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Abstract—Positron Emission Tomography reconstruction is ill
posed. The result obtained with the iterative ML-EM algorithm
is often noisy, which can be controlled by regularization. Common
regularization methods penalize high frequency features or the
total variation, thus they compromise even valid solutions that
have such properties. Bregman iteration offers a better choice
enforcing regularization only where needed by the noisy data.
Bregman iteration requires a nested optimization, which poses
problems when the algorithm is implemented on the GPU where
storage space is limited and data transfer is slow. Another
problem is that the strength of the regularization is set by a
single global parameter, which results in overregularization for
voxels measured by fewer LORs. To handle these problems, we
propose a modified scheme that merges the two optimization
steps into one, eliminating the overhead of Bregman iteration.
The algorithm is demonstrated for a 2D test scenario and also in
fully 3D reconstruction. The benefits over TV regularization are
particularly high if the data has higher variation and point like
features. The proposed algorithm is built into the TeraTomoTM

system.

I. INTRODUCTION

Tomography reconstruction is the inverse problem of parti-
cle transport, which requires the iteration of particle transport
simulations and corrective back projections [10]. The inputs
of the reconstruction are the measured values in Lines of
Responses or LORs: y = (y1, y2, . . . , yNLOR). The output of
the reconstruction method is the tracer density function x(v⃗),
which is approximated in a finite function series form:

x(v⃗) =

Nvoxel∑
V=1

xV bV (v⃗), (1)

where x = (x1, x2, . . . , xNvoxel
) are the coefficients to be

computed, and bV (v⃗) (V = 1, . . . , Nvoxel) are basis functions,
which are typically defined on a voxel grid. As only non-
negative tracer density makes sense, we impose non-negativity
requirement x(v⃗) ≥ 0 on the solution. If basis functions bV (v⃗)
are non-negative, this requirement can be formulated for the
coefficients as well: xV ≥ 0.

The correspondence between tracer density coefficients xV

and the expected number of hits ỹL in LOR L is described by
system matrix ALV , where element LV is the probability that
an hit event occurs in LOR L given that a radioactive decay
happened in voxel V :

ỹL =

Nvoxel∑
V=1

ALV xV . (2)

Assuming that photon incidents in different LORs are
independent random variables with Poisson distribution, the
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Expectation Maximization (ML-EM) algorithm [11] should
maximize the following likelihood function:

logL(x) = log

(
NLOR∏
L=1

ỹyL

L

yL!
e−ỹL

)
subject to xV ≥ 0.

The reconstruction process is ill-conditioned, which means
that enforcing the maximization of the likelihood function
may result in a noisy reconstruction. To recognize when the
data is being fitted to noise, we can measure the quality of
the approximation, i.e. how free the data is from unwanted
high frequency characteristics. This measure is called the
regularization term and is denoted by R(x).

There are different possibilities to include regularization
information in the reconstruction:

1) Early termination stops the iteration when the quality
becomes degrading during ML-EM.

2) Enforcing the quality by voxel space or LOR space
filtering during the reconstruction process. It means
that in each iteration, we include a filtering step that
improves the quality of the current approximation.

3) Constrained optimization is based on the recognition
that we have two optimization criteria, the likelihood
and the quality of the data term, so we can take one of
them as an optimization objective while the other as a
constraint. However, there are two problems. Firstly, the
constraint cannot be well defined since it would require
either the likelihood or the quality of the true solution,
which is not available. Secondly, constrained optimiza-
tion is more difficult computationally than unconstrained
optimization.

4) Merging the data term and the regularization term into
a single objective function where poor quality solutions
are penalized by the regularization term.

In this paper, we investigate the last option, and add penalty
or regularization term R(x) to the negative likelihood. The
penalty term should be high for unacceptable solutions and
small for acceptable ones. In the objective function penalty
term R(x) is scaled by regularization parameter λ. We mini-
mize

E(x) = − logP (y|x) + λR(x). (3)

To minimize the multi-variate objective function with in-
equality constraints of non-negativity, we can use the Kuhn-
Tucker conditions, which lead to:

xV
∂E

∂xV
= xV

(
λ
∂R

∂xV
−

NLOR∑
L=1

ALV
yL
ỹL

+

NLOR∑
L=1

ALV

)
= 0



for V = 1, 2, . . . , Nvoxel. Rearranging the terms, we obtain
the following equation for the optimum:

xV

(
λ
∂R

∂xV
+

NLOR∑
L=1

ALV

)
= xV

NLOR∑
L=1

ALV
yL
ỹL

.

There are many possibilities to establish an iteration scheme
that has a fix point satisfying this equation. A provably con-
verging backward scheme would solve the following equation
in every step:

x
(n+1)
V

(
λ
∂R(x(n+1))

∂xV
+

NLOR∑
L=1

ALV

)
= x

(n)
V

NLOR∑
L=1

ALV
yL

ỹ
(n)
L

where

ỹ
(n)
L =

Nvoxel∑
V=1

ALV x
(n)
V

is the expected number of hits in LOR L computed from the
activity distribution available in iteration step n.

A. Analysis of TV regularization

Classical regularization terms measure the distance between
the constant function and the actual estimate. Tychonoff regu-
larization is based on the L2 distance. As a result, Tychonoff
regularization produces blurred, oversmoothed edges. In PET
data there are sharp features that should not be smoothed
with the regularization method. We need a penalty term that
minimizes the unjustified oscillation without blurring sharp
features. An appropriate functional is the Total Variation (TV)
of the solution [9],[6]. In one dimension the total variation
measures the length of the path traveled by the function value
while its parameter runs over the domain. For differentiable
functions, the total variation is the integral of the absolute
value of the function’s derivative. If the basis functions are
piece-wise linear tent-like functions, then the TV in one
dimension is

TV (x) =

Nvoxel∑
V=1

|xV − xV−1|. (4)

In higher dimensions, the total variation can be defined as the
integral of the absolute value of the gradient over the total
volume V:

TV (x) =

∫
V

|∇x(v⃗)|dv. (5)

In regularization, the variation of the true solution is also
penalized, so the optimum is be modified. Total Variation
(TV) regularization gives reduced contrast solutions having
stair-case artifacts, which can be controlled by regularization
parameter λ. The optimal regularization parameter can be
obtained with Hansen’s L-curves [4], which states that the
optimal λ is where the (− logL(xλ)), TV (xλ)) parametric
curve has maximum curvature (note that in the final solution x
depends on λ, so both the likelihood and the total variation will
be functions of the regularization parameter). However, the
algorithm developed to locate the maximum curvature points
assumes Tychonoff regularization, and there is no practically
feasible generalization to large scale problems based on TV.

To examine these artifacts formally, let us consider the one
dimensional case when the TV is defined by Equ. 4. The partial
derivatives of the TV functional is

∂TV (x(v⃗))

∂xV
=

∂
∑Nvoxel

V=1 |xV − xV−1|
∂xV

=


2 if xV > xV−1 and xV > xV+1,
−2 if xV < xV−1 and xV < xV+1,
0 otherwise.

Thus the iteration formula becomes independent of the
regularization when x

(n)
V is not a local extremum:

x
(n+1)
V =

x
(n)
V ·

NLOR∑
L=1

ALV
yL

ỹ
(n)
L

NLOR∑
L=1

ALV

.

When x
(n)
V is a local maximum, regularization makes it smaller

by increasing the denominator by 2λ:

x
(n+1)
V =

x
(n)
V ·

NLOR∑
L=1

ALV
yL

ỹ
(n)
L

NLOR∑
L=1

ALV + 2λ

.

Similarly, when x
(n)
V is a local minimum, regularization makes

it greater by decreasing the denominator by 2λ.
This behavior is advantageous when local maxima and

minima are due to the noise and overfitting. Note that the
regularization has a discontinuity when xV is similar in one
of the neighbors of voxel V , so iteration is likely to stop
here, resulting in staircase-like reconstructed signals. On the
other hand, when the true data really has a local extremum,
regularization decreases its amplitude, resulting in contrast
reduction. Assume, for example, that the true data is a point
source like feature that is non-zero only in a single voxel V .
For this value, the ratio of the reconstruction with and without
regularization, i.e. the contrast reduction is

C(λ) =

NLOR∑
L=1

ALV

NLOR∑
L=1

ALV + 2λ

≈ 1− 2λ
NLOR∑
L=1

ALV

.

Note that contrast reduction is not uniform, but is higher where

sensitivity
NLOR∑
L=1

ALV is low. These parts of the volume are

close to the entry or exit of the gantry where a voxel is seen
just by a few LORs. Here the regularization can significantly
modify the data.



B. Bregman iteration

An optimal regularization term would have its minimum
at the ground truth solution when x = xtrue, and would
measure the “distance” D(x, xtrue) between x and xtrue. An
appropriate distance function is the Bregman distance [1], [15],
[14] that can be based on an arbitrary convex penalty term,
for example, on the total variation of the activity distribution,
denoted by TV (x):

D(x, xtrue) = TV (x)− TV (xtrue)− ⟨p, x− xtrue⟩

where p is the gradient of TV (x) at xtrue, i.e. pV =
∂TV/∂xV if it exists.

Fig. 1. Bregman distance in 1D.

In practice, we do not know the true solution, so it is
replaced by an earlier estimate x(k). Note that if the regu-
larization term is linear between the true solution and x(k),
then this approximation is precise since

D(x, xtrue) = D(x, x(k)).

Total variation is based on the absolute value function, which
results in piece-wise linear regularization term, making it
particularly attractive for Bregman iteration.

Inserting the Bregman distance into the goal of the opti-
mization, we get

E(x) = − logL(x) + λD(x,x(k)). (6)

II. THE NEW METHOD: MODIFIED BREGMAN ITERATION

There are two problems with the classical Bregman itera-
tion. The new activity x

(n+1)
V shows up at the left side and

also in the right side as an input of the Bregman distance, so
this equation should also be solved by an embedded iteration.
To attack this problem, we use a one step late option [3],
which means that the Bregman distance is computed not from
the new but from the actual estimate x

(n)
V , which significantly

simplifies the algorithm, resulting the following scheme:

x
(n+1)
V =

x
(n)
V ·

NLOR∑
L=1

ALV
yL
ỹL

NLOR∑
L=1

ALV + λ

(
∂TV (x(n+1))

∂xV
− p

(k)
V

) .

Another problem is that regularization is not uniformly
strong for different voxels but depends on voxel sensitivity∑NLOR

L=1 ALV , which expresses the probability that a positron

born with in voxel V is detected by the tomograph. The
sensitivity is high in the center of a fully 3D PET but
can be very small close to the exits of the gantry, causing
over-regularization here. On the other hand, regularization
strength also depends on the size of the LOR subset in
OSEM iteration. To equalize the strength of regularization,
we scale the global regularization parameter λ by the local
voxel sensitivity. Putting these together, we can establish the
following Equalized One Step Late scheme:

x
(n+1)
V =

x
(n)
V ·

NLOR∑
L=1

ALV
yL

ỹ
(n)
L

NLOR∑
L=1

ALV

(
1 + λ

(
∂TV (x(n)(v⃗))

∂xV
− p

(k)
V

)) .

When k is incremented, the gradient vector of the total
variation, p, should be updated. This can be done directly
considering the criterion of optimality:

p
(k+1)
V = p

(k)
V +

1

λ

NLOR∑
L=1

(
ALV

yL

ỹL

ALV
− 1

)
.

The number of k increments should be small, otherwise the
noise is reintroduced into the solution.

The proposed reconstruction algorithm is:

for k = 1 to K do
for n = (k − 1)K to kK − 1 do

x
(n+1)
V = x

(n)
V ·

∑
L ALV

yL
ỹL∑

L ALV

(
1+λ

(
∂TV
∂xV

−p
(k)
V

)) .

endfor

p
(k+1)
V = p

(k)
V + 1

λ

∑
L

(
ALV

yL
ỹL

ALV
− 1

)
.

endfor

Both TV regularization and Bregman iteration require the
computation of the derivative of the total variation with respect
to each coefficient in the finite element representation of
the function to be reconstructed. If the finite element basis
functions have local support, then the derivative with respect to
a single coefficient depends just on its own and its neighbors’
values. Thus, this operation becomes similar to a image
filtering or convolution step, which can be very effectively
computed on a parallel machine, like the GPU [5], [13].

A. Bregman iteration in OSEM

In OSEM the set of LORs are partitioned into subsets
and only a subset is evaluated in a single iteration. The set
of iterations providing a covering for the complete LOR set
is called OSEM cycle. In a Bregman phase where p(k) is
constant, no modification is required, we can use the same
scheme independently of whether EM or OSEM iterations
are executed. However, the update of gradient p(k) should be
modified since in a single step we have just partial information
about the system matrix elements. Denoting the system matrix
element in OSEM iteration s by A

(s)
LV , we can express the



system matrix element as the sum of OSEM estimates:

ALV =
S∑

s=1

A
(s)
LV

Thus the update of the gradient is

p
(k+1)
V = p

(k)
V +

1

λ

S∑
s=1

NLOR∑
L=1

A
(s)
LV

yL

ỹn−S+s
L

A
(s)
LV

− 1

 .

III. RESULTS

To demonstrate the results we run experiments on a simple
2D tomograph model, on a realistic fully 3D model of the
Mediso’s AnyScan human PET/CT [7], and finally recon-
structed measured data as well.

A. 2D tomograph model

Fig. 2. A simple 2D tomograph model used in the experiments of this section
(left). The detector ring contains 90 detector crystals and each of them is of
size 2.2 in voxel units and participates in 47 LORs connecting this crystal to
crystals being in the opposite half circle, thus the total number of LORs is
90× 47/2 = 2115. The voxel array to be reconstructed is in the middle of
the ring and has 32× 32 resolution, i.e. 1024 voxels.

Three Pyramids Point Source Homogeneity

Fig. 3. 2D phantoms.

We first examine a simple 2D PET model where NLOR =
2115 and Nvoxel = 1024 [12]. We considered the Three Pyra-
mids phantom that is projected with 2000 photon pairs and
reconstructed with TV regularization and with the proposed
method (Figs. 4 and 5). This is a low statistics measurement
where regularization is necessary, making the ‘No TV’ method
diverging. Note that Bregman iteration provides higher con-
trast and is significantly better than TV regularization if the

Fig. 4. L2 error curves of the Three Pyramids phantom reconstruction.

TV

Bregman

λ = 0.01 λ = 0.05 λ = 0.1

Fig. 5. Reconstructions of the Three Pyramids phantom.

regularization is strong enough. Too weak regularization, how-
ever, makes Bregman iteration similar to the non-regularized
case.

We also considered two other 2D phantoms with extreme
distributions (Fig. 3). The Point phantom has all activity
concentrated in a single voxel while the Homogeneity phantom
comprises four homogeneous squares. The reconstruction of
the Point phantom can be evaluated in Figures 6 and 7. This
measurement is of high statistics, so the L2 error decreases
even if no regularization is applied. On the other hand, the
phantom has a high variation, so here regularization slows
down the convergence and reduces the contrast. Total variation
regularization stops the convergence on high error levels. Breg-
man iteration can help and make the process still converging.

When the Homogeneity is reconstructed (Figures 8 and 9),
regularization is indeed needed since when there is no regu-
larization (No TV), the error grows after an initial reduction
due to overfitting. Here the best option is TV regularization,
because the phantom itself has very low variation.



Fig. 6. The L2 error curves of the Point phantom reconstruction.

TV

Bregman

λ = 0.01 λ = 0.05 λ = 0.1

Fig. 7. Reconstructions of the Point Source phantom.

Fig. 8. The L2 error curves of the Homogeneity phantom reconstruction.

TV

Bregman

λ = 0.01 λ = 0.05 λ = 0.1

Fig. 9. Reconstructions of the Homogeneity phantom.

B. 3D reconstructions

The proposed Bregman variant has been integrated into
the TeraTomoTM fully-3D reconstruction system [2]. With
this system we reconstructed a GATE simulated measurement
of the NEMA NU2-2007 human IQ phantom, which again
shows the superior accuracy and image quality of the pro-
posed scheme over unregularized and TV-regularized methods
(Figs. 10 and 12). The resolution of the reconstructed volume
is 166× 166× 75 voxels with edge size of 2 [mm]. We also
tested the effect of the regularization parameter (Fig. 11). Note
that the method is quite robust even to stronger regularization
but textile patterns may show up in the image, which are due
to the approximation error of the gradient.

Fig. 12. L2 error curve of the reconstructions of the Human IQ phantom.

We also reconstructed a Small animal IQ phantom projected
with GATE simulating the NanoPET/CT pre-clinical PET-
CT system [8] (Fig. 13). The resolution of the reconstructed
volume is 200 × 200 × 200 voxels with edge size of 0.4
[mm]. We can come to a similar conclusion concerning the
regularization parameter, it can be set in a wider range but



No regularization TV Bregman

Fig. 10. Reconstructions of the Human IQ phantom.

λ = 0 λ = 0.003 λ = 0.01

Fig. 11. Reconstructions of the Human IQ phantom with different regularization parameters.

λ = 0 λ = 0.003 λ = 0.01

Fig. 13. Reconstructions of the Small Animal phantom with different
regularization parameters.

too strong regularization may create textile patterns due to the
approximation error of the gradient.

IV. CONCLUSIONS

In this paper we proposed a simple and efficient imple-
mentation of Bregman iteration for PET reconstruction. The
proposed algorithm runs on GPUs. Based on the analysis and
simulation results we can conclude that the Equalized One
Step Late option works for Bregman iteration, making its
implementation fairly simple. Bregman iteration is a promising
alternative to TV regularization. Its only drawback is that we
should maintain another voxel array pV in addition to activity
values xV .
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