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Abstract—Depth of Interaction (DOI) PET scanners extend
the data stored about photon detection events by the depth
of the gamma photon’s absorption in the detector crystals.
Popular DOI-based reconstruction methods disregard photon
scattering in the detectors and simply modify the endpoints of the
Lines of Responses (LORs). However, such simplification reduces
the accuracy of the resulting image. This paper proposes the
incorporation of the modeling of inter-crystal scattering into DOI-
based PET reconstructions. The transfer probabilities caused by
inter-crystal scattering are determined off-line with Monte Carlo
simulation and are built into the system matrix as a factored
component.

I. INTRODUCTION

During a Positron Emission Tomography (PET) scan, the
task is to determine the spatial distribution of the radiotracer
in the observed object. The input of the computations is the
number of simultaneous gamma photon hits in detector crystal
pairs, also called Lines of Responses (LORs). In iterative
ML-EM reconstruction, the expected numbers of coincidences
are computed by simulating the particle transport, and the
estimation of the tracer distribution is corrected according to
the ratio of computed and measured coincidence numbers [1],
[2]. This process is then repeated until convergence. Depth of
Interaction (DOI) measurements provide additional information
about the depth of the gamma photon’s absorption in the de-
tector crystal, which can be exploited to reduce parallax errors
caused by handling detector crystals as single points [3], [4],
[5]. However, DOI-based reconstruction approaches disregard
the fact that photons can scatter inside the detectors.

We propose a factored method to incorporate DOI informa-
tion into the system matrix, which is able to deal with inter-
crystal scattering. We also address the challenge of efficient
processing of the increased number of LORs by applying
randomization.

II. PREVIOUS WORK

The input of PET reconstruction is the list of coincidence
events defined by pairs of detector crystals. If we can identify
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not only the detector crystals of gamma photon absorption,
but also the depth of the absorption, then parallax errors
caused by the incorrect identification of the endpoints of the
LOR can be greatly reduced [6]. During recent years, many
different estimation techniques have been developed to obtain
this information [7], [8], [9], [10], [11], [5], [12].

Depth of Interaction information can be regarded as parti-
tioning the detector crystals into ND depth layers, which in-
creases the number of LORs by a factor of N2

D [13]. The LORs
introduced this way intersect the field of view non-uniformly,
and significantly increase the density far from the center, thus
this is where DOI produces the highest improvement. However,
the non-uniformity of LORs pose problems in filtered back
projection, which needs sinogram re-binning [14]. In ML-
EM based approaches, the significantly larger system matrix
results in higher reconstruction time, and irregular sampling in
noise. Thus re-binning aims at the reduction of both noise and
computation time [15], [13].

During reconstruction, the photon transport inside the de-
tector crystals needs to be considered, where so far only
attenuation effects have been modeled [16], [17], [18]. In this
paper, we extend this model with the Rayleight and Compton
scattering effect, and propose an efficient computation scheme
for it.

III. FACTORED METHOD

In a single iteration cycle of an ML-EM reconstruction,
a forward projection and a back projection are executed.
The forward projection computes the expected number of
coincidences ỹL in LOR L assuming the currently estimated
activities xV of voxel V :

ỹL =
∑
V

AL,V xV

where AL,V is the element of the system matrix representing
the probability that a decay in voxel V causes a coincidence
in LOR L.

Back projection corrects the voxel estimates from xV to x′V
according to the following formula that increases the likelihood
assuming Poisson distributed coincidences:

x′V = xV

∑
L AL,V

yL

ỹL∑
L AL,V

.

The system matrix establishes a correspondence between
voxels and LORs, i.e. sources and detectors. As both have 3D
domain, and scattering can happen anywhere in the 3D space,
the contribution of sources to detectors is a high-dimensional
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integral in the domain of source points, detector points and
arbitrary number of scattering points. Such high-dimensional
integrals are calculated by tracing sample paths. With more
paths, higher precision results can be obtained.

Fig. 1: Conceptual model of factoring. The particle transport
process is decomposed into phases by introducing virtual
detectors. The simulation of all particles is first executed up
to the virtual detectors, then virtual detectors become virtual
sources and the second phase simulates transport from them
to the real detectors.

The idea of factoring comes from the decomposition of
the system matrix as the product of simpler matrices [19].
Factoring can also be regarded as the decomposition of the
photon transport process into phases with the introduction
of virtual detectors (Fig. 1) [2]. First, the expected values
in the first layer of virtual detectors are computed from the
source. Then, the detectors of the first layer become sources
and a similar algorithm is executed until we arrive at the real
detectors. The advantages of this approach are the following:

• The calculation of a single phase can be much simpler
than that of the complete transport process, thus we can
eliminate all conditional statements that would degrade
GPU efficiency.

• As a computed sample path ending in a virtual detector
is continued by all paths starting from here in the next
phase, we have a much higher number of sample paths to
estimate the high dimensional integral, thus the result is
more accurate (in Fig. 1 the number of paths has increased
from 4 to 16).

• Each phase is computed in parallel on the GPU, where
threads do not communicate with each other. However,
the next phase can reuse the results of all the threads
of the previous phase, so redundant computations can be
eliminated.

The disadvantage of factoring is that virtual detectors discretize
the continuous space, so discretization error may occur.

In our proposed system, the transport process is decomposed
into two factored steps:

1) Geometric phase that follows the photon pair from the
annihilation point to the surfaces of two detector crystals
i1,i2 and computes the expected number of hits ỹgeomG on
the surfaces of the crystal surface pairs. The probability
of the path from voxel V to geometric LOR G = (i1, i2)
is expressed by the geometric system matrix Ageom

G,V ,
which can be estimated by standard techniques [20], [21].

Fig. 2: Factored simulation. The photons born at the point of
annihilation enter the detector at crystal surfaces indexed with
i1 and i2, then are later absorbed and detected in the pair of
detector subvolumes D1 and D2, respectively.

2) Detector response that includes all phenomena happen-
ing in the detector, including inter-crystal scattering,
absorption, and the sensitivity of crystals and electronics.
Here, the two absorption points form a measured LOR
L, for which the expected number of hits ỹL needs to
be calculated. The detector phase is further decomposed
into two phases. We separately consider the gamma
photon transport until absorption and the phenomena
after gamma photon absorption until the output of the
electronics separating coincidence events. The first phase
depends on the direction of the LOR, the second phase
on the crystal and on the module pair of the two
crystals. The probability of absorption in measured LOR
L of a photon pair arriving at the respective detector
surfaces of geometric LOR G is denoted by LOR transfer
probability pG→L. On the other hand, crystal sensitivities
and the dead-time parameter are lumped into a single
sensitivity εL associated with measured LOR L, which
expresses the expected number of reported events when
an absorption happens at the two ends of this LOR.

These steps are combined together in the system matrix

AL,V = εL
∑
G

pG→LA
geom
G,V . (1)

Note that during the geometric phase, we need to compute
only the geometric LORs, which are significantly fewer than
the real LORs, which reduces the computation time.

A. Calculation of the LOR transfer probabilities

Detector crystals are on planar modules and their visible
surfaces form a 2D grid. A single detector crystal surface can
be identified by a pair of integer coordinates i = (X,Y ). Each
crystal is further decomposed by the depth layers into crystal
subvolumes. The composition of the surface index and the
depth layer uniquely identify the subvolume, which altogether
requires three integer coordinates: D = (d, Z) = (X,Y, Z),
where Z is the depth layer index.



The fact that a photon enters a crystal does not necessarily
mean that the photon is absorbed in this crystal. This phe-
nomenon can be modeled by detector transport probability
pi→D(θ, φ), which specifies the conditional probability that a
photon is absorbed in crystal subvolume D provided that it
arrived at crystal surface i from the direction given by angles
θ and φ with the normal and axial directions of the detector
module, respectively (Fig. 2).

We assume that crystals are similar, thus this probability
depends just on the translation t = d − i between crystal
surfaces and on depth layer Z of absorption:

pi→(d,Z)(θ, φ) = Pr {d− i, Z|θ, φ} = Pr {t, Z|θ, φ} .

Suppose that the visible surfaces of detector crystals are
small with respect to the distance of the detector modules,
so direction (θ, φ) of the LOR is constant for those crystals
which are in the neighborhood of d and where pi→D is not
negligible.

The sum of the detector transport probabilities of a DOI
layer is the layer detection probability, i.e. the probability that
the photon gets absorbed in this layer:

ν(Z, θ, φ) = Pr {Z|θ, φ} =
∑
t

Pr {t, Z|θ, φ} . (2)

Combining the detector transport probabilities at the two
ends of the LOR, we obtain the LOR transport probability from
geometric LOR G = (i1, i2) to measured LOR L = (D1,D2):

pG→L = pi1→D1(θ1, φ1)pi2→D2(θ2, φ2). (3)

Note that the angles θ1, φ1 and θ2, φ2 depend on the orientation
of the detector modules and also on the crystal surfaces i1 and
i2 where the photons enter. If the photons cannot scatter far
in the crystal, we can assume that the directions are similar to
the direction between absorber crystal volumes D1 and D2.

B. LOR–centric forward projection

The expected number of hits ỹL in measured LOR L is

ỹL =
∑
V

AL,V xV = εL
∑
G

pG→L

∑
V

Ageom
G,V xV . (4)

It means that in the first phase, a geometric projection is
executed computing

ỹgeomG =
∑
V

Ageom
G,V xV . (5)

Then the obtained geometric LOR values are filtered to com-
pute the expected coincidences in measured LOR L:

ỹL = εL
∑
G

ỹgeomG pG→L. (6)

A measured LOR L is identified by the crystal indices (d1,d2)
and depth layer indexes (Z1, Z2) at the two endpoints. When
ỹL is computed, (d1,d2) and (Z1, Z2) are known and fixed,
so are the directions defined by θ1, φ1 and θ2, φ2 if we use
the assumption that the LOR is much longer than the mean
free path of gamma photons in the detector crystals. For these
fixed parameters, we should sum a large number of potential
geometric LORs G, i.e. (i1, i2) pairs.

The filtering is evaluated by Monte Carlo estimation
taking M random samples of crystal surface offsets
(t1(1), t2(1)), (t1(2), t2(2)), . . . , (t1(M), t2(M)) between
the crystal indices of observed and geometric LORs:

ỹL ≈
εL
M

M∑
s=1

ỹgeomG(s) pG(s)→L

Pr {G(s)|L}
(7)

where G(s) = (d1 − t1(s),d2 − t2(s)), and Pr {G(s)|L} =
Pr {t1(s), t2(s)|L} is the probability of sample s. A sample
is associated with a pair of offset vectors t1 = d1 − i1 and
t2 = d2 − i2 and its selection probability can also depend on
the DOI depths Z1 and Z2. We sample offset vectors t1 and
t2 with probabilities Pr {t1|Z1, θ1, φ1} and Pr {t2|Z2, θ2, φ2},
independently:

Pr {t1, t2|L} = Pr {t1|Z1, θ1, φ1}Pr {t2|Z2, θ2, φ2} .

Sample generation is discussed in Section IV.
Such sampling is an importance sampling [21], since sample

probabilities are proportional to pG(s)→L. To prove this, let us
consider one of the two endpoints of the LOR:

Pr {t|Z, θ, φ} = Pr {t, Z|θ, φ}
Pr {Z|θ, φ}

=
pi→D

ν(Z, θ, φ)
.

Substituting this probability into Eq. 7 and using Eq. 3, the
final estimator of the expected coincidences is

ỹL ≈ εL
ν(Z1, θ1, φ1)ν(Z2, θ2, φ2)

M

M∑
s=1

ỹgeomG(s) . (8)

It means that after the geometric first pass, the 4D LOR
map is filtered separately for every combination of depth layers
Z1, Z2. Each computation thread takes one measurable LOR
L and calculates ỹL by adding the sampled geometric LORs.

C. Voxel–centric back projection

In the back projection of ML-EM reconstruction, we have
to evaluate the numerator

∑
L AL,V

yL

ỹL
and the denominator∑

L AL,V of the scaling factor for each voxel.
Let us consider the numerator and substitute the factorization

of the system matrix into its expression:∑
L

AL,V
yL
ỹL

=
∑
G

Ageom
G,V

∑
L

pG→LεL
yL
ỹL

=
∑
G

Ageom
G,V rG. (9)

It means that instead of back projecting the ratios of measured
LORs yL/ỹL, first these ratios participate in a filtering like
operation, which constitutes the first phase of the numerator
calculation:

rG =
∑
L

pG→LεL
yL
ỹL

=
∑
Z1,Z2

∑
d1,d2

pG→LεL
yL
ỹL

=
∑
Z1,Z2

rG(Z1, Z2)

where LOR L is defined by detector subvolumes (d1, Z1) and
(d2, Z2).



For the depth layers Z1 and Z2 we use a full summation.
However, the sum of detector crystals d1,d2 is evaluated by
Monte Carlo method. Now we have G = (i1, i2) and the depth
indices (Z1, Z2) fixed and should sample measured LOR L, i.e.
generate random offsets t1 and t2 and obtain detector indices
as d1 = i1 + t1 and d2 = i2 + t2. The estimator of the sum
of detector crystals is

rG(Z1, Z2) =
∑
d1,d2

pG→LεL
yL
ỹL

≈ 1

M

M∑
s=1

pG→L(s)εL(s)
yL(s)

ỹL(s)

Pr {L(s)|G,Z1, Z2}
(10)

where the probability of a sample is

Pr {L|G,Z1, Z2} = Pr {t1, t2|G,Z1, Z2}
= Pr {t1|Z1, θ1, φ1}Pr {t2|Z2, θ2, φ2}

=
pi1→(d1,Z1)

ν(Z1, θ1, φ1)

pi2→(d2,Z2)

ν(Z2, θ2, φ2)

=
pG→L

ν(Z1, θ1, φ1)ν(Z2, θ2, φ2)
. (11)

Substituting this into Eq. 10, the first phase of the calculation
of the numerator is

rG(Z1, Z2) ≈
ν(Z1, θ1, φ1)ν(Z2, θ2, φ2)

M

M∑
s=1

εL(s)

yL(s)

ỹL(s)
.

Using the results of the first phase, the estimator of the
numerator of the back projection formula is:∑

L

AL,V
yL
ỹL
≈

∑
L

Ageom
G,V

∑
Z1,Z2

rG(Z1, Z2).

The denominator can be calculated by a simultaneous LOR
filtering when ratios yL/ỹL are replaced by 1 in the first phase:

nG(Z1, Z2) =
∑
d1,d2

pG→LεL

≈ ν(Z1, θ1, φ1)ν(Z2, θ2, φ2)

M

M∑
s=1

εL(s).

Then, the denominator is obtained as∑
L

AL,V ≈
∑
L

Ageom
G,V

∑
Z1,Z2

nG(Z1, Z2).

IV. TRANSPORT PROBABILITIES

For the 400-511 keV range gamma photons, three types
of interaction with LYSO crystal material are important: pho-
toelectric absorption, Compton, i.e. incoherent scattering and
Rayleigh or coherent scattering. The cross sections at 511
keV for the photoelectric effect is σa = 37.4−1 [mm−1], for
Compton scattering σis = 19.1−1 [mm−1] and for Rayleigh
scattering σcs = 214−1 [mm−1]. The photoelectric absorption
cross section is inversely proportional to the 2.5th power of the
photon energy, while the Rayleigh cross section is inversely
proportional to the 1.9th power of the photon energy, thus
the chances of such interaction are almost doubled as the
photon loses its energy from 511 keV to 400 keV during
Compton scattering. The cross section of Compton scattering

TABLE I: Detection probabilities
∑

Z ν(Z, θ, φ = 45◦) mod-
eling photoelectric absorption and also scattering.

θ 0 15◦ 30◦ 45◦ 60◦

Absorption 0.274 0.284 0.310 0.364 0.473
+ scattering 0.289 0.298 0.329 0.396 0.512

also increases for smaller energies as specified by the Klein–
Nishina formula but its increase is less than 10% while the
energy is reduced form 511 keV to 400 keV.

For 511 keV photons born at a positron-electron annihila-
tion, Compton scattering is about two times more likely than
photoelectric absorption and is about ten times more likely
than Rayleigh scattering. However, at this energy range, when
the energy decrease is small according to the Compton law,
Compton scattering has a strong forward scattering character,
thus Compton scattering changes neither the energy nor the
direction most of the time. It means that its effect does not
modify the properties of the gamma photons, i.e. it behaves
as if it did not occur. In contrast, Rayleigh scattering modifies
the direction on a larger scale and gets more relevant on lower
energies. Eventually, Rayleigh scattering is responsible for
dispersing the photons in a larger detector area. To quantify the
difference, we compared the transport probabilities computed
only with photoelectric absorption and also with Compton
and Rayleigh scattering, and presented the total detection
probabilities for the two models. Table I shows the detection
probabilities, i.e. the sum of the transport probabilities of all
crystals. During this simulation, we assumed a 400–600 keV
window, i.e. photons are ignored when their energy drops
below 400 keV.

Sampling according to these transport maps is supported by
pre-computed tables. First, the layer detection probability maps
are calculated by simulating photons arriving from a direction
of given inclination and azimuth angles at uniformly distributed
points on the detector surface. Having the probabilities, we pre-
generate relaxed Monte Carlo offset vector sets that contain just
a few samples, but their distribution is as close to the simulated
distribution as possible [22], [23].

V. RESULTS

The proposed DOI reconstruction algorithm has been im-
plemented in CUDA. We have modeled the PET system of
the NanoPET/CT 122 scanner [24], [25], which has a detector
ring consisting of 12 modules. During our measurements, we
used 1:3 coincidence mode, i.e. each detector module formed
LORs with three opposite modules of the ring, thus there were
12 × 3/2 = 18 module pairs. A module contains 81 × 39,
1.12×1.12×13 mm LYSO detector crystals, which are divided
into two depth layers. Therefore, the number of LORs in the
entire system is 18× (81× 39× 2)2 = 718 millions.

The proposed LOR filtering method has been compared
to DOI free reconstruction and to a classical DOI approach
called detector inflation that shifts the endpoints of the LOR
into the crystals. The cross-correlation (CC) error curves are
displayed by Figs. 3–5, while Figs. 6–8 show the outputs of
the reconstructions.
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Fig. 3: CC error curves of the reconstructions, applying LOR
filtering in both forward and back projections.
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Fig. 4: CC error curves of the reconstructions, applying LOR
filtering in forward and inflation in back projections.

Based on the obtained error curves, it can be concluded
that ignoring scattering brings error into the reconstruction. If
LOR filtering is applied in both forward and back projections
(Figs. 3 and 6), it can be observed that at the beginning
of the reconstruction, the models that disregard scattering
perform better than the models that take into account scattering,
which get better just later. The reason for this is that by
ignoring scattering, the small-value elements of the system
matrix are set to zero making the the matrix of forward and
back projections better conditioned, and thereby improving the
initial convergence speed, but changing the limiting value.

If we use inflation instead of LOR filtering in back projection
(Figs. 4 and 7), the matrix conditioning is made better without
sacrificing the limiting value. Thus, after 200 iterations the
reconstruction reaches error 3.76 that is lower than the 5.28
CC error of LOR filtering applied also in back projection.

The worst result is obtained when we use inflation in both
forward and back projection because inflation is just a rough
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Fig. 5: CC error curves of the reconstructions, applying infla-
tion in both forward and back projections.

(a) without DOI (b) with DOI

Fig. 6: Outputs of the reconstruction, applying LOR filtering
in both forward and back projection.

estimate of the real detector model (Figs. 7 and 8).

VI. CONCLUSIONS

This paper proposed the application of 4D convolution as
a means to simulate inter-crystal scattering in DOI-based PET
reconstruction. The main contribution is that we could model
Rayleigh and Compton scattering in the detector crystals in
addition to absorption, making the simulation physically more

(a) without DOI (b) with DOI

Fig. 8: Outputs of the reconstruction, applying inflation in both
forward and back projection.



(a) without DOI, disregarding
scattering

(b) with DOI, disregarding
scattering

(c) without DOI, taking into
account scattering

(d) with DOI, taking into account
scattering

Fig. 7: Outputs of the reconstruction, applying LOR filtering in forward and inflation in back projection.

plausible. While the incorporation of a realistic detector model
improves the quality of reconstructions, its computation time is
negligible due to the efficient Monte Carlo evaluation scheme.
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