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Abstract
This paper presents a fast algorithm to simulate inter-crystal scattering to increase the accuracy of Positron
Emission Tomography (PET). Theoretically, inter-crystal scattering computation would require the solution of a
particle transport problem, which is quite time consuming. However, most of this calculation can be ported to a
pre-processing phase, taking advantage of the fact that the structure of the detector is fixed. Pre-computing the
scattering probabilities inside the crystals, the final system response is the convolution of the geometric response
obtained with the assumption that crystals are ideal absorbers and the crystal transport probability matrix. This
convolution is four-dimensional which poses complexity problems as the complexity of the naive convolution eval-
uation grows exponentially with the dimension of the domain. We use Monte Carlo method to attack the curse of
dimension. We demonstrate that these techniques have just negligible overhead.

1. Introduction

In iterative tomography reconstruction, we simulate the
physical process and compute the expected detector re-
sponses from the actually estimated activity distribution,
then we correct the current activity estimation according
to the ratios of computed and measured responses, and re-
peat the same steps until convergence. In positron emis-
sion tomography (PET), we should find the spatial emis-
sion intensity distribution of positron–electron annihilations
[JSC∗97, ABB∗04]. The actual emission density estimate
describes the number of photon pairs (i.e. the annihilation
events) born in a unit volume around a given point. During
an annihilation event, two oppositely directed photons are
produced, which may be absorbed or scattered both in the
measured medium and in detectors forming grids. We col-
lect the number of simultaneous photon incidents in detector
pairs, also called Lines Of Responses or LORs (Figure 1).

In the method called geometric reconstruction, we assume
that the detectors are ideally black, i.e. they always absorb a
photon that arrives at their surface facing toward the mea-
sured object. The expected number of hits computed with
geometric reconstruction in a LOR connecting detector crys-
tals d1 and d2 is denoted by ỹgeom

L(d1,d2)
. However, real detec-

tors are not ideal and thus photons may get scattered in the
detectors as well, which makes the geometric reconstruction
approach inaccurate.

In this paper we propose a simple approach to build the
detector scattering into the model and show that it can be
efficiently implemented on a GPU. The method belongs to

Figure 1: Positron Emission Tomography. The photons of a
pair emitted at the emission point enter at detector crystals
at i1 and i2, and are finally absorbed and detected by a pair
of detectors at d1 and d2, respectively.

“image filtering” algorithms. As a LOR event involves two
photons, which may arrive at two detector modules, a LOR
is associated by two crystals, i.e. a pair of “image pixels”.
Thus, our image filtering is not two-dimensional but four-
dimensional, where the computational complexity caused by
a larger filter kernel gets more critical than in traditional im-
age filtering methods. To attack this problem, in Section 2 we
propose the application of Monte Carlo quadrature to eval-
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uate convolution integrals. This simple idea is built into the
detector simulation from Section 3.

2. Monte Carlo quadrature in image filtering

Many rendering and post-processing algorithms are equiv-
alent to the evaluation of integrals [TSKU09]. The general
form of a spatial-invariant filter is:

L̃(r) =
∫

L(r− s)w(s)ds,

where L̃(r) is the filtered value at r, L(r) is the original sig-
nal, and w(s) is the filter kernel. The domain of integration is
2D in image processing, but can be arbitrary in other appli-
cations. The integrals of the filter are usually approximated
by finite sums where each sum corresponds to a different
dimension. In this scheme, the number of required samples
grows exponentially with the dimension. In order to reduce
the number of samples, instead of sampling the integration
domain regularly, Monte Carlo methods take random sam-
ples, and according to importance sampling they place more
samples where the filter kernel is large (Figure 2).

For the sake of notational simplicity, we discuss the
method in one-dimension, but the generalization to arbitrary
dimensions is also straightforward. Let us consider the

L̃(X) =
∫

L(X − x)w(x)dx

one-dimensional convolution, and find integral τ(x) of the
kernel and also its inverse x(τ) so that the following condi-
tions hold

dτ
dx

= w(x) i.e. τ(x) =
x∫

−∞

w(t)dt.

If kernel w(t) is a probability density, i.e. it is non-negative
and integrates to 1, then τ(x) is non-decreasing, τ(−∞) = 0,
and τ(∞) = 1. In fact, τ(x) is the cumulative probability dis-
tribution function of the probability density. If filter kernel
w is known, then x(τ) can be computed and inverted off-line
for sufficient number of uniformly distributed sample points.
Substituting the x(τ) function into the filtering integral we
obtain

L̃(X) =

∫
L(X − x)w(x)dx =

1∫
0

L(X − x(τ))dτ.

Approximating the transformed integral taking uniformly
distributed samples in τ corresponds to a quadrature of the
original integral taking M non-uniform samples in x. This
way we take samples densely where the filter kernel is large
and fetch samples less often farther away, but do not apply
weighting.

Figure 2: Filtering by taking regularly placed samples that
are weighted with the filter kernel (left), or taking irregular
unweighted samples selected with the density of the kernel
(right).

3. The detector model

Detector crystals are on planar modules and form a 2D grid.
A single detector crystal can be identified by a pair of integer
coordinates d.

Figure 3: Inter-crystal scattering. The photon arrives at
crystal i but is scattered to crystal d, were it finally gets ab-
sorbed and detected.

Photons may get scattered in detector crystals before they
get finally absorbed. Thus, the fact that a photon enters a
crystal does not necessarily mean that the photon is absorbed
in this crystal. On the other hand, photons arriving at the sur-
face of other crystals, may finally get scattered to the consid-
ered detector crystal, and absorbed there. The phenomena
can be modeled by a crystal transport probability pi→d(⃗ω)
that specifies the conditional probability that a photon is ab-
sorbed in crystal d provided that it arrived at crystal i from
direction ω⃗ (Figure 3).

We assume first that the detector modules are infinitely
large (later this assumption will be lifted to make the model
realistic) and crystals are similar, thus this probability de-
pends just on the translation t between crystal i and crystal
d:

pi→d(⃗ω) = p(t, ω⃗), where t = d− i.
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We suppose that the crystals are small with respect to the
distance of the detector modules, so direction ω⃗ of the LOR
is constant for those detectors which are in the neighborhood
of d and where pi→d is not negligible.

The sum of the crystal transport probabilities is the detec-
tion probability, i.e. the probability that the photon does not
get lost, or from a different point of view, does not leave the
module without absorption:

ν(⃗ω) = ∑
t

p(t, ω⃗).

Let us consider a LOR connecting crystals d1 and d2. The
expected number of hits in this LOR is:

ỹdet
L(d1,d2) = ∑

i
∑
j

ỹgeom
L(i,j) · pi→d1 (⃗ωi,j) · pj→d2 (⃗ωi,j). (1)

So far, we have assumed that the detector modules are
infinitely large, i.e. there are no edges. To handle the finite
module geometry, let us add “virtual” detectors beyond the
edges, but assume that these virtual detectors never get pho-
tons, that is, ỹgeom

L(i,j) is constant zero if either i or j is a virtual
detector. Due to this assumption, the “virtual detectors” do
not alter the estimator, but allow us to use the same formula
as for the infinite case. Practically, it means that we generate
offsets with exactly the same algorithm close to the edge as
inside the module, but the line integral between the points is
set to zero if any of the offseted points is outside the module.

4. Monte Carlo filtering

Note that according to equation 1, the final expected num-
ber of hits is given by a long weighted sum of the expected
number of events between the neighboring crystals, i.e. the
LOR value obtained with the geometric model. The geome-
try based LOR values are filtered to evaluate weighted sums
of equation 1. Note that this is similar to image filtering, but
now the space is not 2D but 4D. The long sum is evaluated
by Monte Carlo estimation taking M random samples of de-
tector pairs (i(1), j(1)),(i(2), j(2)), . . . ,(i(M), j(M)):

ỹdet
L(d1,d2) ≈ ∑

i
∑
j

ỹgeom
L(i,j) · pi→d1 · pj→d2 ≈

1
M

·
M

∑
s=1

ỹgeom
L(i(s),j(s)) · pi(s)→d1

· pj(s)→d2

ps

where ps is the probability of sample s. A sample is associ-
ated with a pair of offset vectors t1 = d1 − i and t2 = d2 − j.
According to importance sampling, ps is made proportional
to the crystal transport probability:

ps =
pi(s)→d1

· pj(s)→d2

∑t1 ∑t2
p(t1) · p(t2)

=
pi(s)→d1

· pj(s)→d2

ν1(⃗ω) ·ν2(⃗ω)
.

Thus the final estimator is:

ỹdet
L(d1,d2) ≈

ν1(⃗ω) ·ν2(⃗ω)
M

·
M

∑
s=1

ỹgeom
L(i(s),j(s)). (2)

This method runs a geometric first pass, which is the same
algorithm as developed to execute the forward-projection of
the geometric reconstruction. This pass results in LOR val-
ues ỹgeom

L . Then, the 4D LOR map is filtered. We visit again
each LOR, find neighbors of its two crystals according to a
prepared random map, and add up the values stored in the
LOR selected by the two sampled neighbors.

5. Pre-computation

The input of our process is the crystal transport probability
defined on the crystal structure, which has been computed by
Monte Carlo simulation off-line. Photons arriving from a di-
rection of given inclination and azimuth angles at uniformly
distributed points on the detector surface are simulated and
the probabilities that this photon is absorbed in another crys-
tal are computed. Having the probabilities, we pre-generate
relaxed Monte Carlo sample sets that contain just a few sam-
ples, but their cumulative distribution is as close to the sim-
ulated distribution as possible [KK03].

6. Results

The presented algorithm have been implemented in CUDA
and run on NVIDIA GeForce 480 GTX GPUs. We have
modeled the PET system of nanoPET/CT [Med] consisting
of twelve square detector modules organized into a ring, and
the system measures LORs connecting a detector to three
other detectors being at the opposite sides of the ring, which
means that there are 12× 3/2 = 18 module pairs. A detec-
tor module consists of Ndet = 81×39 crystal detectors, thus
the total number of LORs is NLOR = 18 · (81× 39)2 ≈ 180
millions. On the massively parallel hardware of the GPU,
the computation time of LOR filtering is negligible with re-
spect to the time of geometric LOR computation. Thus, our
proposed detector modeling has practically no overhead.

Figure 4 compares the results obtained with detector mod-
eling to the pure geometric reconstruction of the Derenzo
phantom. The error plots of the Derenzo reconstruction is
shown by Figure 5. Figure 6 demonstrates the benefit of de-
tector modeling in another phantom. Finally, Figure 7 is the
reconstruction of real measurements.

7. Conclusions

This paper proposed the application of 4D convolution as
a means to simulate inter-crystal scattering in PET recon-
struction. While the incorporation of a realistic detector
model significantly improves the quality of reconstructions,
its computation time is negligible due to the efficient Monte
Carlo evaluation scheme. Generally, we can state that im-
age processing methods can be and are worth being general-
ized to higher dimensions as well, but we have to address the
curse of dimension, for which Monte Carlo and quasi-Monte
Carlo techniques offer solutions.
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Figure 4: Reconstruction of the Derenzo phantom. As geo-
metric reconstruction does not preserve the average activ-
ity, the reconstruction is much darker than the phantom. To
highlight the differences, we also show its scaled version.

Figure 5: CC error curves of the Derenzo phantom recon-
struction. The CC error is computed as the difference of one
and the correlation of the reconstructed and the reference
voxel arrays.
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