
i
i

i
i

i
i

i
i

Environment Mapping with
Floyd-Steinberg Halftoning
László Szirmay-Kalos, László Szécsi, and

Anton Penzov

In many computer graphics applications we wish to augment virtual objects
with images representing a real environment (sky, city, etc.). In order to
provide the illusion that the virtual objects are parts of the real scene,
the illumination of the environment should be taken into account when
rendering the virtual objects [Debevec 98,Kollig and Keller 03]. Since the
images representing the environment lack depth information, we usually
assume that the illumination stored in these images comes from far surfaces.
This means that the illumination of the environment is similar to directional
lights, it has only directional characteristics, but its intensity is independent
of the location of the illuminated point.

0=V
1=V

1=V

environment map

r

'
r

x
r

oc
cl

ud
er

'

Figure 1.1. The concept of environment mapping stored in a cube map.

Environment mapping may be used to compute the reflected radiance
of a shaded point x⃗ in viewing direction !⃗ as a directional integral

L(x⃗, !⃗) =

∫

Ω

Lenv(!⃗′)fr(!⃗′, x⃗, !⃗) cos µ′x⃗V (x⃗, !⃗′)d!′,

where Ω is the set of all incident directions, Lenv(!⃗′) is the radiance of
the environment map at illumination direction !⃗′, fr is the BRDF, µ′x⃗
is the angle between illumination direction !⃗′ and the surface normal at

1



i
i

i
i

i
i

i
i

2 1. Environment Mapping with Floyd-Steinberg Halftoning

x⃗, and V (x⃗, !⃗′) is the indicator function checking whether environment
illumination can take effect in shaded point x⃗ at direction !⃗′, i.e. no virtual
object occludes the environment in this direction (Figure 1.1).

This integral is usually estimated by Monte Carlo quadrature, which
generates M number of samples !⃗′

1, . . . , !⃗
′
M with probability density p(!⃗′)

and computes the estimate as an average:

L(x⃗, !⃗) ≈ 1

M

M∑

i=1

Lenv(!⃗′
i)fr(!⃗

′
i, x⃗, !⃗) cos µ

′
x⃗,iV (x⃗, !⃗′

i)

p(!⃗i)
.

The most time consuming part of the evaluation of a sample is the compu-
tation of visibility factor V , i.e. the determination whether or not the envi-
ronment is occluded. Real-time environment mapping algorithms usually
ignore this factor and consequently the shadowing of environment light-
ing. However, for rendering photo-realistic images, this simplification is
unacceptable. Thus, in this article we examine environment mapping ap-
proaches that correctly evaluate the occlusion of the illuminating environ-
ment.

The calculation of the visibility factor requires tracing a ray originating
at shaded point x⃗ and having direction !⃗′

i. In order to improve the speed of
environment mapping with shadow computation, the number of samples,
that is the number of traced rays, should be minimized.

For a given number of samples, the error of the quadrature depends on
two factors:

1. Importance sampling : How well does density p mimic the integrand?

2. Stratification: How well does the empirical distribution of the finite
number of samples follow the theoretical distribution defined by p?

This means that we should do a good job in both mimicking the inte-
grand with the sample density and producing well stratified samples.

1.1 Parametrization of the environment map

The environment illumination is defined by a texture map T (u, v) ad-
dressed by texture coordinates u, v ∈ [0, 1]. Thus, we need a mapping
or a parametrization that defines the correspondence between a texture
coordinate pair and illuminating direction !⃗′.

A possible parametrization expresses direction !⃗′ by spherical angles
µ′, Á′ where Á′ ∈ [0, 2¼] and µ′ ∈ [0, ¼/2] in the case hemispherical lighting
and µ′ ∈ [0, ¼] in the case of spherical lighting. Then texture coordinates



i
i

i
i

i
i

i
i

1.1. Parametrization of the environment map 3

(u, v) are scaled from the unit interval to these ranges. For example, in the
case of spherical lighting, a direction is parameterized as

!⃗′(u, v) = (cos 2¼u sin¼v, sin 2¼u sin¼v, cos¼v),

where u, v ∈ [0, 1].

A texture map is a two-dimensional image containing Ru × Rv texels
where Ru and Rv are the horizontal and vertical resolutions, respectively.
Note that the discussed parametrization is not uniform since different texels
correspond to the same ΔuΔv = (1/Ru)(1/Rv) area in texture space, but
different solid angles Δ! depending on texture coordinate v:

Δ! = sin¼vΔuΔv =
sin¼v

RuRv
.

The integral of the reflected radiance can also be evaluated in texture space:

L(x⃗, !⃗) =

1∫

u=0

1∫

v=0

E(u, v)R(u, v, x⃗, !)V(u, v, x⃗)dvdv ≈

1

RuRv

Ru∑

i=1

Rv∑

j=1

E

(
i

Ru
,
j

Rv

)
R

(
i

Ru
,
j

Rv
, x⃗, !⃗

)
V
(

i

Ru
,
j

Rv
, x⃗

)
,

where we used the following shorthand notations for the three main factors
of the integrand:

E(u, v) = Lenv(!⃗′(u, v)) sin¼v = T (u, v) sin¼v

is the intensity of the environment lighting taking into account the distor-
tion of the parametrization,

R(u, v, x⃗, !) = fr(!⃗
′(u, v), x⃗, !⃗) cos µ′x⃗(u, v)

is the reflection factor, and

V(u, v, x⃗) = V (x⃗, !⃗′(u, v))

is the visibility factor.

The evaluation of the reflected radiance by adding the contribution of
all texels would be too time consuming. Therefore, we apply Monte Carlo
methods, which approximate it from just a few sample directions, i.e. a
few texels.



i
i

i
i

i
i

i
i

4 1. Environment Mapping with Floyd-Steinberg Halftoning

1.2 Importance sampling

Monte Carlo methods use a probability density to select the sample points.
According to the concept of importance sampling, we should find a density p
that mimics the product form integrand. To define an appropriate density,
we usually execute the following three main steps.

1. First we decide which factors of the product form integrand will be
mimicked and find a scalar approximation of the usually vector valued
integrand factor. In our case, environment lighting E and reflection
factor R are vector valued since they assign different values for the
wavelengths of the red, green, and blue light. Spectrum L can be
converted to a scalar by obtaining the luminance of the spectrum
ℒ(L), which is a weighted sum of the red, green, and blue intensi-
ties. The resulting scalar approximation of the integrand is called the
importance function and is denoted by I. Note that as the environ-
ment illumination is defined by a texture, the importance function
is also represented by a two-dimensional image. When we want to
emphasize this property, we refer to the importance function as the
importance map.

There are several options to define the importance function as there
are different alternatives of selecting those factors of the integrand
that are mimicked. The simplest way is BRDF sampling that mimics
the luminance of the reflection factor. Light source sampling, on the
other hand, sets the importance function to be the luminance of the
environment lighting. Finally, product sampling includes more than
one factor of the integrand into the importance function. For exam-
ple, the importance function can be the luminance of the product
of the environment lighting and the reflection factor (double product
sampling), or it can even incorporate a cheap visibility factor approx-
imated by some simple proxy geometry included in the object (triple
product sampling).

2. As the density should be normalized, the integral of the importance
function needs to be computed for the whole domain. This compu-
tation can take advantage of the fact that the importance function is
defined also as a two-dimensional array or a texture similarly to the
texture map of the environment illumination:

1∫

u=0

1∫

v=0

I(u, v)dvdu ≈ S

RuRv



i
i

i
i

i
i

i
i

1.2. Importance sampling 5

where

S =

Ru∑
u=1

Rv∑

j=1

I

(
i

Ru
,
j

Rv

)

is the sum of all values in the importance map. Note that the impor-
tance function should be integrated as one step of the importance
sampling. It means that the importance function must be much
cheaper to evaluate and integrate than the original integrand.

3. Finally, the density is defined as the ratio of the importance function
and the normalization constant:

p(u, v) =
I(u, v)

1∫
u=0

1∫
v=0

I(u, v)dvdu

=
I(u, v)RuRv

S
.

Having constructed the importance map and computed sum S, samples
can be drawn with probability density p using the following simple method.
We generate M statistically independent random numbers r1, . . . , rM that
are uniformly distributed in the unit interval. Then, for each random
number, the two-dimensional array of the importance map is scanned, and
the importance values are added together. This running sum is compared
to riS, and when the running sum gets larger, the scanning is stopped
and the current texel (i.e. the direction corresponding to this texel) is
considered as a sample. As can be shown easily, the process will select a
texel with a probability that is proportional to its value.

Figure 1.2. Environment map with random light source sampling.



i
i

i
i

i
i

i
i

6 1. Environment Mapping with Floyd-Steinberg Halftoning

Unfortunately, the application of statistically independent random sam-
ples provides poor results in many cases. To demonstrate the problem, we
used light source sampling to find directional samples on an environment
map (Figure 1.2). The results are disappointing since making indepen-
dent random texel selections, with probability in proportion to its lumi-
nance, does not guarantee that groups of samples will be well stratified.
We still have large empty regions in important parts of the map (under-
sampling) and groups of samples needlessly concentrating to a small unim-
portant region (oversampling). We note that this problem has also been
addressed by Kollig who proposed the relaxation of the samples [Kollig
and Keller 03] and by Ostromoukhov who applied sophisticated tiling [Os-
tromoukhov et al. 04]. The method proposed in the next section provides
similar results as these methods, but is much simpler and has practically
no overhead with respect to the simple random approach.

1.3 Proposed solution

The method proposed in this article has the goal of producing well stratified
samples mimicking an importance map. It is effective, simple to implement
and is even faster than random sampling.

gray-scale image random halftoning Floyd-Steinberg halftoning

Figure 1.3. A gray-scale image and its halftoned versions obtained with random
halftoning and with the Floyd-Steinberg algorithm.

The proposed method is based on the recognition that importance sam-
pling is equivalent to digital halftoning [Szirmay-Kalos et al. 09]. Halftoning
is a technique used to render gray-scale images on a black and white display.
The idea is to put more white points at brighter areas and fewer points at
darker areas. The spatial density of white points in a region around a
pixel is expected to be proportional to the gray level of that particular



i
i

i
i

i
i

i
i

1.3. Proposed solution 7

pixel. If we consider the gray level of the original image to be an impor-
tance function and the white pixels of the resulting image to be sample
locations, then we can see that halftoning is equivalent to a deterministic
importance sampling algorithm. The equivalence of importance sampling
and halftoning stems from the fact that both of them are frequency modula-
tors [Szirmay-Kalos and Szécsi 09]. The input of the frequency modulator
is the gray-scale image or the importance map, respectively, and the output
is a collection of discrete samples with a frequency specified by the input.

This equivalence holds for an arbitrary halftoning algorithm, includ-
ing the random and ordered halftoning methods that add random noise
or a periodic pattern to the original image before quantization, or, for ex-
ample, error diffusion halftoning methods from which the Floyd-Steinberg
algorithm is the most famous [Floyd and Steinberg 75]. Error diffusion
halftoning provides better results than random or ordered halftoning, be-
cause it does not simply make independent local decisions, but gathers and
distributes information to neighboring pixels as well. Because it takes gray
levels in a neighborhood into account, the sample positions are stratified,
making the resulting image smoother and reducing the noise compared to
random or dithered approaches.

Due to these nice properties, we developed our sampler based on the
Floyd-Steinberg method. Random dithering was implemented for com-
parison. We expected the same improvement in importance sampling as
provided by the Floyd-Steinberg halftoning over random dithering.

1.3.1 Floyd-Steinberg sampler

The sampling algorithm takes the importance map and computes the sum
S of all texels. Then, the sampling is simply the execution of a Floyd-
Steinberg halftoning on the map setting the threshold at S/(2M) where
M is the number of expected samples. In Figure 1.4 the threshold and
the error are depicted by a red line and a white bar, respectively. The
halftoning algorithm initializes an error value to 0 and scans the map row-
by-row changing the scanning order at the end of the rows. At each texel,
the comparison of the error value to the threshold may have two outcomes.
If the error is not greater than the threshold, then no sample is generated
here (the texel becomes black) and the error is left unchanged. If the error
is greater than the threshold, then this texel is a sample, and the error
value is decreased by S/M , i.e. we compute the negative complementer of
the error represented by the black part of the bar in Figure 1.4.

In both cases, before stepping onto the next texel, the remaining error
of the texel is distributed to its unvisited neighbors. The method continues
similarly until all texels have been visited.

Listing 1.1 shows the implementation of this algorithm optimized to



i
i

i
i

i
i

i
i

8 1. Environment Mapping with Floyd-Steinberg Halftoning

Figure 1.4. The Floyd-Steinberg sampling. The error (white bar) of the upper-
left texel is smaller than the threshold (red line), so it is not selected (the texel
will be black), and its error is distributed to the neighbors increasing their error
levels. The next texel will have error larger than the threshold, so it is selected
(the texel will be white), and the negative complementer error (black bar) is
added to the neighbors reducing their error value.

work as a geometry shader. Every time the shader is invoked, it processes
the importance map of size R.x × R.y, the values of which are queried us-
ing the getImportance function. It emits 32 directional samples, with the
probability of sample selection stored in the alpha channel. The function
getSampleDir returns the direction associated with a texel of the impor-
tance map. We avoid maintaining an actual array of importance values by
storing only the importance that has been carried to the next row. Vari-
able cPixel contains the importance to be transferred to the next pixel,
cDiagonal must be added to the pixel below the next, and cRow is an array,
packed into float4 vectors, that contains the importances to be added to
pixels in the next row. Every row is processed in runs of four pixels, after
which the four values gathered in variable acc can be packed into the cRow
array. The size of cRow is RX4, the width of the importance map divided by
four. Every time the importance map is read, the original importance value
is loaded into variable I, and importance carried over from the neighbors
is added to get the modified importance in variable Ip.



i
i

i
i

i
i

i
i

1.3. Proposed solution 9

[ maxvertexcount ( 3 2 ) ]
void gsSampler ( inout PointStream<f l o a t 4> samples ) {

uint M = 32 ; f loat S = 0 ;
[ loop ] for ( u int v = 0 ; v < R. y ; v++)

[ loop ] for ( u int u = 0 ; u < R. x ; u++)
S += getImportance ( u int2 (u , v ) ) ;

f loat th r e sho ld = S / 2 / M;
f l o a t 4 cRow [RX4]={{0 ,0 , 0 , 0} ,{0 ,0 , 0 , 0} ,{0 ,0 , 0 , 0} ,{0 ,0 , 0 , 0}} ;
f loat cP ixe l = 0 , cDiagonal = 0 , acc [ 4 ] ;
[ loop ] for ( u int j = 0 ; j < R. y ; j++) {

uint kper4 = 0 ;
[ loop ] for ( u int k = 0 ; k < R. x ; k += 4) {

for ( u int x i = 0 ; x i < 4 ; x i++) {
f loat I = getImportance ( u int2 (k+xi , j ) ) ;
f loat Ip = I + cRow [ kper4 ] [ x i ] + cP ixe l ;
i f ( Ip > th r e sho ld ) {

f l o a t 3 d i r = getSampleDir ( u int2 (k+xi , j ) ) ;
samples . Append( f l o a t 4 ( dir , I / S) ) ;
Ip −= thre sho ld ∗ 2 ;

}
acc [ x i ] = Ip ∗ 0 .375 + cDiagonal ;
cP ixe l = Ip ∗ 0 . 3 7 5 ;
cDiagonal = Ip ∗ 0 . 2 5 ;

}
cRow [ kper4++] = f l o a t 4 ( acc [ 0 ] , acc [ 1 ] , acc [ 2 ] , acc [ 3 ] ) ;

}
j++; kper4−−;
[ loop ] for ( int k = R. x−5; k >= 0 ; k −= 4) {

for ( int x i = 3 ; x i >= 0 ; xi−−) {
f loat I = getImportance ( u int2 (k+xi , j ) ) ;
f loat Ip = I + cRow [ kper4 ] [ x i ] + cP ixe l ;
i f ( Ip > th r e sho ld ) {

f l o a t 3 d i r = getSampleDir ( u int2 (k+xi , j ) ) ;
samples . Append( f l o a t 4 ( dir , I / S) ) ;
Ip −= thre sho ld ∗ 2 ;

}
acc [ x i ] = Ip ∗ 0 .375 + cDiagonal ;
cP ixe l = Ip ∗ 0 . 3 7 5 ;
cDiagonal = Ip ∗ 0 . 2 5 ;

}
cRow [ kper4−−] = f l o a t 4 ( acc [ 0 ] , acc [ 1 ] , acc [ 2 ] , acc [ 3 ] ) ;

}
}

}
Listing 1.1. The Floyd-Steinberg sampler implemented as a geometry shader.



i
i

i
i

i
i

i
i

10 1. Environment Mapping with Floyd-Steinberg Halftoning

In addition to Floyd-Steinberg halftoning, the family of error diffu-
sion methods has many other members that differ in the error distribu-
tion neighborhood and weights, and also in the order of processing the
texels [Kang 99]. These sophisticated techniques are also worth using as
importance sampling methods. The weights need special care when the
number of expected samples M is very small with respect to the number of
texels. Multi-dimensional error diffusion methods perform well when they
are in a stationary state, but need to warm up, i.e. they start producing
samples later than expected. If very few samples are generated with the
method, this delay becomes noticeable. To solve this problem, the weight
of the faster running coordinate should be increased, and in the extreme
case, the algorithm should act as a one-dimensional error diffusion filter.

1.3.2 Application to light source sampling

In light source sampling the importance function is based on the envi-
ronment illumination and we also take into account that different texels
correspond to different solid angles:

I(u, v) = ℒ(E(u, v)).

Ignoring the cosine weighted BRDF and the visibility degrades importance
sampling, but, as the importance function depends just on the illumination
direction and is independent of the point being shaded, x⃗, sampling should
be executed only once for all shaded points.

In this case, the proposed scheme is as simple as the Floyd-Steinberg
halftoning of the environment map weighted by solid angle scaling sin¼v.
Figures 1.5 and 1.6 compare the distribution of samples and the resulting
images of the illuminated object for random sampling and for the Floyd-
Steinberg sampler. As the Floyd-Steinberg sampler scans the map only
once and obtains samples directly, it is not slower than random sampling.
Sampling the 1024 × 512 resolution environment map of Figure 1.5 takes
47 msec on an nVidia GeForce 8800 GFX GPU.

1.3.3 Application to product sampling

Product sampling includes more than one factor of the integrand into the
importance function. Note that the inclusion of all factors is not feasible
since the computation of the importance must be cheaper than that of the
integrand. In environment mapping, the expensive part is the visibility
test, so we either ignore occlusions in the importance or replace it with
some cheaper approximation. The importance function is defined as

I(u, v) = E(u, v)R(u, v, x⃗, !⃗)Ṽ(u, v, x⃗).



i
i

i
i

i
i

i
i

1.3. Proposed solution 11

Figure 1.5. Sampling weighted environment maps with random sampling (left)
and Floyd-Steinberg halftoning (right).

Random sampling Floyd-Steinberg Reference

Figure 1.6. Results of light source sampling. Diffuse and specular bunnies illumi-
nated by directional lights sampled randomly and with Floyd-Steinberg halfton-
ing.

where Ṽ is the approximation of the visibility factor. Double product sam-
pling sets Ṽ = 1 assuming that the environment is always visible when
generating important directions. Alternatively, we can approximate vis-
ibility by computing intersections with a contained proxy geometry, for
example, spheres inside the object. In this case, we talk about triple prod-



i
i

i
i

i
i

i
i

12 1. Environment Mapping with Floyd-Steinberg Halftoning

uct sampling. We have to emphasize that the approximate visibility factor
and the proxy geometry is used only in the definition of the importance
map and for generating important directions. When the ray is traced, the
original geometry is intersected, that is, the original visibility indicator is
included into the integral quadrature. Triple product sampling helps to
reduce the number of those rays that surely intersect some object, and
thus their contribution is zero. Unfortunately, it is not always easy to find
a simple proxy geometry that is inside the object. For example, in Fig-
ure 1.7 it is straightforward to put a sphere into the Ming head, but the
definition of a proxy geometry for the wheel is difficult.

Unlike light source sampling, now the importance function also depends
on shaded point x⃗ and indirectly on the normal vector at x⃗. This means
that we cannot process the environment map once globally for all shaded
points, but the sampling process including the Floyd-Steinberg halftoning
should be repeated for every single shaded point. Thus, while in light source
sampling the Floyd-Steinberg sampler has no overhead, product sampling
pays off if ray tracing is more costly than the generation and processing of
the importance map.

In order to test the approach, we have compared three techniques:
BRDF sampling, random halftoning, which is similar to sampling-importance
resampling (SIR) [Burke et al. 04, Talbot et al. 05] in the case of prod-
uct sampling, and the new Floyd-Steinberg scheme. All three were im-
plemented as GPU algorithms, which run on nVidia GeForce 8800 GFX
graphics hardware. All methods traced M = 32 rays per pixel. Both
sampling-importance resampling and the Floyd-Steinberg sampler obtained
the real samples from 32× 32 local importance maps generated separately
for every shaded point x⃗. The results are shown by Figure 1.7. Note that
the Floyd-Steinberg sampler completely eliminated the noise at fully visible
surfaces and some noise remained only at partially occluded regions.

1.4 Conclusions

The most important message of this article is that halftoning and im-
portance sampling are equivalent, thus we can exploit the sophisticated
halftoning algorithms in importance sampling. We investigated the appli-
cation of the Floyd-Steinberg halftoning method in environment mapping
and concluded that this approach produces samples with better distribu-
tion than random sampling. Thanks to this, the integrals evaluated with
these samples are more accurate.



i
i

i
i

i
i

i
i

1.4. Conclusions 13

BRDF sampling SIR Floyd-Steinberg

Figure 1.7. Double product sampling results. Note that the Floyd-Steinberg
sampler eliminated the noise at fully visible surfaces both for the diffuse and
specular cases. The lower row of images show a wheel having a lot of occlusions,
which are not mimicked by the double product importance.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

BIBLIOGRAPHY 15

Bibliography

[Burke et al. 04] David Burke, Abhijeet Ghosh, and Wolfgang Heidrich.
“Bidirectional importance sampling for illumination from
environment maps.” In ACM SIGGRAPH 2004 Sketches, p. 112,
2004.

[Debevec 98] Paul Debevec. “Rendering Synthetic Objects Into Real
Scenes: Bridging Traditional and Image-Based Graphics with Global
Illumination and High Dynamic Range Photography.” In
SIGGRAPH ’98, pp. 189–198, 1998.

[Floyd and Steinberg 75] Robert W. Floyd and Louis Steinberg. “An
Adaptive Algorithm for Spatial Gray Scale.” In Society for
Information Display 1975 Symposium Digest of Tecnical Papers,
p. 36, 1975.

[Kang 99] Henry R. Kang. Digital Color Halftoning. SPIE Press, 1999.

[Kollig and Keller 03] Thomas Kollig and Alexander. Keller. “Efficient
Illumination by High Dynamic Range Images.” In Eurographics
Symposium on Rendering, pp. 45–51, 2003.

[Ostromoukhov et al. 04] Victor Ostromoukhov, Charles Donohue, and
Pierre-Marc Jodoin. “Fast Hierarchical Importance Sampling with
Blue Noise Properties.” ACM Transactions on Graphics 23:3 (2004),
488–498.

[Szirmay-Kalos and Szécsi 09] László Szirmay-Kalos and László Szécsi.
“Deterministic Importance Sampling with Error Diffusion.”
Computer Graphics Forum (EG Symposium on Rendering) 28:4
(2009), 1056–1064.

[Szirmay-Kalos et al. 09] László Szirmay-Kalos, László Szécsi, and Anton
Penzov. “Importance Sampling with Floyd-Steinberg Halftoning.” In
Eurographics 09, Short papers, pp. 69–72, 2009.

[Talbot et al. 05] Justin Talbot, David Cline, and Parris K. Egbert.
“Importance Resampling for Global Illumination.” In Rendering
Techniques, pp. 139–146, 2005.


