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Abstract
This paper examines and compares regularization methods for direct parametric dynamic PET reconstruction,
when the space-time activity function needs to be recovered from measurements. In binned mode reconstruction,
the measurement time is decomposed to frames and events are binned. In order to mimic high-speed phenom-
ena, frames must be short, thus the number of events in a frame is very low, making frame-wise reconstruction
impossible. To attack this problem, regularization is needed that enforces smoothness both in the temporal and
spatial domains. For temporal regularization, different kinetic models are used. For spatial regularization, we
can subtract a penalty term from the likelihood of the measured data that penalizes unacceptable solutions, or
the reconstruction can be filtered in every iteration to project the actual estimate into the subspace of acceptable
solutions. The objective of this paper is to analyze these options and compare their effectiveness.

1. Introduction

In dynamic Positron Emission Tomography (PET), we mea-
sure how the density of a radiotracer changes in time at dif-
ferent voxels of the examined object, thus dynamic tomog-
raphy reconstructs a space-time density xV (t). The spatial
variation of the density is defined on a grid 20, 2, 3, 4, 26, 15, for
example, in voxels. Using the space-time density, the ex-
pected number of radioactive decays in voxel V in differ-
ential time dt is xV (t)dt. The positron emitted at a decay an-
nihilates with an electron generating two oppositely directed
gamma-photons, which might be detected by the tomograph.
A PET/CT system collects the events of simultaneous pho-
ton incidents in detector pairs, called Line Of Response or
LOR. The measurement time is decomposed into finite time
intervals, called frames ∆t1, . . . ,∆tNT with interval centers
t1, . . . , tT , and events are binned in frames. We denote the
number of events in LOR L and frame T by yL,T .

If fast dynamic changes are to be recovered, frames must
be short and consequently the number of events in a frame
is rather low. This means that reconstruction done indepen-
dently in frames is either impossible or leads to very noisy
data. To attack this problem, regularization is needed that
enforces the smoothness both in the temporal and the spatial
domains.

2. Dynamic PET reconstruction

The state of the art and previous work on direct estimation
of kinetic parametric images for dynamic PET are surveyed
in review article 28.

The event rate λL(t) in LOR L at time t is the sum of the
contributions of all voxels in the volume at this time:

λL(t) =
NV

∑
V=1

ALV xV (t)

where system matrix AL,V expresses the probability that a
decay in voxel V generates an event in LOR L.

During iterative Expectation Maximization (ML-EM) re-
construction 16, unknown coefficients are found to maximize
the probability of the actually measured data. Assuming that
the measured number of hits in LOR L in time interval ∆tT
follows a Poisson distribution and is statistically indepen-
dent of other LORs and frames, the log-likelihood of the
current measurement is

logL= ∑
L

∑
T

(
yL,T logλL(tT )−λL(tT )∆tT

)
. (1)

The high variance of the involved random variables makes
the optimization process fit the solution to noise, resulting
in unacceptably high variation reconstructions. The tempo-
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ral and spatial variation of the solution must be kept under
control, which is the responsibility of regularization.

2.1. Temporal regularization

For temporal regularization, we assume that the time activity
function of voxel V can be expressed by a common kinetic
model

xV (t) = F(θV , t),

where spatially dependent properties are encoded in a
low dimensional vector of parameters θ. Such models can
be based on the mathematical description of the biologi-
cal/chemimal processes or on compartment analysis 5, 30, 29.

2.2. Spatial regularization with a penalty term

One possibility to impose spatial regularization is to include
a penalty term R(θ) into the optimization target function.
Thus, we find the extremum of the following functional:

E(θ) = logL(θ)−R(θ). (2)

The penalty term should be high for unacceptable solu-
tions and small for acceptable ones. Standard regularization
methods like Tikhonov regularization and Truncated Singu-
lar Value Decomposition (TSVD) assume the data set to
be smooth and continuous, and thus enforce these prop-
erties during reconstruction. However, the typical data in
PET reconstruction are different, there are sharp features that
should not be smoothed with the regularization method. We
need a penalty term that minimizes the unjustified oscillation
without blurring sharp features. An appropriate penalty term
is the total variation (TV) of the solution 14, 11, 10, 12. Total
variation regularization may create stair-like artifacts, which
can be reduced by Bregman iteration 23.

The inclusion of the anatomic information into spatial
regularization is straightforward, smoothness should be im-
posed only inside anatomically homogeneous regions but
not on their boundaries 1.

2.3. Method of sieves

In this approach, the optimization target is not modified, but
the iterated approximation is filtered in each iteration step.
Several authors proposed the inclusion of a voxel space fil-
tering step in the reconstruction loop 17, 9 and it turned out
that it is equivalent to the method of sieves that seeks to con-
strain the EM solution to a subspace of all possible solutions
18, 19, 27. The objective of filtering is to find an acceptable so-
lution that is close to the solution proposed by the iteration.
Filtering can also exploit anatomic information gathered by
a CT or an MR 24.

2.4. The proposed method

The reconstruction means the solution of the optimization
problem of Equation 2. The optimization target has an ex-
tremum where all partial derivatives are zero:

∂E(θ)
∂θV,P

= 0.

Computing the partial derivatives, we obtain(
∑
L

AL,V

)
∑
T

∂F
∂θV,P

∣∣∣∣
tT

(
xV,T (θ)

F(θV , tT )
−∆tT

)
− ∂R

∂θV,P
= 0,

(3)
where xV,T is the result of a static forward projection and
back projection taking the data from frame T :

λL,T = ∑
V ′

AL,V ′F(θV ′ , tT )

xV,T = F(θV , tT ) ·
∑L AL,V

yL,T
λL,T

∑L AL,V
.

In this equation kinetic model F depends on unknown pa-
rameter vector of the given voxel θV , while xV,T and R de-
pend on the parameter vectors of all voxels. Additionally,
xV,T is the only factor that is affected by the elements of
the system matrix. Thus, if xV,T and R were known, then the
computation could be decoupled for different voxels and can
be made independent of the huge system matrix.

To achieve this, a subiteration is included into the main
iteration solution of this equation. In the subiteration expen-
sive terms like xV,T and R are not re-evaluated, they are up-
dated just in the main iteration steps, which update xV,T and
R. The task of the subiteration is the solution of the following
function for θ(n+1)

V :(
∑
L

AL,V

)
∑
T

∂F(θ(n+1)
V )

∂θV,P

∣∣∣∣∣
tT

(
xV,T (θ(n))

F(θ(n+1)
V , tT )

−∆tT

)
−

∂R(θ(n)V )

∂θV,P
= 0. (4)

Assuming that xV,T is constant, Equation 4 describes just
a single voxel, and can thus be solved independently for all
voxels. We use the Iterative Coordinate Descent algorithm
for the solution, which leads to set of parameters for this
particular voxels, which define a time activity curve F(θV , t)
that fits to xV,T .

For the regularization, we consider the options of tempo-
ral regularization via kinetic models, spatial regularization
with the penalty of the total variation of the activity, the
penalty of the total variation of the parameters, filtering the
activity, and filtering the parameters.
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2.5. Temporal regularization with various kinetic
models

Time activity F(θ, t) depends on the concentration C(θ, t)
of the radiotracer and on the known decay constant λ of the
radiotracer:

F(θ, t) =C(θ, t)exp(−λt).

The concentration is searched in a finite function series
form defined by parameter vector θ. The basis functions of
this approximation can be general, like B-splines of Mixture
of Gaussians, or can be derived from the biological models
of the diffusion.

2.5.1. Mixture of Gaussians

In this case, the basis functions are temporal Gaussians de-
fined by fixed time value tP and temporal deviation σP:

C(θ, t) = ∑
P

aP ·
exp
(
− (t−tP)2

2σ2
P

)
√

2πσP
, θ = (a1, . . . ,aNP)

Deviation σP should be selected to guarantee that the drop
to the next time values is not too large.

2.5.2. Spectral method

In spectral method, we also assume the knowledge of the
blood input function Cp(t) that describes the radiotracer con-
centration in the blood from where diffusion can start. The
basis functions are convolutions of exponentials of prede-
fined exponents αP and the known blood input function:

C(θ, t) = ∑
P

aP ·αP exp(−αPt)∗Cp(t), θ = (a1, . . . ,aNP).

The Binding Potential (BP) can be directly computed from
the coefficients of the spectral method:

BP =−1+
NP

∑
P=1

aP

2.5.3. Patlak method

The Patlak method is appropriate for the case of irreversible
compartment at steady state, when the two basis functions
are the blood input function and its integral:

C(θ, t) = a1

t∫
0

Cp(τ)dτ+a2Cp(t), θ = (a1,a2).

We assume that the steady state is reached when Cp starts to
decrease. Parameter a1 is proportional to the metabolic rate.

2.5.4. Relative equilibrium plot

The Relative Equilibrium Plot is a modified version of the
Logan Plot and can be used to describe reversible tracers at
steady state. The basis functions are the blood input function
and its negative derivative:

C(θ, t) = a1Cp(t)−a2
dCp(t)

dt
, θ = (a1,a2).

Due to the steady state assumption, this model is valid when
t is in the range where Cp(t) is already decreasing thus its
derivative is negative. The binding potential can be com-
puted from a1 as BP = a1 −1.

2.5.5. Two-tissue-compartment model

The two-tissue-compartment model is based on the solution
of differential equations describing material exchange be-
tween compartments.

C(θ, t)= a1 ·α1 exp(−α1t)∗Cp(t)+a2 ·α2 exp(−α2t)∗Cp(t),

θ = (a1,a2,α1,α2).

2.6. Spatial regularization with penalizing the total
variation

Total variation can be calculated for the reconstructed activ-
ity function xV (t):

TV (x) =
∫

|∇x|dv ≈

∑
V

√
(xV r − xV )2 +(xVu − xV )2 +(xV f − xV )2

assuming that voxels are cubic and at unit distance and de-
noting the right, upper and front neighbors of voxel V by V r,
Vu, and V f , respectively.

Alternatively, we can obtain the weighted sum of varia-
tions of individual parameters:

TV (θ) = ∑
P

ρP

∫
|∇θP|dv

where ρP is the weight of parameter P.

2.7. Spatial filtering

We apply a Gaussian filtering scheme separately for the ac-
tivity 9, 8, 13 in the first alternative and for each parameter in
the second.

For each voxel, the activities in the neighboring voxels
of the same anatomic regions are taken and summed having
weighted by a distance dependent Gaussian G(V ′,V ). The
sum of weighted parameter values is finally divided by the
sum of weights, and the result replaces the original unfiltered
parameter value:

x̂V =
∑V ′ xV ′G(V ′,V )

∑V ′ G(V ′,V )
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where weight G(V ′,V ) is the Gaussian of the distance be-
tween the centers of voxels V and V ′ if these voxels belong
to the same anatomic structure and zero otherwise.

In case of parametric filtering, the same procedure is exe-
cuted for each voxel and parameter.

θ̂V,P =
∑V ′ θV ′,PG(V ′,V )

∑V ′ G(V ′,V )
.

3. Results

To evaluate the proposed alternatives, we use a 2D brain
model measured in a 2D PET 22 where the system matrix
can be precisely computed (Fig. 1). The simulation has been
executed with the Two-tissue-compartment model. In this
case, the Patlak and the Relative equilibrium plot are not ap-
plicable so only the Mixture of Gaussian, Spectral, and the
Two-tissue-compartment models are taken as reconstruction
kinetic models. Both the Mixture of Gaussian and the Spec-
tral method use four basis functions, i.e. have four param-
eters similarly to the Two-tissue-compartment model. Thus
the memory footprints of the methods to be compared are
identical. We defined 100 time frames and executed 10 iter-
ations.

Figures 2 and 3 compare the reconstructions obtained with
about 8k hits in total, Figures 4 and 5 with about 16k hits,
Figures 6 and 7 with about 80k hits, and finally Figures 8
and 9 with about 160k hits. As the number of LORs is 2k,
the average number of hits per LOR is just 4 when 8k hits are
considered, and as we used 100 frames, the average number
of hits in a LOR in a single frame is only 0.04 for the low-
est statistics measurement. We provide time activity curves
showing the average of the voxels in ROIs and also the stan-
dard deviation. Reconstruction results are shown at t = 1
when the activity at both ROIs are maximal.

With higher number of hits the noise level of the mea-
surement decreases, so we expect a similar effect on the re-
construction. For all measurements, we can observe that the
Spectral method is better than the Mixture of Gaussian, and
the Two-tissue-compartment model is better than any of the
other two. However, all three methods can be significantly
improved by parameter space filtering.

Figures 10 and 11 compare the discussed regularization
options. Note that filtering is generally better than adding
a penalty term, and filtering the measured LORs performed
poorly.

4. Conclusions

In this paper we examined regularization strategies for the
problem of dynamic PET reconstruction when the total ac-
tivity in a region of interest needs to be reconstructed as a
function of time. Regularization must be done in the domain
of time where a proper time activity model should be cho-
sen, and also in space, which is possible either by filtering
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Figure 1: 2D tomograph model: The detector ring contains
90 detector crystals and each of them is of size 2.2 in voxel
units and participates in 47 LORs connecting this crystal
to crystals being in the opposite half circle, thus the total
number of LORs is 90× 47/2 = 2115. The voxel array to
be reconstructed is in the middle of the ring and has 32×
32 resolution, i.e. 1024 voxels. The lower image shows the
blood input function and the simulated time activity curves
in the gray matter (ROI 2) and white matter (ROI 1) of the
brain.

or by adding the penalty term. We concluded that simultane-
ous temporal and spatial regularization allow accurate recon-
structions of very low statistics measurements. According to
our experience, spatial filtering outperforms the penalty term
spatial regularization and naive approaches like filtering the
measured data do not help. In our future work, these algo-
rithms will be integrated into the GPU based fully-3D Tera-
tomo system 6, 7, 25.
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Figure 2: Time activity functions of voxels in different ROIs, the average and the standard deviation are depicted, the total
number of hits is 8k.
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Figure 3: Examples of reconstructed spatial activity at t = 1, when the total number of hits is 8k.
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Figure 4: Time activity functions of voxels in different ROIs, the average and the standard deviation are depicted, the total
number of hits is 16k.
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Figure 5: Examples of reconstructed spatial activity at t = 1, when the total number of hits is 16k.
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Figure 6: Time activity functions of voxels in different ROIs, the average and the standard deviation are depicted, the total
number of hits is 80k.
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Figure 7: Examples of reconstructed spatial activity at t = 1, when the total number of hits is 80k.
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Figure 8: Time activity functions of voxels in different ROIs, the average and the standard deviation are depicted, the total
number of hits is 160k.
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Figure 9: Examples of reconstructed spatial activity at t = 1, when the total number of hits is 160k.
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Figure 10: Comparison of different regularization options for the two-tissue compartment model
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Figure 11: Examples of reconstructed spatial activity at t = 1.
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