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Abstract
This paper proposes a scalable dynamic PET reconstruction method. In dynamic PET reconstruction the space-
time activity function needs to be recovered from measurements, where the number of spatial basis functions is
in the range of a hundred million, the number of temporal basis functions are in the range of a hundred, while
the number of events can exceed billions. The complexity of a list mode reconstruction would be the product of
these factors, which is far too high in high dose pharmaceutical studies. To reduce the computation time, we
propose binning not only in the spatial but also in the temporal domain. We show that such binning just negligibly
compromises the accuracy while it can significantly improve the speed of the reconstruction.

1. Introduction

In Positron Emission Tomography (PET) we need to find
the spatial positron emission density. At a positron–electron
annihilation, two oppositely directed photons are generated,
which might be detected by the tomograph. A PET/CT sys-
tem 15 collects the events of simultaneous photon incidents
in detector pairs, while the material map of the examined
object is obtained by a CT scan. An event is a composition
of the identification of the detector pair, also called Line Of
Response or LOR and its time of occurrence, i.e. a pair (L, t)
where L is the index of the LOR, which is in itself also a pair
of two detector crystals, and t is the time of detection.

In dynamic tomography, we focus on the dynamic na-
ture of biological processes, like accumulation and empty-
ing of drugs in certain organs, and track the variation of
the positron density in time. Such studies are essential in
pharmaceutical research, and in finding cure for Alzheimer’s
disease, in particular. Dynamic tomography means that the
time of the events is also used and instead of a spatial radio-
tracer density, a space-time density x(⃗v, t) needs to be recon-
structed. Using the space-time density, the expected number
of positron generation in differential volume dv and in dif-
ferential time dt is x(⃗v, t)dvdt.

The unknown space-time activity function is searched in
finite-element form:

x(⃗v, t) =
Nvoxel

∑
V=1

Ntime

∑
W=1

xV,W bV (⃗v)τW (t)

where x1,1,x1,2, . . . ,x2,1, . . . ,xNvoxel ,Ntime are unknown coeffi-

cients, while bV (⃗v) (V = 1,2, . . . ,Nvoxel) and τW (t) (W =
1,2, . . . ,Ntime) are predefined spatial and temporal basis
functions, respectively. For example, if bV (⃗v) were constant
in voxel V , and zero otherwise, then we would obtain a
piece-wise constant approximation of the unknown activ-
ity function. We choose spline basis functions because they
are more accurate than the constant approximation. First or-
der spline, i.e. linear basis functions (bilinear or trilinear in
space depending on the number of dimensions) are directly
supported by the graphics hardware, and higher order spline
functions can be traced back to a sequence of linear interpo-
lations 13, 8, 1.

In static tomography, the time information associated with
the events is ignored and we wish to determine the total num-
ber of positrons generated in a voxel during the finite mea-
surement time, i.e. the spatial function x(⃗v). If the time of
events is discarded and we consider just the number of events
in each LOR, the reconstruction is called of binned mode. In
this case the input of the reconstruction is the number of hits
yL in each LOR L during the whole measurement time.

Unlike binned mode reconstruction, list mode reconstruc-
tion4 handles events individually. Pairs (L, t) defining events
can be sorted different ways. For example, we can sort events
according to the time of occurrence obtaining a list (Le, te)
where e = 1,2, . . . ,Nevent with Nevent being the number of
events. Alternatively, we can sort events first according to
the LOR, then for each LOR, according to the time, generat-
ing a list of times tL,1, . . . , tL,yL for each LOR. This array of
variable length lists is called timeogram.
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For a typical PET system, both the number of LORs and
the number of finite elements representing the spatial distri-
bution of the activity may be in the range of several hun-
dred millions, while the number of events may exceed a bil-
lion, thus the reconstruction algorithm must scale up well
and must be appropriate for high performance computation
platforms. Among the high-performance computing possi-
bilities, like FPGAs 3, multi-CPU systems 6, the CELL pro-
cessor, and GPUs 16, the massively parallel GPU has proven
to be the most cost-effective platform for such tasks 2, 5, The
critical issue of the GPU programming, and parallel pro-
gramming in general, is thread mapping, i.e. the decompo-
sition of the algorithm to parallel threads that can run effi-
ciently 12.

Generally, global memory access is slow on the GPU, es-
pecially when atomic writes are needed to resolve thread col-
lisions. Particle transport needs the consideration of many
sources (inputs) and many detectors (outputs). This kind of
“many to many” computation can be organized in two dif-
ferent ways. We can take input values one-by-one, obtain
the contribution of a single input value to all of the outputs,
and accumulate the contributions as different input values
are visited. We call this scheme input-driven or scattering.
Alternatively, we can take output values (i.e. equations) one-
by-one, and obtain the contribution of all input values to
this particular output value. This approach is called output-
driven or gathering. Generally, if possible, gathering type
algorithms must be preferred since they can completely re-
move write collisions and may increase the coherence of
memory access.

Although list mode may involve more information, like
the timing of individual events, its input size is the number
of events unlike in the case of conventional binned recon-
struction where the input size is the number of LORs. As
dynamic reconstruction is based on the timing of events, a
pure binned method is not satisfactory, but either a list mode
approach should be taken or the binning should be extended
to the time domain as well. Binning in time means that the
measurement interval is decomposed to smaller intervals and
we obtain just the number of events yL,T in each LOR L and
each time interval T ignoring the actual time of the event
within the interval. Clearly, by binning in time we loose in-
formation, so the reconstruction must be less accurate. How-
ever, we can handle all events in a time bin simultaneously,
which can greatly increase the performance of the solution
method. The objective of this paper is to study the effect of
time discretization and propose an optimal binning strategy
that maintains accuracy and enables fast solutions.

2. Dynamic PET reconstruction

The correspondence between positron generation and
gamma photon detection is established by scanner sensitiv-
ity T (⃗v → L) that expresses the probability of generating an
event in LOR L given that a positron is emitted in point v⃗

of volume V . We assume that the scanner sensitivity is con-
stant in time. The scanner sensitivity is a high-dimensional
integral of variables unambiguously defining the path of par-
ticles from positron emission point v⃗ to the detector electron-
ics.

The event rate λL(t) in LOR L at time t is the sum of the
contributions of all points in the volume at this time (note
that we ignore the time elapsed between positron generation
and gamma photon detection):

λL(t) =
∫
V

x(⃗v, t)T (⃗v → L)dv =
Nvoxel

∑
V=1

Ntime

∑
W=1

ALV xV,W τW (t)

where system matrix

ALV =
∫
V
T (⃗v → L)bV (⃗v)dv

defines the correspondence between voxel V and LOR L.

During iterative Expectation Maximization (ML-EM) re-
construction 7, unknown coefficients are found to maximize
the probability of the actually measured data. The maximiza-
tion is done via an iterative process. In every iteration cycle
a large number of integrals need to be evaluated simultane-
ously, for which numerical quadrature rules can be applied
11.

Let us decompose the measurement time (tstart , tend) by
discrete time instances t0 = tstart , t1, . . . , tNT = tend into finite
time intervals ∆t1 = t1 − t0, . . . ,∆tNT = tNT − tNT−1 and de-
note the number of events in LOR L and time interval ∆tT by
yL,T . The measured number of hits in LOR L in time interval
∆tT follows a Poisson distribution of expectation λL(tT )∆tT :

P{yL,T}=
(λL(tT )∆tT )yL,T

yL,T !
· e−λL(tT )∆tT .

Because of the independence of different LORs and differ-
ent time intervals, the combined probability considering all
LORs and all time intervals is the product of elementary
probabilities:

L=
NT

∏
T=1

NLOR

∏
L=1

(λL(tT )∆tT )yL,T

yL,T !
· e−λL(tT )∆tT .

The log-likelihood function is:

logL=
NT

∑
T=1

NLOR

∑
L=1

log
(
(λL(tT )∆tT )yL,T

yL,T !
e−λL(tT )∆tT

)
=

NLOR

∑
L=1

(
NT

∑
T=1

yL,T logλL(tT )−
NT

∑
T=1

λL(tT )∆tT

)
+C,

where

C =
NT

∑
T=1

NLOR

∑
L=1

yL,T log(∆tT )− log(yL,T !)

is a constant that depends on the measurement intervals and
hit numbers but is independent of activity function λ.
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If we choose ∆tT to be infinitesimally small, then yL,T can
be either 0 or 1 since the probability of multiple events is in
the order of o(∆t2

T ). Erasing all zero elements from the sum
and replacing the Riemann sum by the integral, we obtain

logL=
NLOR

∑
L=1

 yL

∑
e=1

logλL(tL,e)−
tend∫

tstart

λL(t)dt

+C.

According to the concept of maximum-likelihood recon-
struction, unknown coefficients are found to maximize this
likelihood. To maximize the multi-variate objective function
with inequality constraints of non-negativity, we can use the
Kuhn-Tucker conditions, which lead to:

xV,W
∂ logL
∂xV,W

= 0.

Computing the partial derivatives, we obtain

xV,W

NLOR

∑
L=1

ALV

 yL

∑
e=1

τW (tL,e)
λL(tL,e)

−
tend∫

tstart

τW (t)dt

= 0

for V = 1,2, . . . ,Nvoxel and W = 1, . . . ,Ntime since

∂λL(t)
∂xV,W

= ALV τW (t).

Rearranging the terms, we obtain the following iteration
sequence to find the optimum:

x(n+1)
V,W = x(n)V,W

∑L ALV ∑yL
e=1

τW (tL,e)
λL(tL,e)

∑L ALV τ̂W

where

τ̂W =

tend∫
tstart

τW (t)dt,

which can be pre-computed analytically.

It is worth examining the special case when the temporal
basis functions are constant 1 in their respective interval and
zero otherwise:

x(n+1)
V,W = x(n)V,W

∑L ALV
yL,W
ỹL,W

∑L ALV
.

where ỹL,W is the expected number of hits in LOR L in time
interval W .

Note that with piece-wise constant basis functions the re-
construction process is decomposed to a sequence of in-
dependent static reconstructions in the intervals. From this
point of view, non-constant basis functions correspond to a
filtering in the time domain.

2.1. Forward projection

The goal of the forward projection is to compute the rate
of events at the measured events’ impact time based on the

current approximation of voxel values at the time sampling
points. The current voxel intensity estimate is x(⃗v, t), whose
finite element representation is the array of lists of coeffi-
cients x1,1,x1,2, . . . ,x2,1, . . . ,xNvoxel ,Ntime . We store the impact
time for each event which will be used in the computation.
For each event occurring in LOR L, we have to compute

λL(tL,e) =
Nvoxel

∑
V ′=1

ALV ′

Ntime

∑
W ′=1

xV ′,W ′τW ′(tL,e),

where tL,e is the impact time of the event. As this event rate
will divide basis function τW (tL,e) in the iteration formula,
when xV,W is updated, only those events should be consid-
ered where the occurrence time gives non-zero result both
for τW ′ and τW .

Note that an event can contribute only to a single LOR, so
a possible, gathering type implementation is

for L = 1 to NLOR do
for e = 1 to yL do

λL(te) = 0
for V ′ = 1 to Nvoxel do

for W ′ = 1 to Ntime do λL(te) += ALV ′xV ′,W ′τW ′ (te)
endfor

endfor
endfor

In this algorithm the most time consuming step is the ap-
proximation of system matrix element ALV ′ , which is the
evaluation of a multi-dimensional integral 9, 10, 14.

2.2. Back projection

The back projection’s goal is to adjust the voxel values ac-
cording to the iteration scheme. The denominator can be
computed and stored for each xV,W before starting the first
iteration because only geometric information is needed for
the computation.

The back projection algorithm is:

for V = 1 to Nvoxel do
for W = 1 to Ntime do

n = 0 // numerator
for e = 1 to Nevent do

L = LOR of event e
n += ALV τW (te)/λL(te)

endfor
xV,W *= n/sV /τ̂W

endfor
endfor

This algorithm assumes that voxel sensitivity sV =∑L ALV
has been pre-computed.
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2.3. Performance issues

The complexity of both forward projection and back pro-
jection is O(Nevent ·Nvoxel ·Ntime). One possibility to reduce
this complexity is to use temporal basis functions that do
not cover the complete measurement time interval. Let us
denote the maximum number of temporal basis functions
that are non zero for a given time instance by Ncover, which
can be smaller than Ntime. If we use constant basis functions
that are non-zero only in a single time interval, Ncover = 1.
In case of linear basis functions Ncover = 2. Generally, B-
spline basis functions of degree d result in Ncover = d. When
an event time te is substituted into temporal basis function
τw, we can automatically skip those basis functions that do
not cover te. This way, the complexity can be reduced to
O(Nevent ·Nvoxel ·Ncover).

It is tempting to select Ncover as low as possible and apply
constant basis functions, but this is a bad idea. The problem
is that an xV,W coefficient will then be reconstructed not from
Nevent events but from only those events that are covered by
τW . The iteration formula scales voxel values according to
the ratios of measured number of hits and their expectations,
yL,W /ỹL,W , while the hits follow a Poisson distribution. The
variance of the Poisson distribution is then ỹL,W , so the stan-
dard deviation of the ratio is 1/

√
ỹL,W . Note that this stan-

dard deviation diverges when the expected number of hits
goes to zero. Thus, reducing the coverage of temporal basis
functions leads to very high noise levels in the reconstruc-
tion.

The other factor of the complexity formula is the num-
ber of events Nevent , which is much larger than the number
of LORs NLOR, thus attacking this factor can lead to signifi-
cant performance improvement. An event belongs to a LOR
and has a particular time. If we use the concept of binned
reconstruction, and the exact time is ignored in these inter-
vals, then different events occurring in the same LOR during
a given interval can be merged together.

3. Time binning

Let us return to the finite decomposition of the measurement
time by discrete time instances t0, . . . , tNT into finite time in-
tervals ∆t1 = t1−t0, . . . ,∆tNT = tNT −tNT−1. From these time
instances, we select those times t∗0 , . . . , t

∗
Ntime

which define the
local domains of spline basis functions. However, t0, . . . , tNT

decomposition is finer, i.e. NT > Ntime, so a temporal basis
function can expand to many intervals. The number of inter-
vals that together provide the domain of a basis function is
denoted by Nexpand . If a new basis function started at every
time interval, so time binning was as fine as the basis func-
tions, then Nexpand = Ncover would hold. However, in prac-
tical cases Nexpand > Ncover, so many neighboring intervals
are covered by the same set of basis functions.

The actual time of a hit in an interval is ignored, so it is
enough to store how many events occurred in LOR L in time

interval ∆tNT , which is denoted by yL,T . This discretization
assigns an NT -dimensional vector to each LOR. Whenever
an interval is processed during forward projection and back
projection, its time is inserted into the temporal basis func-
tions. Note that we should check at most Ncover basis func-
tions, because others give zero result for this function.

The forward projection with time binning is as follows:

for L = 1 to NLOR do
for T = 1 to NT do

λL[T ] = 0
Wstart = first basis function where τW (tT ) is not zero
for V ′ = 1 to Nvoxel do

for W ′ =Wstart to Wstart +Ncover do
λL[T ] += ALV ′xV ′,W ′τW ′ (tT )

endfor
endfor

endfor
endfor

The corresponding back projection algorithm is:

for V = 1 to Nvoxel do
for W = 1 to Ntime do

n = 0
Tstart = first interval where τW (tT ) is not zero
for L = 1 to NLOR do

for T = Tstart to Tstart +Nexpand do
n += ALV τW (tT )/λL · yL,T

endfor
endfor
xV,W *= n/sV /τ̂W

endfor
endfor

The complexity of the proposed time binned algorithm is
O(NLOR ·NT ·Nvoxel ·Ntime), which is better than that of the
list mode reconstruction if NLOR ·NT ≪ Nevent .

4. Results

To demonstrate the results we run experiments on a sim-
ple 2D tomograph model (Fig. 1), where NLOR = 2115 and
Nvoxel = 1024 11. We considered the Two Squares phantom
and the Point phantom.

Figs. 2 and 3 show the reconstructed time dependent activ-
ity of the two hot squares executing 100 iterations and Fig. 4
is the evaluation of the complete activity map in time after 50
iterations. Note that after this number of iteration steps, the
reconstruction is still a little blurry, so some activity is dis-
tributed outside the hot squares, causing that the activity in
the square is less than the reference value. However, the dif-
ferent time discretization schemes give very similar results,
so the proposed time binned method can result in similar ac-
curacy using significantly less computation time.
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reference

list mode

binned mode, linear basis

binned mode, constant basis

Figure 4: Snapshots of the Two Squares phantom. The upper row shows the reference in every 3 seconds while the lower rows
the corresponding reconstruction results.

Fig. 5 shows the activity as a function of time of a Point
Source phantom. Here, we can also make the conclusion that
time binning does not reduce the accuracy of the reconstruc-
tion.

5. Conclusions

In this paper we investigated the problem of dynamic PET
reconstruction when the total activity in a region of interest
needs to be reconstructed as a function of time. We have
shown that binning in time but still using non-constant basis
functions is possible and can greatly reduce the computation
time while maintaning the accuracy of the time consuming
list mode reconstruction.
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Figure 1: A simple 2D tomograph model. The detector ring
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in voxel units and participates in 47 LORs connecting this
crystal to crystals being in the opposite half circle, thus the
total number of LORs is 90×47/2 = 2115. The voxel array
to be reconstructed is in the middle of the ring and has 32×
32 resolution, i.e. 1024 voxels.
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Figure 2: Total activity as a function of time in the hot
square of the higher activity in the Two Squares phantom
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Figure 3: Total activity as a function of time in the hot
square of the lower activity in the Two Squares phantom

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6  7  8  9  10

ac
tiv

ity

time

reference
list mode, linear basis functions

binned time, linear basis functions
binned time, constant basis functions

Figure 5: Activity as a function of time in the Point Source
phantom
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