollig used an iterative
relaxation algorithm [KK03], which can be speeded up by
exploiting a tiling structure [ODJ04]. Wan et al. [WWL05]
proposed sampling directly on the sphere. Agarwal et al.
[ARBJ03] ensured stratification by an additional partition-
ing step executed as post-processing after sample genera-
tion. Recently, Spencer [BS09] proposed relaxation to post-

process hit samples in a photon map. Unfortunately, all these
techniques are practical only in 2D.

Adaptive sampling: Adaptive sampling uses samples to
build a piece-wise constant approximation of the integrand,
thus it is accurate if samples are concentrated where the inte-
grand changes significantly. Image space adaptive sampling
was used even in the first ray tracer [Whi80], and has been
improved by randomization [BM97] and by the applica-
tion of information theory tools [RFS03]. Adaptive sampling
methods should decompose the sampling domain, which is
straightforward in 2D but needs special data structures like
the kd-tree in higher dimensions [HJW+08].

Halftoning: Halftoning renders gray-scale images on a bi-
level display, placing more white points at brighter areas and
fewer points at darker parts to make the spatial density of
white points in a region around a pixel proportional to the
gray level of that particular pixel. If we consider the gray
level of the original image to be the importance function
and the white pixels of the resulting image to be sample lo-
cations, then halftoning becomes equivalent to importance
sampling. This holds for an arbitrary halftoning algorithm,
including the random and ordered halftoning methods, and
the error diffusion halftoning as well. In fact, error diffusion
halftoning is the generalization of the delta-sigma modula-
tion to 2D [KEBS97]. Algorithms of error diffusion halfton-
ing, including the Floyd-Steinberg [FS75], Jarvis [JJN76],
and Stucki [Stu81] methods, differ in the error shaping filter
and in the order they visit the image pixels. We have already
exploited the similarity of halftoning and importance sam-
pling in environment mapping in [SKSP09]. Now, we step
forward and show that this similarity has important theoret-
ical reasons and roots in delta-sigma modulation. Further-
more, the basic idea is generalized to higher dimensions as
well. Finally, new application possibilities are presented not
only in environment mapping but also in virtual point light
source based global illumination rendering.

3. Delta-sigma modulation

For the sake of notational simplicity, let us consider first a
1D integral of scalar valued integrand f (t) in the domain of
[0,1] (notations are summarized in Table 1). Let us find im-
portance function I(t) that mimics f (t), and define the cu-
mulative importance b(t) as the integral of the importance:

b(t) =
t∫

0

I(τ)dτ.

The target density g(t) = I(t)/bT is the normalization of
the importance function by the total cumulative importance
bT = b(1). The ratio of the integrand and the target den-
sity, i.e. the part that is not mimicked, is denoted by h(t) =
f (t)/g(t). Suppose that samples t1, t2, . . . , tM are obtained in
an arbitrary way and the integral is approximated by the
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Notation Meaning
t sample in unit interval [0,1]
u sample in D-dimensional unit cube U
z sample in D-dimensional target domain P

f (.) integrand
I(.) importance function that mimics integrand f
b(.) cumulative importance: b(t) =

∫ t I(τ)dτ
bT total importance
b̃T approximated total importance
g(.) target density: g(t) = I(t)/bT

h(.) integrand per target density: h(t) = f (t)/g(t)
M number of real samples
N number of tentative samples

m(t) number of samples smaller than t
p(.) source density

Table 1: Notations of the paper.

usual quadrature:

1∫

0

f (t)dt ≈ 1
M

M

∑
j=1

f (t j)
g(t j)

=
bT

M

M

∑
j=1

f (t j)
I(t j)

. (1)

The error of the quadrature can be expressed as (for details
see the appendix):
∣∣∣∣∣∣

1∫

0

f (t)dt− 1
M

M

∑
j=1

f (t j)
g(t j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1∫

0

h′(t)
(

b(t)
bT

− m(t)
M

)
dt

∣∣∣∣∣∣
,

(2)
where h′(t) is the derivative of h(t) and m(t) is the number
of sample points that are smaller than t. This error formula
shows two ways to reduce the error.

The first approach would reduce factor |h′(t)|, that is, it
would make h(t) = f (t)/g(t) close to constant, or alterna-
tively, target density g(t) approximately proportional to in-
tegrand f (t), which is the objective of importance sampling.

The second approach would reduce factor

D(t) =
∣∣∣∣
b(t)
bT

− m(t)
M

∣∣∣∣
which expresses how well samples t1, t2, . . . , tM follow the
target density g(t). If the samples were allocated exactly
according to the target density, then the relative number of
samples in [0, t] would be b(t)/bT . However, the real rela-
tive number of samples in [0, t] is m(t)/M. Low-discrepancy
sampling and adaptive sampling focus on the reduction of
this factor.

As in practical cases none of the two factors can be made
constant zero, a good sampling strategy should simultane-
ously minimize both of them, i.e. it should both make the
target density mimic the integrand and generate finite num-
ber of samples so that they well follow the distribution pre-
scribed by the target density. The primary objective of this

paper is to propose a sampling scheme that simultaneously
considers both factors. In this sense, our scheme can also be
interpreted as a combination of the advantages of importance
sampling and adaptive sampling.

0 1

1

1/M=1/4

b(t)/b
T

t1 t2 t3 t4=tM

sample locations

m(t)/M

D(t)
1/2

3/4

Figure 1: The interpretation of error factor D(t) that is the
difference of the relative cumulative importance b(t)/bT and
the empirical cumulative distribution m(t)/M (here M = 4).

Function m(t) counting the samples smaller than t is in-
teger valued and increments at sample locations, thus the
m(t)/M term makes jumps of size 1/M (Figure 1). On the
other hand, the cumulative importance is continuous, thus
D(t) cannot be reduced under 1/(2M) everywhere. How-
ever, this optimum can be reached in 1D in the following
way. The importance is integrated increasing t in b(t) and we
continuously check whether it exceeds 1/(2M). This com-
parison is implemented inputting the difference to a 1-bit
quantizer. If the difference gets greater than 1/(2M), a sam-
ple is generated and the original integrand is evaluated here.
At the same time, the running integral of b(t) is reduced
by 1/M, and the same procedure continues. The process is
well-known in signal processing and is called delta-sigma
modulation [DeF74]. The described implementation has two
drawbacks. It has a delay, thus the sample is generated after
an important region. On the other hand, the noise of quanti-
zation (i.e. the error of sampling the original function only at
“rare” discrete points) is directly added to the output. There-
fore, in practice, another version, called the Noise-Shaping
Feedback Coder (NSFC) is preferred.

NFSC is discussed switching from continuous time anal-
ysis to discrete time, assuming that the [0,1] interval is de-
composed to N small intervals of size ∆t = 1/N and using
the t = i∆t substitution. NSFC (left of Figure 2) computes er-
ror variable e(i) as the difference of the preferred output and
the output of the quantizer. This error is added to the sub-
sequent samples, i.e. the error is integrated, to lift the next
sample over the quantization level.

In discrete temporal domain, the state equations for input
x(i), quantizer’s input q(i), output y(i), and error e(i) are:

q(i) = x(i)+H(e(i)), e(i) = q(i)− y(i), y(i) =Q(q(i)),

where H is the response of the noise shaping error filter
and Q is the response of the quantizer. Unfortunately, the
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Noise-shaping feedback coder

H(z)
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error filter
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Figure 2: Noise shaping feedback coder (right) and the lin-
ear model of the same network that replaces the non-linear
quantizer by adding white noise (right).

quantizer is a non-linear element, which forbids transform
domain analysis. The usual trick is to model the effect of
the quantizer as the addition of white noise w(i) [KEBS97]
(right of Figure 2). Transforming the state equations from
the discrete temporal domain to the z-domain, we obtain

Y (z) = X(z)+W (z)(1−H(z)),

where Y,X , and W are the z-transforms of y,x, and w, re-
spectively, and H(z) is the transfer function of the error filter.
Note that input x shows up in the output without scaling and
delay. On the other hand, the white noise added by the quan-
tizer is shaped. If H(z) is a low-pass filter, then (1−H(z))
will be high-pass, thus white noise is turned to blue noise,
i.e. the sample points will be stratified.

The discussed coder can directly be used in 1D impor-
tance sampling. The domain is scanned two times in small
steps ∆t = 1/N. The visited points are called the tentative
samples to emphasize that the real sample points will be
among these but not all tentative samples will act as a real
one. In the first run, the importance function is evaluated at
the tentative samples and its integral is approximated as

bT =
1∫

0

I(τ)dτ≈
N

∑
i=0

I(i∆t)∆t = b̃T . (3)

Then, in the second run, the same importance values are
taken at the visited points and input to the NFSC, i.e. x(i) =
I(i∆t). If the quantizer comparing to 1/(2M) flops, i.e. when
q(i) reaches 1/(2M) and thus y(i) changes from zero to 1/M,
the original integrand f is evaluated and its value is included
into the integral quadrature of equation (1). Simultaneously,
the error value is obtained as the difference of the quantizer’s
input q and the current output 1/M. If the quantizer does not
flop, the difference is purely the quantizer’s input.

The output of the noise shaping filter is added to the sub-
sequent values, i.e. the error of the current sample is dis-
tributed among them. This filter is low pass if the weights are
all non negative. For example, a low pass filter with transfer
H(z) = 0.5z−1 + 0.5z−2 would add half of the error to the
next sample, and another half to the sample after the next

one. We usually require that the weights are not only posi-
tive (low-pass criterium) but also that their sum is 1. It means
that the noise transfer function has a zero at zero frequency
(DC), thus the average of the signal is unchanged.

In order to make this sampling scheme feasible for ren-
dering applications, we should extend it to (arbitrarily) high-
dimensions. The extension requires an order of the tenta-
tive sample points in which they are visited. Note that unlike
in other Monte Carlo or quasi-Monte Carlo methods where
sample points can be processed independently and in any or-
der, here the order is important. Solutions like defining the
tentative samples as points of a regular grid and exploring
the high-dimensional space row-by-row or following a space
filling Peano or Hilbert curve suffer from the curse of dimen-
sionality. Thus, these methods may be good in 2D, but be-
come prohibitively expensive in higher dimensions, where
we need another approach. Furthermore, we also need the
neighborhood of a tentative sample where its error can be
distributed. The neighborhood may contain only unvisited
samples, otherwise the system would have to process the
samples multiple times.

4. The error diffusion sampler

Let us consider the integral of a possibly vector valued func-
tion f (z) in a D-dimensional domain P . First, the general
domain is mapped to a D-dimensional unit cube U using
source density p(z) that must be analytically integrable in
P and its integral must be invertible. The source density is
interpreted as the Jacobi determinant of the mapping:

du(z) = p(z)dz, p(z) =
∣∣∣∣
du(z)

dz

∣∣∣∣ .

The original integral is written as follows:

Q =
∫

P
f (z)dz =

∫

P

f (z)
p(z)

p(z)dz =
∫

U

f (z(u))
p(z(u))

du, (4)

where z(u) is the inverse of u(z).

Importance function I(u) is defined in the unit cube and it
should mimic the transformed integrand f /p. In fact, we ex-
pect the error diffusion sampler to compensate those factors
that could not be compensated by the application of source
density p. Target density g(u) is the normalized version of
the importance function.

In order to explore the integrand in the D-dimensional
unit cube U and consequently in domain P , we take a low-
discrepancy series and generate N tentative sample points
u1,u2, . . . ,uN with it. We work with the Halton series, but
other low discrepancy series could be used as well. The
tentative sample points are visited two times. First, during
their generation, we follow the generation order of the low-
discrepancy series constructing method, and estimate the to-
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tal importance:

bT =
∫

U
I(u)du≈ 1

N

N

∑
i=1

I(ui) = b̃T .

The computed importance values are stored as initial values
for the errors that are diffused in the second phase.

In the second phase, the tentative samples are scanned
again and M real samples are generated for the integral
quadrature Q. We emphasize that now we do not follow the
generation order but step from a tentative sample point to
its neighbor being in its vicinity. Formally, now in step j, we
use the sample generated as sample i = O( j), where function
O is responsible for ordering according to the neighborhood
relation. At sample point uO( j) the error is compared to the
threshold b̃T /(2M). The comparison may have two results:

• If the error is greater than the threshold, then integrand f
is evaluated at tentative sample uO( j) and is included in
the quadrature of Q:

Q +=
b̃T

M

f (z(uO( j)))
p(z(uO( j)))I(uO( j))

.

Simultaneously, the error of the current tentative sample
is decreased by b̃T /M.

• If the error is not greater than the threshold, then no sam-
ple is generated here and the error of the tentative sample
is left unchanged.

current

sample

Error

propagation

sequence of

visiting samples

Figure 3: The sequence of tentative samples and the error
distribution to unvisited neighbors in D = 2 dimensions.

In both cases, before stepping onto the next neighboring
tentative sample point, the remaining error of the current ten-
tative sample point is distributed to its unvisited neighbors.
Finally, an unvisited neighbor is selected and the method
continues similarly.

A critical issue in this algorithm is how to find the “neigh-
boring” points in a low-discrepancy series. The issue is tar-
geted by the following subsection.

4.1. Neighborhood relation in low-discrepancy series

In order to develop neighborhood relation, we have to under-
stand how low-discrepancy series fill the unit cube. In par-
ticular, we take the Halton series, but other series behave
similarly in this respect.

The construction of the 1D Halton series expresses the in-
dex i in base B and finds the radical inverse that mirrors the
number onto the “decimal” point to obtain the coordinate of
the sample in (0,1). Thus, as i is incremented from 1 to BR,
then even further toward BR+1, the construction algorithm
generates all R-long combinations of digits 0,1, . . . ,B− 1
before producing a combination of length R+1. This means
that after the radical inverse, the sequence will visit all inter-
vals of length [kB−R,(k+1)B−R) before putting a new point
in an interval already visited. This is often called the elemen-
tal interval property [KK02, DBMS02]. As i increases, the
algorithm produces a single point in each interval of length
B−1, then in each interval of length B−2, etc.
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Figure 4: The first N = 12 points of a 2D Halton series of
bases B1 = 2 and B2 = 3. Setting R1 = 2 and R2 = 1 meets
the requirement that N = BR1

1 BR2
2 = 2231 and that the cells

are cube like since BR1
1 = 4≈ BR2

2 = 3≈ N1/D = 3.46. Note
that the elemental cells have area B−R1

1 B−R2
2 = 1/12 and

each cell contains exactly one point.

In 2D, the generation algorithm would visit all columns of
width B−R1

1 before visiting a column again, and similarly it
would visit all rows of height B−R2

2 before putting a new
point into a row (Figure 4). The columns and rows form
BR1

1 BR2
2 cells. Since the periodicity of the columns and rows

are BR1
1 and BR2

2 , respectively, the periodicity of the cells is
the smallest common multiple of BR1

1 and BR2
2 . If B1 and B2

are relative primes, then this equals to the their product, that
is total number of cells.

In D-dimensions, N points of the Halton sequence of
bases B1, . . . ,BD will implicitly induce a cell structure of res-
olution BR1

1 × . . .× BRD
D , where each cell contains at most

one point if BR1
1 BR2

2 . . .BRD
D ≤ N holds. All cells have the

same volume B−R1
1 B−R2

2 . . .B−RD
D . If the number of samples

N is equal to BR1
1 BR2

2 . . .BRD
D , then every cell will contain

exactly one point from the generated N. As we shall as-
sume that neighboring cells are at approximately the same
distance, the resolution along an axis should be found to
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make the cells cube-like and having similarly long edges,
i.e. BR1

1 ≈ BR2
2 ≈ . . .≈ BRD

D ≈ N1/D.

Our error diffusion algorithm will use this induced cell
structure for finding neighboring tentative samples.

4.2. Datastructure and the algorithm

The induced grid is a D-dimensional array that is indexed by
row, column, etc. numbers that are collected in vector c =
[c[1],c[2], . . .c[D]]. The high-dimensional array is linearized
and stored in a 1D array C indexed by

j = c[1]+ c[2]BR1
1 + c[3]BR1

1 BR2
2 + . . .+ c[D]BR1

1 . . .BRD−1
D−1 .

An array element stores the generation index of the low-
discrepancy point that is contained by the corresponding cell
(C[ j].i), the importance (C[ j].I), and the error value of this
point (C[ j].e) that is initialized to its importance. The de-
termination of the containing cell from the coordinates of
the point is based on the fact that along coordinate d, cell
boundaries are at the integer multiples of B−Rd

d . Thus a
point of coordinates u = [u[1], . . .u[D]] is included in cell
[c[1],c[2], . . .c[D]] where c[d] is the integer part of u[d]BRd

d .

In the first phase of the algorithm, low-discrepancy points
are generated with the radical inverse function ΦB, so cells
are visited one-by-one calculating the importance of the
point and summing it to get the total importance b̃T :

b̃T = 0; // normalization constant
for i = 1 to N do // generate N tentative samples

for d = 1 to D do
u[d] = ΦBd (i); // coordinate
c[d] = (int)(u[d]BRd

d ); // cell index
endfor
C(c).I = I(u); // importance of the tentative sample
C(c).i = i; // store generation index
C(c).e = C(c).I; // initialize the error with importance
b̃T += C(c).I; // accumulate the normalization constant

endfor

In the second phase, the cells are visited row by row, and
the integral quadrature is computed in variable Q:

Q = 0; // integral estimate
for j = 0 to N−1 do // scan tentative samples again

js = j;
for d = 1 to D do // find cell indices c = [c[1], . . . ,c[D]]

c[d] = js mod BRd
d ;

js = js div BRd
d ;

endfor
if (C[ j].e≥ b̃T /(2M)) // quantization

C[ j].e -= b̃T /M; // real sample
for d = 1 to D do u[d] = ΦBd (C[ j].i); // coordinates
Q += b̃T /M · f (z(u))/p(z(u))/C[ j].I; // quadrature

endif
// distribute error in neighbors

for d = 1 to D do C(c + ∆d).e += C[ j].e ·wd ;
endfor

The error shaping filter is defined by index offsets ∆d se-
lecting neighboring cells and weights wd . Our error distribu-
tion uses index offset ∆d that is a D-dimensional vector of
all zeros but at position d where it has 1. With this neigh-
borhood definition a cell has D unvisited neighboring cells,
which share a face with the current cell. Conveniently, the
weighting factors wd can all be 1/D, but according to our
experience, the quality of the sample distribution can be im-
proved by giving larger weights to faster changing cell co-
ordinates. Other neighborhoods of cells sharing an edge or a
vertex may also result in better error shaping, but the number
of neighbors would grow rapidly in higher dimensions.

5. Applications

To apply the proposed sampling scheme, we first have to for-
mulate our problem as a multi-dimensional integral and map
the integration domain to the unit cube by a source density.
Then, the importance function has to be defined. The impor-
tance function should accurately follow the ratio of the inte-
grand and the source density, but it should be much cheaper
to evaluate since otherwise the overhead of computing the
importance of tentative samples would be too high.

5.1. Environment mapping

Environment mapping [Deb98] computes the reflected radi-
ance of point~x as

L(~x,~ω) =
∫

Ω

Lenv(~ω′) fr(~ω′,~x,~ω)cosθ′v(~x,~ω′)dω′,

where Ω is the set of all directions, Lenv(~ω′) is the radiance
of the environment map at direction ~ω′, fr is the BRDF, and
v(~x,~ω′) is the indicator function checking whether no virtual
object is seen from ~x at direction ~ω′. Note that the integral
is the product of three factors, the light intensity, the cosine
weighted BRDF, and the visibility indicator:

f (~ω′) = Lenv(~ω′) fr(~ω′,~x,~ω)cosθ′v(~x,~ω′).

Now we have to decide which factors are mimicked by the
source density and the importance function, respectively.
Two options are investigated, light source sampling and
product sampling.

Light source sampling: In this case, the source density is in-
dependent of the scene and simply maps directional domain
Ω to the unit square. The importance function mimics the
environment illumination Lenv(~ω′) weighted by solid angle
∆ω corresponding to the area of this particular texel. Weights
∆ω are not constant and depend on the environment map
parametrization. Ignoring the BRDF, factor cosθ′, and the
visibility degrades importance sampling, but, as the impor-
tance function depends just on the direction, tentative sam-
ples need to be generated only once for all pixels.

The environment illumination that should be mimicked by
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the importance function is available as a 2D texture map,
where texels are the tentative samples. Note that in this
case, the proposed error diffusion scheme is as simple as
the Floyd-Steinberg halftoning of the weighted environment
map. Figures 5 and 6 compare the distribution of samples
and the resulting images of the illuminated object for random
sampling and for the error diffusion sampler. As the error
diffusion sampler scans the map only once and obtains sam-
ples directly, it is not slower than random sampling. Sam-
pling the 1024× 512 resolution environment map of Fig-
ure 5 takes 47 msec both with random sampling and with
error diffusion on an nVidia GeForce 8800 GFX GPU. After
sampling, rendering with shadow mapping requires 1.2 sec.

Figure 5: Sampling weighted environment maps with ran-
dom sampling (left) and error diffusion (right).

Random sampling Error diffusion Reference

Figure 6: Diffuse and specular bunnies illuminated by di-
rectional lights sampled randomly and with error diffusion.

Product sampling: Suppose that we use BRDF sampling as
a source density, which compensates the angular variation
of the BRDF and the cosθ′ factor, and replaces them by the
albedo a:

f (~ω′)
p(~ω′)

= Lenv(~ω′)a(~x,~ω)v(~x,~ω′).

Note that the source density could not compensate the envi-
ronment radiance and the visibility function.

The computation of the importance must be much cheaper
than that of the original integrand f . In environment map-
ping, the expensive part is the visibility test, so we ignore

occlusions in the importance. The environment illumination
and the albedo are wavelength dependent, thus the impor-
tance should map these vectors to scalars. We use the lumi-
nance (L) of the product. Thus, the importance function is

I(u) = L(Lenv(~ω′(u)a(~x,~ω)).

The terms inserted into the integral quadrature are

b̃T

M
f (z(u j))

p(z(u j))I(u j)
=

b̃T

M
Lenv(~ω′(u j))a(~x,~ω)v(~x,~ω′(u j))

L(Lenv(~ω′(u j))a(~x,~ω))
.

Note that this is the best importance sampling provided that
the visibility is not included in the importance and both the
environment lighting intensity and the BRDF are spectra.

In order to test the approach, we have compared
three techniques: BRDF sampling, importance resampling
[TCE05], and the new error diffusion scheme. All three
were implemented as GPU algorithms, which run on nVidia
GeForce 8800 GFX graphics hardware. All methods traced
M = 32 rays per pixel. Both importance resampling and
the error diffusion sampler generated the real samples from
N = 1024 tentative samples obtained without ray tracing.
The results are shown by Figure 7. Note that the error diffu-
sion sampler completely eliminated the noise at fully visible
surfaces and some noise remained only at partially occluded
parts. We observed that the sample generation overhead be-
comes negligible in comparison to sample evaluation as soon
as the scene consists of more than 10K triangles.

5.2. Rendering with virtual point lights

The virtual light source [Kel97, WKB+02, WFA+05]
method is a bi-directional global illumination algorithm,
where shooting walks are generated and their hit points act
as virtual point-like light sources (VPL) providing the indi-
rect illumination at the points visible from the camera. If all
surfaces are diffuse, the estimator for the radiance of point~x
due to a single VPL of radiant exitance Φ at point~y is

L(Φ(~y)→~x) = Φ(~y)G(~x,~y)v(~x,~y) fr(~x), (5)

where v(~x,~y) is 1 if ~x and ~y are visible from each other and
zero otherwise, and G(~x,~y) is the geometry factor:

G(~x,~y) =
cosθ~y cosθ~x

π|~x−~y|2 .

In the geometry factor θ~x and θ~y are the angles between the
surface normals and the connection direction at~x and~y.

Denoting the position of the kth hit point of the ith shoot-
ing walk by~yk

i , the total contribution of all VPLs to the radi-
ance of point~x is

L(~x) = ∑
i

∑
k

Φ(~yk
i )G(~x,~yk

i )v(~x,~y
k
i ) fr(~x). (6)

The weak points of the estimator are revealed by this for-
mula. The geometry factor is not compensated by the sam-
pling density used to generate shooting walks. The distance
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BRDF sampling Importance resampling Error diffusion

60K triangles, 11 sec 60K triangles, 13 sec 60K triangles, 13 sec

2K triangles, 4 sec 2K triangles, 6 sec 2K triangles, 6 sec

Figure 7: Environment map sampling. Note that the error diffusion sampler eliminated the noise at fully visible surfaces both
for the diffuse and specular cases. The lower row of images show a wheel having a lot of occlusions.

between the VPL and the illuminated point can be arbitrarily
small, which introduces high variation. As a result of this bad
sampling, bright spots show up in the corners of the scene.

We apply the error diffusion sampler to solve this prob-
lem. The original shooting algorithm is responsible for the
source density, which generates N shooting paths from unit
cube points u1, . . . ,uN . Assuming that the real source of light
is a large area light and generating 1 ray long shooting paths,
the sample domain is 4D. For point~x and sample ui, we de-
fine the importance function as the luminance of the reflected
radiance of virtual point sources in the shooting path defined
by ui, replacing the original visibility indicator v by an ap-
proximate indicator V . A conservative approximation of the
visibility term between point ~x and a VPL can be obtained
by checking the occlusion with a proxy geometry, for exam-
ple, a collection of spheres contained by the original objects.
The resulting importance function is

I(ui,~x) = ∑
k
L(Φ(~yk

i ) fr(~x))G(~x,~yk
i )V (~x,~yk

i ).

For each ~x, the error diffusion sampler selects M shooting
paths associated with primary samples ui1 , . . . ,uiM from the
N tentative paths, and results in the following estimator

L(~x) =
b̃T (~x)

M

M

∑
j=1

∑
k

Φ(~yk
i j
) fr(~x)G(~x,~yk

i j
)v(~x,~yk

i j
)

∑k′ L(Φ(~yk′
i j

) fr(~x))G(~x,~yk′
i j

)V (~x,~yk′
i j

)
.

Total importance b̃T (~x) is accurate since it is a quadrature
of a low-variation integrand and computed from all tenta-
tive samples. On the other hand, the high variation caused
by the geometry term G has been greatly reduced by the de-
nominator storing the weighted sum of the geometry terms
associated with this path.

Concerning the cost, if the length of the shooting path is
L and the number of pixels is P, then we trace NL rays to
generate tentative shooting paths, and P(L + 1)M rays dur-
ing final gathering. As we trace much more rays during fi-
nal gathering than during shooting, the number of additional
rays to be traced for not used tentative samples is negligible.
We rendered the images in the upper row of Figure 8 taking
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Classical VPL Importance resampling with proxy Error diffusion without proxy Error diffusion with proxy

0 + 0 + 96 = 96 sec 28 + 16 + 96 = 140 sec 15 + 15 +96 = 126 sec 28 + 15 + 96 = 139 sec

0 + 0 +182 = 182 sec 181 + 116 +182 = 479 sec 95 + 115 +182 = 392 sec 181 + 115 + 182 = 478 sec

Figure 8: Comparison of the classical VPL method, importance resampling with approximate visibility computed with a proxy
geometry, and the error diffusion algorithm without and with approximate visibility. The proxy geometry is one sphere each
for the faceted ball and for the Buddha model. Images in the upper row were rendered with with M = 16 samples per pixel
selected from N = 420 global tentative samples, while the lower row was computed taking M = 32 samples per pixel selected
from N = 2978 tentative samples. Computation times are measured on a CPU ray tracer and expressed as tentative sample
generation + real sample generation + ray tracing.

M = 16 VPLs in each pixel with the classical algorithm, with
importance resampling, and with the error diffusion sampler.
Final gathering traced P(L + 1)M = 8 million rays. Impor-
tance resampling and the error diffusion sampler selected the
VPLs from N = 420 tentative samples. In the lower row, we
repeated the same experiment taking M = 32 real VPLs from
N = 2978 tentative ones.

Classical VPL Error diffusion

Figure 9: Equal time comparison of the classical VPL
method and the error diffusion algorithm with proxy.

Figure 9 compares error diffusion sampling to the classi-
cal VPL method generating 3 ray long light paths started at
an area light source (8D integration). Both algorithms run
520 seconds. We increased the albedos to emphasize longer
light paths.

6. Conclusions

This paper presented a new importance sampling strategy
that is based on delta-sigma modulation. The algorithm con-
sists of two steps. In the first phase, tentative samples are
generated transforming the Halton sequence with an easy
source density. Then, only a subset of these tentative sam-
ples are used as real samples. The real sample locations are
selected with an error diffusion halftoning like algorithm
that has been generalized to arbitrary dimensions. The power
of the method comes from the stratification enforced in the
transformed domain, which is automatically provided by the
error diffusion. The method is really effective when neigh-
boring tentative samples are not very far from each other, i.e.
when we can afford to generate many tentative samples. In
addition to the discussed examples, possible future applica-
tions include depth of field, motion blur, single-scattering of
complex lighting in participating media, etc.

Acknowledgement

This work has been supported by the National Office for Re-
search and Technology and OTKA K-719922 (Hungary).

Appendix

In this appendix we rewrite the quadrature error. Let us first consider
the original integral and apply partial integration using b′(t) = I(t):

1∫

0

f (t)dt =
1∫

0

h(t)g(t)dt =
1∫

0

h(t)
I(t)
bT

dt =
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[
h(t)

b(t)
bT

]1

0
−

1∫

0

h′(t)
b(t)
bT

dt = h(1)−
1∫

0

h′(t)
b(t)
bT

dt. (7)

Now let us consider the 1/M ∑M
j=1 f (t j)/g(t j) term, express first

f (τ)/g(τ) = h(τ) as the integral of its derivative, and extend the
integration domain to [0,1] by multiplying the integrand by a step
function ε(t− τ) :

h(τ) = h(1)−
1∫

τ

h′(t)dt = h(1)−
1∫

0

h′(t)ε(t− τ)dt.

Substituting t1, t2, . . . , tM into τ and computing the average, we get:

1
M

M

∑
j=1

h(t j) = h(1)−
1∫

0

h′(t)
1
M

M

∑
j=1

ε(t− t j)dt. (8)

Note that m(t) = 1
M ∑M

j=1 ε(t− t j) is the average number of samples
that are smaller than t. Subtracting equation (8) from equation (7)
we obtain equation (2).
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