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Abstract

This paper proposes a robust algorithm to detect colon polyps and
cancerous lesions in virtual colonoscopy and present them to the
user by automatically guiding the virtual camera. The detection al-
gorithm uses Gaussian filters to construct the Hessian matrix, which
represents the second order derivatives of a vector variate scalar val-
ued function. Based on the sign and scale of the eigenvalues of the
Hessian matrix, blob like lesions can be selected on a given scale.
In the visualization stage the camera is moved along the colon cen-
terline with its speed and viewing direction adopted to the results of
detection. The camera path and the viewing direction are described
by Kochanek-Bartels splines. The velocity along the path is also
governed by aC2 continuous function. The resulting fly through is
smooth and physically plausible, and it is guaranteed that the user
can see all regions of interest and spends sufficient time looking at
each of them.

1 Introduction

Virtual colonoscopy (VC)[Hong et al. 1997; Wegenkittl et al. 2000]
is a non-invasive computerized medical diagnostic method for ex-
amining the interior of the human colon from Computer Tomogra-
phy (CT) data, that is primarily aimed at the detection of polyps on
the colon surface.

CT images provide density values of the scanned object at regularly
placed locations. The density values are stored in a voxel array.
Voxel arrays are visualized by direct or indirect algorithms, allow-
ing the medical doctor to examine the measured data [Drebin et al.
1988; Levoy 1990; Cśebfalvi 2001]. Based on the presented im-
ages, the physician identifies tumors and decides on the subsequent
actions. This process can be speeded up and made easier if the data
is preprocessed and the attention of the physician is drawn to those
critical points which are primary candidates for being tumors. This
helping process is calledcomputer aided diagnosis (CAD).

VC applications are usually based on providing automatic fly-
through of the colon, letting the user navigate the colon interac-
tively, or a combination of both. The major disadvantage of au-
tomatic fly-through is that regions of the colon wall are not pre-
sented in enough detail to support the diagnosis, or even completely
missed because of the complex curvatures of the colon and the lim-
ited field of view of the camera. Workarounds for this problem in-
clude tiling views from multiple viewing directions into a collated
super-wide angle view and multiple fly-throughs. The drawbacks of
completely interactive examination are the extended time it takes to
investigate the entire colon, and the training required to acquaint the
physician with the non-medical skills necessary to use the applica-
tion. Studies suggest that virtual colonography based examinations
take 15 to 35 minutes on average [Burling 2004], depending on the
tool and technique used and user experience. In order to facilitate
screening for colorectal cancer, which is one of the goals of VC

research, examination times in the5 – 10 minutes range are desir-
able. Examination time can be reduced by incorporating CAD into
the system, provided the algorithms are fast enough. Automatic di-
agnosis may result in two types of false decisions. The decision is
false positive if it identifies a shape as a tumor, which is not. On
the other hand, the decision is false negative if the process misses
a tumor. In medical diagnosis the reduction of false negative cases
is essential. Results obtained from automated detection must be
reviewed by the physician to rule out false positives, and at least
a quick review of the entire colon is still recommended until such
systems are proven to be 100 percent sensitive. Thus the need for
efficient navigation is not (yet) eliminated by implementing CAD.

In this paper we present a shape based algorithm to detect potential
polyps inside a colon, and then use the results to plan assisted cam-
era movement to investigate the regions of interest. If this inves-
tigation were made by a medical doctor, he would search for blob
like structures on the colon walls, and examining the size, shape
and density of these blobs he could decide whether or not the par-
ticular blob is a tumor. In order to mimic this procedure, we design
a recognition filter that is particularly sensitive to blobs of given
size and provides numeric data representing the form of the blob.
The recognition filter is based on the second order derivatives of
the reconstructed density function. To review the results the cam-
era is guided to mimic manual control using common sense: a fast
review of regions of no interest and thorough look at all suspicious
regions. Smooth and life-like camera movement throughout the re-
view is ensured by describing the path, viewing direction, and speed
by C2 continuous spline functions.

The structure of this paper is the following. Section 2 discusses
previous work on detection algorithms. Section 3 describes our al-
gorithm for detecting polyps in VC datasets. Our camera guidance
technique is presented in Section 4. Results are discussed in Sec-
tion 5 followed by conclusions and notes on future work in Section
6.

2 Previous Work

While shape analysis and shape detection have received significant
attention in 2D image processing, they are relatively new in 3D vol-
ume analysis. Two dimensional shape detection methods usually
measure certain features that can characterize the shapes of interest
and make decisions based on the measured values. These features
are required to be translation and rotation invariant since translation
and rotation do not alter shapes. The practically useful features in-
clude, among others, perimeter, area, circularity, spatial moments,
main inertia, derivatives, etc.

Having computed the feature values, they are grouped in a vec-
tor and this vector is compared with the properties of the shape
or shapes to be identified. If the distance from the feature vector
of the shape to be identified is small, then we can report that the
shape is found. Setting the distance threshold, we can make a com-
promise between false negative and positive decisions. When such



algorithm is designed, the critical problems is the definition of the
feature vector, especially when the class of target shapes is not well
defined. This is usually the case in medical diagnosis since different
polyps are not necessarily similar from geometric point of view.

The compromise between the complexities of feature extraction and
decision making greatly impacts performance and practical feasibil-
ity. Large feature vectors such as unprocessed local pixel neighbor-
hoods are easily obtained but require more sophisticated classifier
automata, such as neural networks trained with rotational variants
of numerous candidate shapes to make well-grounded decisions.
Gokturk et al. [Gokturk et al. 2001] proposed a technique that uses
more elaborate feature extraction (shape signature histogram) and
a Support Vector Machine[Cristianini and Shawe-Taylor 2000] for
learning.

Our technique uses a four dimensional feature vector comprised of
the eigenvalues of the Hessian matrix obtained through local mea-
sures, and the average density of the candidate shape. Classification
is based on simple multi-dimensional thresholding, thus eliminating
the need for complex intelligence and training.

2.1 Local Measures

Those features that are based on the Taylor series expansion of the
volume data are called local measures since the Taylor series is a
good local approximation of a function. For example, the second-
degree approximation of a functionf (x) aroundx0 is:

f (x)≈ f (x0)+
d f
dx

∣∣∣∣
x0

· (x−x0)+
1
2
· d2 f

dx2
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x0

· (x−x0)2.

This approximation depends on function valuef (x0), derivative
d f/dx and second derivatived2 f/dx2. The first derivative is the
slope of the function. The second derivative is the speed describing
how fast the slope of the function is changing, thus is a measure
of the function curvature. In fact, the absolute value of the second
order derivative is inversely proportional to the radius of a tangent
circle. The sign of the second derivative also shows whether the
high curvature area is ahill or a valley. Sato et al. have extended
this idea to the analysis of 3D density data [Sato et al. 2000; Hladu-
vka 2002]. Suppose that the density value of the examined object
at point~r = (x,y,z) can be described by functiong(~r).

The second-order approximation of the density function around~r0
is the following:

g̃(~r) = g(~r0)+(~r−~r0)T · (∇g)(~r0)+

1
2
· (~r−~r0)T · (∇2g)(~r0) · (~r−~r0),

where
∇g = (∂g/∂x,∂g/∂y,∂g/∂z)

is thegradient vectorand

∇2g =




∂ 2g/∂x2, ∂ 2g/∂x∂y, ∂ 2g/∂x∂z
∂ 2g/∂y∂x, ∂ 2g/∂y2, ∂ 2g/∂y∂z
∂ 2g/∂z∂x, ∂ 2g/∂z∂y, ∂ 2g/∂z2


 (1)

is the Hessian matrix. Unfortunately, the gradient and the Hes-
sian matrix are not invariant under rotations, and they strongly de-
pend on the axes of the coordinate system. Such dependence can be
eliminated for the gradient if its absolute value is considered since
|∇g| becomes independent of the orientation of the axes. In order
to make the second derivative measures also rotation independent,

we have to select those directions, which correspond to the max-
imal and minimal second derivatives. As can be proven [Hladu-
vka 2002], these directions are the eigenvectors of the Hessian ma-
trix, where the corresponding second derivatives are the eigenval-
ues. Since the Hessian matrix is symmetric, the eigenvalues are
real. Let us denote the three eigenvalues byλ1,λ2,λ3, and assume
that λ1 ≥ λ2 ≥ λ3. These eigenvalues express the minimum and
maximum of the second derivatives, or the maximum and the min-
imum of the curvature radii. If the three eigenvalues have similar
sign, then the function is locally approximated by an ellipsoid. If
the sign is negative, then we have a hill, otherwise a valley. The
minimum and maximum curvatures of an ellipsoid are proportional
to the lengths of the main axes. A small|λ | value corresponds to a
long axis, while a large|λ | to a short axis. If all axes are short (i.e.
the absolute values of all eigenvalues are large), then the ellipsoid
is a small blob (figure 1). If all axes are long, then the ellipsoid
cannot be recognized, and is said to be homogeneous on the local
level. If one axis of an ellipsoid is much longer than the other two
(i.e. the absolute value of one eigenvalue is much smaller than the
other two), then the ellipsoid has a tubular shape. If two axes are
much longer than the third one, then the ellipsoid looks like a sheet.

Figure 1: Local quadratic approximation. Based on the relative ab-
solute values of the eigenvalues, blob, tubular and sheet-like struc-
tures can be identified.

Table 1 summarizes the possible conclusions that can be drawn by
inspecting the three eigenvalues.

classification
λ3 ≈ λ2 ≈ λ1 ¿ 0 blob-like hill
λ3 ≈ λ2 ¿ λ1 ≈ 0 tubular-like hill
λ3 ¿ λ2 ≈ λ1 ≈ 0 sheet-like hill
0≈ λ3 ≈ λ2 ≈ λ1 homogeneous area
0≈ λ3 ≈ λ2 ¿ λ1 sheet-like valley
0≈ λ3 ¿ λ2 ≈ λ1 tubular-like valley
0¿ λ3 ≈ λ2 ≈ λ1 blob-like valley

Table 1: Classification of the blob-, tubular-, and sheet-like struc-
tures

2.2 Computation of the derivatives of sampled
datasets

The measuring process takes discrete samples at regular points~p∈
P, thus the function stored in the voxel array is:

gs(~r) = g(~r) · ∑
~p∈P

δ (~r−~p)

whereδ is the Dirac-delta function. From the sampled signal, the
continuous signal can be reconstructed by convolvinggs(~r) with the



impulse response of an ideal low-pass filter of limiting frequency
equal to the upper band limit of the original signal (the sampling
theorem requires the band limit to be lower than the half of the
sampling frequency).

The impulse response of the ideal low-pass filter issin(πx)/πx,
which is rather difficult to convolve with, because of its oscillating
shape and infinite support. Due to computational issues, the ideal
low-pass filter is approximated, for example, by the Gaussian-filter
[Mitchell and Netravali 1988; Marschner and Lobb 1994; Möller
et al. 1998], thus the reconstructed signal is:

g(~r)≈ (k⊗gs)(~r)

wherek is the impulse response (kernel) of the 3D Gaussian-filter
having standard deviationσ :

k(~r,σ) =
e−|~r|2/2σ2

(σ
√

2π)3
=

e−x2/2σ2

σ
√

2π
· e−y2/2σ2

σ
√

2π
· e−z2/2σ2

σ
√

2π
.

Standard deviationσ should be set to make the filter efficiently cut
off frequencies higher than the upper band limit of the measured
signal. If the upper band limit is about half of the sampling fre-
quency, which is usually 1 (the samples are at unit distance), then
σ ∈ [0.5,1] is usually satisfactory. Ifσ is smaller than 0.5, then
high-frequency aliasing occurs. On the other hand, ifσ is bigger
than 1, the higher frequency components of the signal are elimi-
nated. Largeσ values represent filters that are combinations of a
low-pass filter and the reconstruction filter.

Convolution commutes with differentiation, thus the derivatives of
the reconstructed signal can be obtained by convolving with the
derivative of the filter kernel. For example, the derivative ofg(~r)
according tox is (the derivatives according toy andzare similar):

∂g(~r)
∂x

≈ ∂ (k⊗gs)(~r)
∂x

=
∂k(~r)

∂x
⊗gs.

Thus to compute all second partial derivatives, the partial
derivations of the filter kernel (∂ 2k/∂x2,∂ 2k/∂x∂y,∂ 2k/∂x∂z, . . .)
should be pre-computed, and the sampled data is convolved with
the required derivative kernels. The Gaussian-kernel as well as its
derivatives are separable, which means that the three-variate func-
tion can be expressed as the product of three one-variate functions
parameterized byx, y andz, respectively.

3 Polyp Detection Algorithm for VC

Colon polyps are blob-like features in a given size range. The pro-
posed detection algorithm looks for cases corresponding the first
row of table 1, but also takes into account the average density as
well as the size of the lesion. The following subsection discusses
the issue of sensitivity and size.

3.1 Constructing the Detection Filter

The Gaussian-kernel is not a perfect reconstruction kernel, thus the
derivatives are just approximations. Standard deviationσ can be
used to control the possible range of the derivatives. If we are in-
terested in features where the second derivatives are in a prescribed
range, thenσ should be set to make the maximum derivatives close
to the top of the prescribed range. In this way we can maximize
the sensitivity of our filter. This can mean thatσ is greater than the
value needed for the optimal reconstruction, thus all those features
that are smaller than the interesting ones are eliminated.
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Figure 2: Low pass filtering makes larger features detectable. Note
that the second derivatives are scaled in the figure to improve visual
comprehension.

Figure 2 demonstrates why the low pass filtering is necessary to al-
low the detection of larger features. The original function contains
a single hill, which is modulated by a high-frequency wave. The
curvature values fluctuate according to the high-frequency wave,
not permitting to detect the average curvature that corresponds to
the hill. However, when low-pass filtering eliminates the high fre-
quency wave, the curvature clearly identifies the original hill. From
this observation we can conclude that a crucial part of feature recog-
nition is the definition of the appropriate scale or scales if we ex-
amine different sizes simultaneously. Sato et al. approached this
problem assuming that the signal is also a Gaussian function. How-
ever, in tumor diagnosis, this assumption is not necessarily true,
since tumors have a well recognizable boundary.
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Figure 3: The eigenvalue at a center of a sphere of radiusr = Rσ
computed by a Gaussian filter of standard deviationσ

Thus to present a more accurate analysis, let us suppose that the
volume data contains a sphere of radiusr. The density value is
1 inside the sphere and zero outside. Let us also assume that the
sampling frequency is high enough to make the discrete sums close
to the continuous integrals.

The first and second derivatives at the center of the sphere are ap-
proximated by the convolution of the density function and the filter

kernel dk(x,σ)
dx ·k(y,σ) ·k(z,σ) and d2k(x,σ)

dx2 ·k(y,σ) ·k(z,σ), respec-
tively. Consequently, the eigenvalue can be expressed by the fol-



lowing integral:

λ (r) =
∫

x2+y2+z2≤r2

(x2−σ2) ·e−(x2+y2+z2)/2σ2

σ7(2π)3/2
dxdydz.

Applying theX = x/σ ,Y = y/σ ,Z = z/σ ,R= r/σ substitutions,
we obtain:

λ (R) =
∫

X2+Y2+Z2≤R2

(X2−1) ·e− X2+Y2+Z2
2

σ2(2π)3/2
dXdYdZ

=− 1
σ2 ·

√
2

9π
·e−R2/2 ·R3

Note that productλσ2 is a function ofR= r/σ , which is depicted
in figure 3. This function has a minimum atR= r/σ =

√
3, which

corresponds to the largest curvature the filter can appropriately re-
construct. Ifr/σ >

√
3, then the curvature of the sphere decreases,

and the reconstructed value follows this change. However, when
r/σ <

√
3, the curvature of the sphere increases, but the absolute

value of the reconstructed eigenvalue decreases. Here, the Gaus-
sian acts as a low pass filter, and instead of computing the second
derivative, it gradually eliminates the sphere itself.

Suppose that the smallest feature that should be detected can be ap-
proximated by a sphere of radiusr. Figure 3 tells us to set the stan-
dard deviation of the Gaussian filter toσ ≈ r/1.74. Such setting
allows us to detect features of radius[r,3r] while eliminating fea-
tures of radius smaller thanr. Thus, the size of features is implicitly
conveyed to the feature vector by the magnitude of the eigenvectors.
Considering the example of testing spherelike structures of different
radius with the same kernels ofσ ≈ r/1.74 one finds that the ab-
solute values of eigenvectors decrease as the sphere radius diverges
from r.

There is one final issue of the Gaussian-kernel, which should be
addressed here. The Gaussian-kernel has infinite support, which is
impossible to handle during convolutions. To cope with this prob-
lem, the Gaussian-kernel is truncated, which means that it is as-
sumed to be zero, where the original kernel is small. The size of the
support domain depends on the standard deviationσ . For example,
if σ = 0.5, then the kernel values at the sampling positions0,1,2
are0.797,0.108,0.00027, respectively. It means that we can sup-
pose that the kernel is zero outside region[−2,2]. Largerσ values,
however, require filters with greater support. If truncation happens
at valuet = x/σ , then the integral of the cut off part is1−Φ(t),
whereΦ is the Gaussian distribution function. As a rule of thumb
we can truncate att = 4, i.e. x = 4σ since in this case the integral
of the cut off part is less than0.00003.

The truncation of the kernel might have the undesirable effect that
the reconstructed second derivatives of constant functions will not
be zero. This is due to the fact that the integral of the second deriva-
tive of the truncated kernel is not necessarily zero. Note that this
can never happen when the first derivative is computed since the
first derivative is anti-symmetric (dk(−x,σ)/dx= −dk(x,σ)/dx).
To solve the problem of second derivatives,σ should be fine tuned
in a way that the sampled second derivatives of the truncated kernel
sums up to zero.

3.2 Implementation

In the preprocessing phase the standard deviationσ is approxi-
mated from the expected size of the tumors relative to the sam-
pling resolution of the device. If it turns out thatσ is too small

(smaller than 0.5), then the criteria of the sampling theorem can-
not be met, thus such features cannot be recognized from the given
data set. Ifσ is not too small, then the corresponding window size
is determined, andσ is tuned to give zero second derivatives for
homogeneous regions.

For purposes of VC, it is desired to detect polyps of size 5 mm and
up, as most studies agree that polyps greater than 10 mm constitute
significant risk of cancer development [Fuente and Valverde 2004].
We found that choosing the 5 mm as the target lesion radius gives
good sensitivity for targeted polyp sizes, the range most interesting
polyps fall into. The detector is primed by the largest eigenvalue
being smaller than−0.05. Note that a bull’s-eye hit would be on a
perfect sphere of radius 5 mm resulting in about−0.3 for the eigen-
value (see previous subsection). The threshold proposed accounts
for polyps not being perfect spheres (they are all attached to the
colonic wall) of the right size, without introducing too many false
positives. The threshold has been determined empirically through
our testing of the algorithm. A more mathematically rooted defini-
tion for this value is to be looked into in the future. To perform a
more rigorous automated checking for smaller lesions, one can re-
peat the filtering with another appropriately sized kernel. The same
can be done for larger polyps as well, though we suggest that lesions
larger than 15 mm are readily identified even in a fast fly-through
review of the dataset.

The diagnosis process starts with identifying the voxels correspond-
ing to the colon boundary. This way the feature detection can be
restricted to the neighborhood of the colon walls, since colon tu-
mors can show up only at these regions. In the selected neighbor-
hoods, the shape detection filter is run at voxels on regular grid
with r/3 mm grid spacing to further reduce unnecessary computa-
tions. Implicit binarization of density values (at−750Hounsfield)
is also introduced in the filtering process to maximize air-tissue
contrast. If the maximum eigenvalue primes the detection as de-
scribed above, the average density of tissue in the region is calcu-
lated and compared against an appropriate threshold (0 Hounsfield
in our case where no contrast enhanced fecal residue was present in
the scans). If both the density and the shape are suspicious, the
region is marked as a lesion. Our VC engine uses first-hit ray-
casting based iso-surface rendering of the colon. As a visual cue
the neighborhood of lesions is colored red on the 3D endoscopic
view (figure 6).

Figure 4: Cross-section of the Human dataset. Regions of interest
(the colon wall) is colored red. The yellow pixels indicate voxels
that will be tested by the detection filter.



4 Camera Guidance

Once suspicious regions are identified they are to be shown to the
user in a fly-through. The first step, which is independent of the
detection process, is to extract the centerline of the colon from the
data [Bitter et al. 2000; Palágyi et al. 2001]. This is done by an
automated fast discrete topological thinning method. Once voxels
corresponding the centerline are known, Kochanek-Bartels spline
[Kochanek 1984]Sp(t) is constructed by taking the position every
nth extracted voxel as the control points for the spline witht values
of 1,2,3 etc.

After detection, the “best view” position along the centerline (ti ,
i = [1, . . . ,N], N being the number of lesions) is calculated for ev-
ery lesion (t is the running parameter for the spline describing the
centerline). In our implementation the “best view” is defined as the
position from where the camera can have the closest unobscured
look at the lesion in question (visibility is tested by casting a few
rays using the ray-casting engine).

As the detection algorithm may report hits at more than one sam-
pling points inside the same lesion, groups of hit locations are iden-
tified, and the lesion is considered to be centered at the center of
mass of the group. Next, an exploration run with∆t = 1 is per-
formed along the centerline, checking and recording “best view”
positions for all lesions. Lesions are sorted according to theirti val-
ues. Rarely there are more lesions sharing a commont value (mean-
ing they are both best viewed from the same point of the centerline
in the exploratory run). If this is the case the situation is resolved
by spreading thet values regularly in the interval (t−0.5, t +0.5).

The velocity with which the camera is to move along the center-
line should be determined by the proximity of lesions. With no le-
sions to look at, the camera should proceed with constant speedv0
(i.e. a constant sampling interval along the centerline spline). The
objective is to construct velocity functionv(t) with the following
properties:

1. speedv0 where no lesions are in proximity,

2. speedv0/k at “best view” point of a lesion,

3. speedv0/(i · k) on intervals from whichi lesions must be
looked at,

4. smoothC2 properties for physical plausibility.

The third requirement is of special importance, because it implies
that the camera always has roughly the same amount of time to
show each lesion, if their “best view” positions are stacked closely.
Our choice of such a function is:

v(t) =
v0

1+∑N
i=1k ·e−(t−ti)2/a

.

We chosev0 = 0.1, k = 4, a = 50. Parametera is chosen to define
the proximity in which a lesion effects the camera. With the above
parameter choices, the influence of a lesion is safely neglected if
|t− ti |> 20.

The viewing direction of the camera is controlled by another
Kochanek-Bartels splineSd(t) whose control points (CP) are con-
structed as described by the following pseudo code (constants are
specific to our implementation):

if (t1 > 20) then
Add CP[d(0),0] and CP[d(t1−20), t1−20]

else Add CP[p1,0]
for i = 1 to N−1 do

Add CP[pi , ti ]

∆i = ti+1− ti
if (∆i > 40) then

Add CP[d(ti +20), ti +20]
Add CP[d(ti+1−20), ti+1−20]

else
Add CP[pi , ti +∆i ·0.4]
Add CP[pi+1, ti +∆i ·0.6]

endif
endfor
if (tmax− tN > 20) then

Add CP[pN, tN] and CP[d(tN +20, tN +20]
else Add CP[pN, tmax]

In this programpi is the position of lesioni, d(t) is point in front of
the camera along the centerline spline, obtained as

d(t) = Sp(t)+10·S′p(t),

i.e. moving in the direction of the derivative (tangent) of the spline.
The choice of constant 20 is consistent with our choice for param-
etera in function v(t). Values 0.4 and 0.6 control the speed with
which the camera switches targets. There is little point at look-
ing between lesions, so these constants should be set to swing the
camera between “best view” positions as fast as possible without
introducing the sensation of skipping in the animation.

The pseudo code to guide the camera through the entire fly-through
is as follows:

t = 0
while (t < tmax)

position= Sp(t)
if |t −ti |> 20 for all i = 1, . . . ,N then

lookat =d(t)
elselookat =Sd(t)
Set Camera (position, lookat)
Render Image
t += v(t)

endwhile

Note that it is not necessary to render an entire fly through. In
our implementation the camera can be interactively moved along
the centerline (with a user controlled factor in speed) while being
subjected to these rules, and can be “uncoupled” for free interactive
investigation any time.

5 Results

The algorithms have been successfully implemented in a PC based
virtual colonoscopy tool. Results presented here were obtained by
running the application on a 1.7GHz Intel P4-M system with 1GB
of RAM. The clinical evaluation of the detection algorithm suggests
sensitivity greater than 95% for polyps of size3 – 10 mm, with a
specificity of about 70%.

5.1 Detection

To illustrate performance of the detection process, its stages were
timed working on two different datasets (figure 5): a biological
phantom colon segment dataset of dimensions256× 256× 256
(sampled at0.44×0.44×0.62mm), and a human full colon dataset



of dimensions512×512×360(sampled at0.71×0.71×0.98mm).
Both datasets are processed as arrays of Hounsfield values (signed
integers with 12 bit precision). The timing results are shown by
table 2. Note that filter window size (the bases of the discrete Gaus-
sian kernels in directionsx, y, andz) is a function of the sampling
resolution of the dataset.

5.2 Camera Guidance

Without camera guidance, constant speed fly-throughs consist of
550 (Phantom) and 2200 (Human) frames. As the presence of
polyps introduce slow-downs, which translates to an increase in the
number of frames assuming constant frame-rate animations. In case
of the Phantom dataset, the camera is always in the vicinity of more
than one polyp 85% of its way. With the parameter values set as
described in the previous section, a single polyp introduces about
500 additional frames in its proximity (902 instead of 400). Note
that it is far more than needed for diagnostic purposes and results in
extremely smooth camera motion. The three polyps stacked in the
relatively short colon segment of the Phantom increase the frame
count to around 1700 for the guided fly-through. Rendering speeds
for the ray-casting engine range from around 10 fps for interac-
tive rendering (256×256resolution, using smart interpolation tech-
niques [Kolosźar and Jae-Young 2003]) to 1.5 fps for batch JPEG
image export (512×512resolution and no interpolation). Our re-
sults suggest that using the semi-automated navigation, in which the
user controls a speed factor in the fly-through, examinations can be
performed in ca. 5 minutes on average.

6 Conclusions and Future Work

This paper presented a robust, filter based method to identify polyps
in a CT colon data, and a computer guided virtual camera control
algorithm to present the results of detection to the user. The algo-
rithms have been successfully implemented in a PC based virtual
colonoscopy tool. The filtering technique results in very efficient
extraction of feature values. The feature vector is only four dimen-
sional, and candidates are classified using simple two dimensional
thresholding. The algorithm is simple and is supported by solid
mathematics. Using the proposed algorithm, the examination time
can be reduced to less than half of unguided/unaided interactive
VC, and smart fly-throughs showing all suspicious regions can also
be generated. The camera control algorithm presented can be used
in other applications to automate camera direction control in fly
throughs, such as architectural and design demonstrations. Future
work will focus on improving detection by tuning parameters as
well using multiple filters scaled for various lesion sizes to improve
specificity (reduce the number of false positives). Also, if deemed
necessary, a more complex classifier will be implemented to handle
feature vectors of increased size.
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Segmentation Centerline Region Filtering Total Filter
extraction definition (number of sample points) window size

Phantom 2 secs 3 secs 18 secs 30 secs (1696) 53 secs 78×78×56
Human 5 secs 8 secs 29 secs 57 secs (14114) 1 min 39 secs 50×50×35

Table 2: Processing times

Figure 5: Phantom and human datasets

Figure 6: Detected Polyps in the Phantom dataset


