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Abstract
The paper presents simple, physically plausible, but not physically based reflectance models for metals and other
specular materials. So far there has been no metallic BRDF model that is easy to compute, suitable for fast
importance sampling and is physically plausible. This gap is filled by appropriate modifications of the Phong,
Blinn and the Ward models. The Phong and the Blinn models are known not to have metallic characteristics. On
the other hand, this paper also shows that the Cook-Torrance and the Ward models are not physically plausible,
because of their behavior at grazing angles. We also compare the previous and the newly proposed models. Finally,
the generated images demonstrate how the metallic impression can be provided by the new models.
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1. Introduction

The most famous model that can describe specular materi-
als was proposed by Phong18 and improved by Blinn3. This
model does not have physical interpretation but is only a
mathematical construction. Since the original form violates
physics, its corrected version9; 14 is preferred in global illu-
mination algorithms.

The first model that has physical base was proposed by
Torrance and Sparrow23, which was applied in rendering
algorithms in4. Later, He, Torrance et. al.7 introduced an-
other model that even more accurately represented the un-
derlying physical phenomena2. These models are not suit-
able forimportance samplingsince it would require the in-
tegration and inversion of the probability density functions
that are expected to be proportional to the BRDF multiplied
by the cosine of the angle between the direction and the sur-
face normal. Not only is it impossible to compute the re-
quired integral and inversion analytically, but even the cal-
culation of BRDF values requires significant computational
effort for these physically based models (table 5). Ward24

and Schlick20; 21 presented simplified versions of the Cook-
Torrance model that are suitable for importance sampling.

In their recent paper Lafortune et. al. approximated a
non-linear, metallic BRDF by the combination of modified
Phong models12. The resulting BRDF is simple, but this ap-
proach requires a great number of elementary terms to suf-
ficiently represent highly specular materials. Another draw-
back of this method is that the directional diffuse part of the
BRDF is always bounded for grazing angles.

Radiosity and Monte-Carlo ray-tracing rendering algo-
rithms usually assume that the BRDFs do not violate
physics. Such shading models must satisfy both reciprocity
and energy balance, and are calledphysically plausible14.

Reciprocitythat was recognized by Helmholtz is the sym-
metry property of the BRDF (fr , [sr�1]), which is defined by
the following equation15:

fr(~L;~V) = fr(~V;~L); (1)

where~L is the unit vector pointing towards the incoming
light and unit vector~V defines the viewing direction. Reci-
procity is important because it allows for the backward trac-
ing of the light as happens in ray-tracing algorithms.

Suppose that the surface is illuminated by a beam from
direction~L. Energy balancemeans that thealbedo, that is
the fraction of the total reflected power cannot be greater
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than 1:

a(~L) =
Z

Ω

fr(~L;~V) �cosΘ~V dω~V � 1: (2)

Energy balance makes the linear operator of the rendering
equation a contraction, which is required by iterative and
random walk methods to converge to the solution.

For the representation of metals, there has been no com-
pact, physically plausible model so far that is suitable for
importance sampling, good for highly specular materials and
can give back the mirror as the limit case. This paper intends
to fill this gap.

2. Metals and Phong-type models

2.1. Properties of metals and mirrors

Metals have several important properties:

� Their diffuse reflectance is usually negligible.
� The color reflected off the metals is determined by the

Fresnel function. Due to the angle dependence of the Fres-
nel function, this color fades at grazing angles.

� If the surface roughness goes to zero, metals become
shinier and converge to theideal mirror. The reflectance
function of the ideal mirror isδ �F(Θ)=cosΘ~L, whereδ is
the Dirac-delta,F is the Fresnel function andΘ~L is the in-
cident angle. If the Fresnel term of the material is 1, then
an ideal mirror would reflect all energy independently of
the illumination, that is the albedo is 1 and the reflected
radiance is equal to the corresponding input radiance. At
directions other than the reflection direction, the radiance
is zero. As the material properties converge to that of the
ideal mirror, both theenergy reflectivity(albedo) and the
radiance reflectivity(BRDF) are expected to converge to
the corresponding functions of the ideal mirror.

� The BRDF function of metals has 1=cosΘ~L characteris-
tics that can compensate for the cosΘ~L factor of the irra-
diance when computing the reflected radiance.

� For great incident angles, the peak of the reflection lobe
(so called off-specular peak) occurs at an angle greater
than the angle of incidence.

When the new models are compared to the Phong and the
Blinn models, these properties are examined. We shall con-
clude that the new models meet all but the last requirements.
This means that instead of the deep physical analysis using,
for example, the Maxwell equations, we justify the metallic
appearance by checking several characteristic features.

Let us consider the specular part of the physically plau-
sible versions of the Phong and the Blinn models14. Using
the widely accepted notations where~R is the mirror direc-
tion of~L, ~N is the unit normal vector, and~H is the halfway
unit vector between~L and the view vector~V, the Phong and
Blinn models are defined as thenth power of the dot prod-
ucts(~R�~V) and(~N � ~H), respectively. For largen values the

BRDF gets highly specular. However, these models cannot
provide metallic or mirror looking since as the incident an-
gle grows towards the grazing angle, the ratio of the total
reflected and incident powers as well as the output radiance
decrease. Ifn goes to infinity, then the reflected radiance and
the albedo converges to zero for 90 degree incident angle
since in this limit case the albedo follows the cosine func-
tion. Intuitively, the decrease of the radiance means that if
we look at a “Phong-mirror”, then the image reflected in the
mirror gets darker for greater reflection angles.

2.2. The new metallic models

This section discusses a construction method which pre-
serves the reciprocity and the energy balance of the BRDF,
but solves the mentioned problems of Phong-type models.
The new model is empirical, that is a pure mathematical con-
struction, whose validity is guaranteed by satisfying the ba-
sic properties of metals.

The reflected radiance of the physically plausible Phong
model follows the cosn α �cosΘ~L function, where the cosΘ~L
factor is responsible for making the Phong mirror dark for
greater reflection angles. In order to eliminate this undesired
behavior of the Phong model, it must be compensated by
an 1=cosΘ~L factor. However, if we multiplied the specular
part of the reciprocal Phong model13 by 1=cosΘ~L, then we
would get back the original, non-reciprocal Phong18 expres-
sion. Obviously, we have to find a symmetric function of~L
and~V, which gives 1=cosΘ~L value only in the~L =~V case.

We have examined several different alternatives. If we
multiplied the Phong BRDF with 1=(cosΘ~L � cosΘ~V ), then
the radiance would be unacceptably high around the reflec-
tion direction at grazing angles and the energy balance could
not be preserved. We can come to the same conclusion with

1=
q

(cosΘ~L �cosΘ~V)
24 correction factor as well.

The 2=(cosΘ~L +cosΘ~V ), which can also be called as the
“plus-model”, has unrealistic supermetal features. It means
that it relfects two times greater radiance at grazing angles
than at orthogonal illumination (figures 1 and 2).

Finally, only the 1=max(cosΘ~L;cosΘ~V ) function has

been found appropriate from the set of simple~L;~V symmet-
ric functions. The fact that its derivative is not continuous has
no visible artifacts, similarly to the Cook-Torrance model.
Let the minimum of the incident and the viewing angles be
Θmin:

Θmin = min(Θ~L;Θ~V): (3)

Then the proposed correction term is

1
cosΘmin

=
1

max(cosΘ~L;cosΘ~V )
: (4)

Let cosα= (~R�~V)+ where(~R�~V)+ = (~R�~V) if (~R�~V)� 0
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recip. Phong recip. Blinn Cook-Torrance Ward He-Torrance

rel. computation time 1 1.8 4.2 4.0 320

metallic N N Y Y Y

physically plausible Y Y N N Y

physically based N N Y N Y

off-specular peak N N Y N Y

importance sampling Y Y N Y N

Table 1: Comparison of existing BRDF models (the running-time measurements used Heckbert’s BRDF viewer8)
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Figure 1: The BRDFs of the plus-Phong and the plus-Blinn models (n= 100)
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Figure 2: The output radiance of the plus-Phong and the plus-Blinn models (n= 20)
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and 0 otherwise. The BRDF of the reciprocal Phong model
is

fr;Phong(~L;~V) = cn �cosn α (5)

wherecn is a scalar parameter. Lafortune13 has shown that

cn �
n+2
2π

(6)

must hold in order for the model to preserve energy balance.

The new reciprocal BRDF of thestretched Phong model
is

fr(~L;~V) = cn �
cosn α

cosΘmin
: (7)

This model meets the mentioned requirements and really
provides metallic impression as we demonstrate it later.

Since the reflection vector~R is

~R= 2(~N �~L)~N�~L; (8)

the formula to compute(~R�~V) can be expressed as

(~R�~V) = (2(~N �~L)~N�~L) �~V = 2(~N �~L)(~N �~V)�(~L �~V): (9)

Substituting this into equation 7, we can obtain the following
formula for the new BRDF:

fr(~L;~V) = cn �
[(2(~N �~L)(~N �~V)� (~L �~V))+]n

max((~N �~L); (~N �~V))
: (10)

The albedo function of the new model can be computed
from the Phong BRDF as the sum of the following two inte-
grals:

a(~L) =
Z

Ω((~N�~L))<(~N�~V))

fr;Phong(~L;~V) dω~V+

Z

Ω((~N�~L)�(~N�~V))

fr;Phong(~L;~V) �
(~N �~V)

(~N �~L)
dω~V : (11)

Analyzing the albedo functions we can come to the con-
clusion that thecn constant of inequality 6 is also good for
the new model. More precisely, the albedo of the BRDF of
equation 7 has only a negligible overshooting where it ex-
ceeds value 1 ifn� 1. The overshooting occurs at small in-
cident angles where~L is close to~N.

Below the arbitrarily selectedn = 1 minimum, thecn

value should be decreased in order to preserve energy bal-
ance, which would shift the maximum of the albedo function
and the BRDF from the perpendicular incident direction. For
example, ifn = 1, then the maximumcn constant would
result in 0:0003 maximum overshooting at 13 degrees. For
highern values, the overshooting is negligible.

Figure 3 shows the albedo functions for differentn values.
We can see that in the limit case the albedo converges to
constant 1, which is the albedo of the ideal mirror.
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Figure 3: Albedo functions of the stretched model for differ-
ent n values

2.3. Transition from the Phong model to the new model:
p-model

Using ap2 [0;1] parameter, a continuous transition can be
developed between the reciprocal Phong model defined by
equation 5 and the new metallic model, as follows:

fr(~L;~V) = cn �
cosn α

cosp Θmin
; 0� p� 1: (12)

Let us call this formula thep-model. Ifn� 1, then the maxi-
mum of the multiplicative factorcn is as shown in equation 6
for any p2 [0;1].
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Figure 4: Ratio of the p-model and the Phong BRDFs for
different viewing angles

Figure 4 shows the ratio of the BRDFs of thep-model and
the Phong model for different viewing anglesΘ~V and for dif-
ferent transition parametersp. The case ofp= 0 represents
the reciprocal Phong model, while the case ofp = 1 means
the new metallic model.
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2.4. The metallic properties of the stretched Phong
model

This section examines the properties of the new model.

Supposing that the Fresnel term is 1 (for silver this is prac-
tically true), the albedos of the Phong, He-Torrance, Cook-
Torrance, Ward and the stretched Phong models are shown in
figure 5. Note that the Cook-Torrance and the Ward models
diverge at grazing angles (for the formal proof please refer
to16), while the Phong, He-Torrance and Ward BRDFs badly
decrease for greater incident angles. The stretched model
converges to a value that is not lower than 0.5 for grazing
angles.

The maximum of the stretched Phong BRDF is always at
the mirror direction~R and its value iscn=cosΘ~L for anyn,
while the maximum of the Phong model is alwayscn.

Figure 6 compares the normalized BRDF functions of the
Phong and the stretched Phong models for 0, 40 and 80 de-
gree incident angles (normalization scales the BRDF to be 1
at 0 incident angle).

It is also worth examining the output radiance assuming a
single point-like lightsource of intensity 4π at distance 1 in
direction~L. In this case the irradiance is cosΘ~L. The output
radiances of the Phong and the stretched models at different
incident directions are shown in figure 7. This figure demon-
strates the earlier statement that the “Phong-mirror” gets
darker for greater incident angles, but the stretched model
eliminates this artifact.

2.4.1. Ideal mirror

The new model gives back the normalized BRDF of the ideal
mirror for n!1, which is 1=cosΘ~L. The output radiance

is Lout(~V) = Lin(~L) if ~V =~L and 0 otherwise.

Note that the new model can arbitrarily approximate the
ideal mirror. Selectingn in an appropriate way (e.g.n =
104 : : :108), realistic, glossy mirrors can easily be gener-
ated. Using, for example, distributed ray-tracing, the mirrors
do not require a special case. On the other hand, realistic,
“almost-ideal” mirrors can also be handled.

2.4.2. Off-specular peak

The new model does not provide off-specular peak which
can be quite significant for highly polished metals. For ex-
ample, when the He-Torrance model was fitted, it was real-
ized 11 that at 75� incident angle the off-specular peak can
be 1.6 times greater than the radiance at the mirror direc-
tion. Although it is difficult to decide how important the off-
specular peak is in providing metallic impression, experi-
ence gained with other models24 show that this effect is not
significant.

3. Generalizations of the new model

3.1. Retro-reflective materials

The proposed model can easily be generalized to provide
a retro-reflectiveBRDF which has the maximum at the di-
rection of the incident illumination. Practical examples of
retro-reflective objects are a projection screen, a traffic sign,
etc. For retro-reflective materials, mirror direction vector
~R should be replaced by the illumination direction~L. The
BRDF formula can be simplified to the following form:

fr(~L;~V) = cn �
[(~L �~V)+]n

max((~N �~L); (~N �~V))
: (13)

The maximum value ofcn is as defined in equation 6.

3.2. Anisotropic materials

Lafortune et. al.12 introduced the anisotropic generalization
of the Phong model as:

fr(~L;~V) =Cmax� (Cx(RxVx)+Cy(RyVy)+Cz(RzVz))
n =

Cmax� [(~R�~V)M ]n; (14)

where(~R�~V)M = ~RTM~V is a special dot product containing
also a multiplication with diagonal matrixM. The values at
the diagonal ofM areCx, Cy andCz, respectively.

As for the original Phong model, the anisotropic general-
ization can also be normalized withp-th power of the maxi-
mum of the dot products(~N �~L), (~N �~V), thus we can obtain:

fr(~L;~V) =Cmax�
[(~R�~V)M ]n

max((~N �~L); (~N �~V))p
: (15)

This model is able to approximate metals even with a sin-
gle term, or by fewer terms than required by Lafortune’s ap-
proximation. The general formula containing a combination
of several terms is:

fr(~L;~V) = ∑
i

Ci �
[(~R�~V)Mi ]

ni

max((~N �~L); (~N �~V))pi
: (16)

In the original form of the Lafortune’s model, highly spec-
ular materials require very many terms (for example, if the
RMS slope is less than 0.02, the number of terms may ex-
ceed a hundred). The new model can significantly reduce this
number.

4. Importance sampling

Importance sampling is an effective technique to reduce the
variance of Monte-Carlo algorithms. It requires the gener-
ation of random samples according to a probability density
which is proportional, or at least approximately proportional
to the integrand.

In order to generate the output radianceLout(~V) from the
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Neumann and Szirmay-Kalos / Compact Metallic Reflectance Models

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

al
be

do

angle

Albedo functions of different models

Phong
He-Torrance

Cook-Torrance
Ward

New model

0

2

4

6

8

10

89.5 89.55 89.6 89.65 89.7 89.75 89.8 89.85 89.9 89.95 90

al
be

do

angle

Albedo functions of the Cook-Torrance and Ward models at grazing angles

Cook-Torrance
Ward

Figure 5: Albedo functions of the Phong (n= 150), stretched Phong (n= 150), Cook-Torrance (m= 0:1), Ward (m= 0:1) and
He-Torrance (σ0 = 0:1; τ = 1:7) models
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Figure 6: Comparison of the BRDFs of the original and the stretched Phong models (n= 100)
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Figure 7: Comparison of the output radiances of the original and the stretched Phong models (n= 100)
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incident illuminationLin(~L) (~L 2 Ω) in Monte-Carlo ray-
tracing, the following integral should be evaluated:

Lout(~V) =

Z

Ω

Lin(~L) � fr(~L;~V) �cosΘ~L dω~L: (17)

If directions~L1;~L2; : : :;~LM are sampled following prob-
ability densityp(~L), then the Monte-Carlo estimate of this
integral is:

Lout(~V)�
1
M
�

M

∑
m=1

Lin(~Lm) �
fr(~Lm;~V) �cosΘ~Lm

p(~Lm)
: (18)

According to the concept ofimportance sampling, p(~L)
should be approximately proportional to the integrand to
minimize the variance of the solution. If no a-priori infor-
mation is available aboutLin, then it is assumed to be con-
stant, thus the probability density should be proportional to
fr(~L;~V) �cosΘ~L.

4.1. Importance sampling for the Phong model

For the Phong model where the integrand is

Lin(~L) �cn � (~V �~R)
n
�cosΘ~L = Lin(~L) �cn �cosn α �cosΘ~L;

Lafortune13 proposed the following probability density:

p(~L) =
n+1
2π

� [(~V �~R)+]n =
n+1
2π

�cosnα: (19)

Samples according to this probability density can be
generated in the following way. Suppose that we can get
(um;vm) samples from a set containing uniformly distributed
points in the unit square. Note that this sampling will be used
in Monte-Carlo ray-tracing where rays are traced backwards.
It means that for a given~V an appropriate~L vector should be
found, which consists of two steps. In the first step reflection
direction~Rm is found, then~Lm is generated by mirroring.

In order to find a reflection direction~Rm, anglesαm and
φm in the lobe around~V is generated:

(αm;φm) = (arccosu
1

n+1
m ;2πvm): (20)

Note that using this formula, the probability density of gen-

erating a given direction(α;φ) is (n+1)
2π cosn α which is pro-

portional to the BRDF.

Let us establish a Cartesian coordinate system~i;~j;~k where
~k =~V, and:

~i =
~V�~N

j~V�~Nj
; ~j =~i�~k: (21)

Using these unit vectors, the mirror direction~Rm is:

~Rm = sinαm �cosφm �~i+sinαm �sinφm �~j +cosαm �~k: (22)

From the mirror direction the light vector can be derived eas-
ily: ~Lm = ((~N �~R)m~N�~Rm. The sampling according to this
probability density may generate directions that point into

the object ((~N �~L)m < 0). Thus we should check whether or
not the light vector points out of the object((~N �~L)m � 0)
and reject this sample if it does not. This rejection poses no
problem since from these directionsLin(~Lm) is zero, thus
these samples would get zero weight.

Summarizing, the Monte-Carlo estimate of the output ra-
diance is

Lout(~V)�
1
M
�

2πcn

n+1
�

M

∑
m=1

Lin(~Lm) �cosΘ~Lm
: (23)

If cn is the maximum allowed by inequality 6, then we obtain

Lout(~V)�
1
M
�

n+2
n+1

�

M

∑
m=1

Lin(~Lm) �cosΘ~Lm
: (24)

The selected probability density is not optimally propor-
tional to the integrand, only with cosn α. It would be better
to find a density that is proportional to cosn α � cosΘ~L, but
it would be quite complicated to implement practically. This
simplification reduces the efficiency of the importance sam-
pling, since the ignored cosΘ~L can be arbitrarily small at
grazing angles, and its average is only 1=2.

4.2. Importance sampling for the stretched Phong
model

The efficiency of the importance sampling gets higher for
the new model, and it will be particularly good at grazing
angles. For the new model the integrand is

I(~L;~V) = Lin(~L) �cn �
cosnα

max(cosΘ~L;cosΘ~V)
�cosΘ~L;

which can be simplified if the cases when the incident an-
gle is smaller than the viewing angle (cosΘ~L � cosΘ~V ) and
when the incident angle is greater than the viewing angle
(cosΘ~L < cosΘ~V ) are considered separately:

I(~L;~V) = Lin(~L) �cn �cosn α if Θ~L � Θ~V ;

I(~L;~V) = Lin(~L) �cn �cosn α �
cosΘ~L
cosΘ~V

if Θ~L > Θ~V :

As for the Phong model, the samples are generated ac-
cording ton+1

2π cosn α probability density function. Using the
cn = (n+ 2)=2π substitution, the Monte-Carlo approxima-
tion of the integral is:

Lout(~V)�
1
M
�

n+2
n+1

�

0
@ M

∑
Θ~Lm

�Θ~V

Lin(~Lm)+
M

∑
Θ~Lm

>Θ~V

Lin(~Lm) �
cosΘ~Lm

cosΘ~V

1
A : (25)

For large viewing angles the samples will be in the first
sum of equation 25. Note that the probability density also
compensates for the cosΘ~L factor here, thus this results in
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a more effective importance sampling. The larger the view-
ing angle, the greater the efficiency (even if the probability
of the rejected samples approaches 0.5). The worst case of
the importance sampling of the new model is at zero degree
viewing angle, where the efficiency degrades to that of the
sampling of the Phong model, which is fortunately the best
here.

4.3. Albedo at grazing angles

Note that forLin = 1 equation 17 gives the albedo function at
illumination direction~V, thus the importance sampling can
also be used to effectively calculate and tabulate the values
of the albedo function.

Equation 25, that calculates the albedo as an expected
value, can also be given an intuitive explanation. At 90 de-
gree viewing direction, the weight of sample rays is

(n+2)=(n+1):

Since the BRDF is symmetric around~R, half of the samples
point into the object, and are thus rejected. Consequently, the
albedo at 90 degrees is:

ã(90�) =
n+2

2(n+1)
: (26)

The albedos at grazing angles forn= 1,n= 2 andn!1

are 3/4, 2/3 and 1/2, respectively. Note that forn!1which
represents the ideal mirror case, for anyε > 0, ã(90�� ε) =
1, thus the new model can really converge to the ideal mirror.

5. Visualization of real materials

5.1. Metals

Metals have negligible diffuse reflectance and their BRDF
is proportional to the Fresnel function which is based on a
complex and wavelength dependent refraction indexκ 5. The
Fresnel function also depends on the incident angle making
the highlights colored. The reflected color can be computed
as a product of the irradiance and the BRDF, which is usually
done at a few discrete wavelengths.

For a single wavelengthλ, the new BRDF for metals is:

fr(~L;~V;λ) =
n+2
2π

�
cosn α

cosΘmin
�F(κ(λ);Θ(~L;~V)); (27)

where Θ(~L;~V) is an appropriate incident angle, which
should be a symmetric function of~L and~V to make the
model reciprocal.

A straightforward selection is the angle of the halfway
vector~H. Another alternative is lettingΘ = Θmin. This al-
ternative gives back the angle of the halfway vector for
the mirror direction but for other directions it generates a
smaller angle. The largest difference between the angle of
the halfway vector andΘmin occurs when the lighting is per-
pendicular to the surface and the viewing direction is parallel

to it. HereΘmin = 0 while the angle of the halfway vector is
45�. Fortunately, the larger variation of Fresnel function is
usually closer to 90� than to 0.

If we selectΘmin to evaluate the Fresnel function, then the
resulting BRDF is

fr;metal(~L;~V;λ) = n+2
2π

�
cosn α

cosΘmin
�F(κ(λ);Θmin) =

cosn α
g(Θmin)

; (28)

whereg(Θmin) can be tabulated for the considered wave-
lengths. These tables allow for very fast BRDF evaluation.
This computational cost is lower than that of any previously
known metallic models.

5.2. Plastics and ceramics

The new model is appropriate not only for metals but also
for other materials that have highly specular reflection com-
ponents, such as for certain plastics and ceramics. The main
difference between these materials and metals is that their
diffuse component is relevant and the specular part is re-
sponsible for the smaller part of the reflected power. For non
metals the refraction index is a real number. The highlights
can be assumed to be white everywhere not only for greater
incident angles.

When rendering plastics, the classical Lambertian model
can be applied for the diffuse component, while the specular
part can be determined by the new model. Thus the BRDF
has two components:

fr;plastics(~L;~V;λ) =

ad(λ)
π

+as �
n+2
2π

�
cosnα

cosΘmin
�F(κ(λ);Θmin); (29)

where reflectivityad is the albedo of the diffuse component
andas determines the size of the specular part. In order to
make the model conserve energy,as+ad should not exceed
1. In many practical situations it is enough to compute the
color on the three primary colors(r;g;b) and the Fresnel
function can be assumed to be constant 1. For this simpli-
fied case the following plastic model is proposed:

fr;plastics(~L;~V) =
(r;g;b)

π
+as �

n+2
2π

�
cosnα

cosΘmin
� (1;1;1);

(30)
wherer;g;b are the albedos of the diffuse component at the
wavelengths of the three primaries, andas� 1�max(r;g;b)
should hold. It should be noted that not all non-metal materi-
als can be visualized by this simple BRDF, and more sophis-
ticated plastic models17 might be required. However, this is
a computationally effective model for many practical cases.
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6. Reflectance models of(~N � ~H) type

6.1. Blinn model and stretched Blinn models

The Blinn model can be modified similarly as the Phong
model was corrected. Recall that the specular part of the
original Blinn model3 is

fr;Blinn(~L;~V) =Cn � (~N � ~H)n: (31)

The analytical calculation of theCn constant for integern
values can be found in1. The complexity of this calcula-
tion is O(n). The problems of this model are similar to that
of the Phong model. The reflected radiance and the albedo
converges to zero at grazing angles ifn goes to infinity.

Similarly to the procedures applied for the Phong model,
this model can also be corrected resulting in astretched
Blinn model:

fr(~L;~V) =Cn �
(~N � ~H)n

max((~N �~L); (~N �~V))
:

(32)

TheCn constants that can be allowed not to violate energy
balance are summarized by table 2.

n Blinn Blinn=cosΘmin

1 0.350 0.293

2 0.382 0.368

4 0.449 0.449

8 0.592 0.592

16 0.895 0.895

32 1.52 1.52

64 2.79 2.79

128 5.34 5.34

256 10.4 10.4

512 20.6 20.6

Table 2: The maximum Cn constants for the original and
the corrected Blinn models (note that for n� 4 the original
and the stretched Blinn models have practically the same
constant)

6.1.1. Mean albedo

If the irradianceLin is constant in the whole hemisphere,
then the ratio of the total reflected power is called themean
albedo, which can be obtained as:

amean=
1
π
�

Z

Ω

a(~L) �cosΘ~L dω~L: (33)

For diffuse white materials and for the ideal mirror the mean
albedo is 1. Table 3 shows the mean albedo for different
models.

n Phong Phong
cosΘmin

Blinn Blinn
cosΘmin

1 0.737 0.934 0.879 0.941

2 0.708 0.902 0.800 0.952

4 0.688 0.887 0.706 0.863

8 0.676 0.888 0.620 0.748

16 0.670 0.901 0.562 0.679

32 0.668 0.919 0.531 0.648

64 0.667 0.937 0.516 0.639

128 0.667 0.953 0.508 0.640

256 0.667 0.966 0.504 0.644

512 0.667 0.975 0.502 0.649

1 0.5 1 0.5 1

Table 3: Mean albedo values of different models

The proposed correction by 1=cosΘmin has “pumped-up”
the mean albedo, especially for the Phong-type model. The
models of(~N � ~H) type including the Blinn and the Ward
models are significantly “darker” even after the pumping-
up than the Phong-type models that converge to the ideal
mirror faster by increasingn. For example, ifn = 128, then
the mean albedo of the Blinn model has been increased from
0:508 to 0:640 due to the correction. At 90 degree incident
angle, on the other hand, the albedo has changed from 7:8 �
10�3 just to 3:7�10�2.

6.2. Ward and Schlick models

Ward24 and Schlick21 introduced simple BRDFs of type(~N �
~H) as simplifications of the Cook-Torrance model. These
models are simpler than other known metallic models and
its anisotropic form could provide particularly good metallic
impression. For the isotropic case, the specular component
of the Ward model has the following form:

fr(~L;~V) =
Cmax

4πm2 �
exp(�tan2δ=m2)q
((~N �~L)(~N �~V))

; (34)

whereδ = arccos(~N � ~H) and m is the standard deviation
(RMS) of the surface slope.

The main problem of this model is its behavior at grazing
angles and at viewing directions below the mirror direction.
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Not only the BRDF but also the reflected radiance are un-
bounded for the Ward model, which is against practical con-
siderations. Ward stated that selectingCmax = 1 the model
meets energy balance ifm< 0:2. Examining the albedo func-
tion in the range of 0:::89�, this is true quite accurately. Here
the maximum of the albedo is greater than 0.85, and it con-
verges to 1 ifm is decreased.

However at grazing angles the albedo significantly vio-
lates energy balance (figure 5). In the next section, it will
be be shown analytically that the BRDF diverges to in-
finity at grazing angles, thus this model is not physically
plausible. For example, ifm= 0:1, thena(89:995�) = 1:2,
a(89:999�) = 2:6 anda(89:9995�) = 3:8.

The previously applied modification using the max((~N �
~L); (~N �~V)) factor can also be used here, which leads to a
new BRDF model:

fr(~L;~V) =
Cmax

4πm2 �
exp(�tan2 δ=m2)

max((~N �~L); (~N �~V))
;

(35)
A similar method can be applied to the anisotropic Ward
model as well.

TheCmax constants are summarized by table 4.

m Cmax

0.4 1.63

0.2 1.16

0.1 1.04

0.05 1.011

0.02 1.005

0.01 1.002

0.005 1.002

Table 4: The maximum Cmaxconstants for the modified Ward
models (for n< 0:05 the Cmax can be supposed to be 1)

The Schlick model, on the other hand, has the following
form describing the isotropic case:

fr(~L;~V) =
Cmax

4π
�

r

(1� (1� r)(~N � ~H)2)2
�

1

r +(1� r)(~N �~L)
�

1

r +(1� r)(~N �~V)
; (36)

wherer determines how shiny the surface is. This model can
be made physically plausible by the appropriate selection of
Cmax. However, the requiredCmax factor decreases asr de-
creases (e.g. ifr = 0:5, thenCmax = 2:14; if r = 0:1, then
Cmax = 0:72; if r = 0:01, thenCmax = 0:21; if r = 0:001,

thenCmax = 0:042). Thus this model becomes “dark” for
usual viewing directions ifr is small. The other drawback
of this model is that in mirroring direction the reflected ra-
diance can be unacceptably greater than the incoming radi-
ance.

7. Simulation results

The following images have been rendered by a Monte-Carlo
ray-tracing algorithm that incorporates the discussed impor-
tance sampling. Color computation was carried out at 8 dis-
crete wavelengths, then using the color matching functions
the XYZ primaries were generated, which were finally con-
verted to RGB. The material properties of the metals (com-
plex index of refraction), color matching functions and the
XYZ to RGB conversion matrix were taken from5.

The left image of figure 8 displays a golden Beethoven
head of relatively lown value (4). On the other hand, the
base silver plate acts as an non-perfect mirror since it has
very highn value (5000) and the Fresnel function of the sil-
ver is close to 1, thus the mirror images of the other objects
are just slightly blurred. The right image of figure 8 shows
different metal objects on a diffuse plate. There are three
point lightsources and sky-light illumination is also present.

The last two images were rendered by the plastic model
of equation 30. Figure 9 shows plastic spheres on a plastic
plate. All spheres have a large diffuse component defining
colors of the same hue but different lightness and saturation,
and the(as;n) specular parameters are selected according to
the following sequence:(0:04;169), (0:065;64), (0:09;9),
(0:13;3). Figure 10 shows two ceramic teapots. Again, the
diffuse component is dominant, then exponents are 100 and
20, respectively.

8. Conclusions

The paper derived simple and compact BRDF models from
the reciprocal Phong, Blinn and Ward models, that can ren-
der metals and other specular objects. The new models
are particularly suitable for importance sampling in Monte-
Carlo ray-tracing algorithms. Importance sampling of the
new models is simpler than that of the original Blinn and
Ward models and more efficient than that of the reciprocal
and non-metallic Phong model. The new model can arbi-
trarily well approximate the ideal mirror, thus mirrors and
polishing do not require a special case.

The main advantage of the new models over existing
physically based metal models is the computational time (ta-
ble 5). In fact, it requires only 8 percent more computational
time than the reciprocal Phong model, but its metallic im-
pression is comparable to that of the physically based mod-
els.
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BRDF model time [min]

Phong18 5.4

Blinn 9.7

Ward24 19

Oren-Nayar17 35

Cook-Torrance4 21

He-Torrance7 1516

stretched Phong 5.8

stretched Blinn 10.5

modified Ward 17.6

Table 5: Computation time of different BRDF models as-
suming that an1000� 1000 resolution image is computed
using 200 samples per pixel on 8 wavelengths, and the av-
erage length of ray paths is 4. The measurements have been
made on SGI Indigo 2 using Heckbert’s BRDF viewer8
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Figure 8: Left: a golden Beethoven (n= 4) with a copper sphere (n= 40) and a copper pyramid (n= 150) on a silver mirror
(n= 5000); Right: a silver tank (n= 20) with aluminum (n= 40), silver (n= 50), copper (n= 50) and golden (n= 40) spheres

Figure 9: Plastic objects

Figure 10: Ceramic teapots
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