
Chapter 13

ANIMATION

Animation introduces time-varying features into computer graphics, most
importantly the motion of objects and the camera. Theoretically, all the
parameters de�ning a scene in the virtual world model can be functions of
time, including color, size, shape, optical coe�cients, etc., but these are
rarely animated, thus we shall mainly concentrate on motion and camera

animation. In order to illustrate motion and other time-varying phenomena,
animation systems generate not a single image of a virtual world, but a
sequence of them, where each image represents a di�erent point of time.
The images are shown one by one on the screen allowing a short time for
the user to have a look at each one before the next is displayed.

Supposing that the objects are de�ned in their respective local coordinate
system, the position and orientation of the particular object is given by its
modeling transformation. Recall that this modeling transformation places
the objects in the global world coordinate system determining the relative
position and orientation from other objects and the camera.

The camera parameters, on the other hand, which include the position
and orientation of the 3D window and the relative location of the camera,
are given in the global coordinate system thus de�ning the viewing trans-

formation which takes us from the world to the screen coordinate system.
Both transformations can be characterized by 4�4 homogeneous matrices.

Let the time-varying modeling transformation of object o be TM;o(t) and
the viewing transformation be TV(t).

A simplistic algorithm of the generation of an animation sequence, as-
suming a built-in timer, is:

365

366 13. ANIMATION

Initialize Timer(tstart);

do

t = Read Timer;

for each object o do Set modeling transformation: TM;o = TM;o(t);

Set viewing transformation: TV = TV(t);

Generate Image;

while t < tend;

In order to provide the e�ect of continuous motion, a new static image

should be generated at least every 60 msec. If the computer is capable of

producing the sequence at such a speed, we call this real-time animation,

since now the timer can provide real time values. With less powerful com-

puters we are still able to generate continuous looking sequences by storing
the computed image sequence on mass storage, such as a video recorder, and
replaying them later. This technique, called non-real-time animation,

requires the calculation of subsequent images in uniformly distributed time
samples. The time gap between the samples has to exceed the load time
of the image from the mass storage, and should meet the requirements of
continuous motion as well. The general sequence of this type of animation
is:

t = tstart; // preprocessing phase: recording

do

for each object o do Set modeling transformation: TM;o = TM;o(t);

Set viewing transformation: TV = TV(t);
Generate Image;
Store Image;
t += �t;

while t < tend ;

Initialize Timer(tstart) ; // animation phase: replay

do

t = Read Timer;
Load next image;

t += �t;

while (t > Read Timer) Wait;

while t < tend;

13. ANIMATION 367

Note that the only responsibility of the animation phase is the loading

and the display of the subsequent images at each time interval �t. The

simplest way to do this is to use a commercial VCR and television set,

having recorded the images computed for arbitrary time on a video tape

frame-by-frame in analog signal form. In this way computers are used only

for the preprocessing phase, the real-time display of the animation sequence

is generated by other equipments developed for this purpose.

As in traditional computer graphics, the objective of animation is to

generate realistic motion. Motion is realistic if it is similar to what observers

are used to in their everyday lives. The motion of natural objects obeys the

laws of physics, speci�cally, Newton's law stating that the acceleration of

masses is proportional to the resultant driving force. Let a point of object

mass have positional vector ~r(t) at time t, and assume that the resultant

driving force on this mass is ~D. The position vector can be expressed by
the modeling transformation and the position in the local coordinates (~rL):

~r(t) = ~rL �TM(t): (13:1)

x

y

z
m

D

r(t)

Figure 13.1: Dynamics of a single point of mass in an object

Newton's law expresses the second derivative (acceleration) of ~r(t) using

the driving force ~D and the mass m:

~D

m
=

d2~r(t)

dt2
= ~rL �

d2TM(t)

dt2
: (13:2)

368 13. ANIMATION

Since there are only �nite forces in nature, the second derivative of all el-

ements of the transformation matrix must be �nite. More precisely, the sec-

ond derivative has to be continuous, since mechanical forces cannot change

abruptly, because they act on some elastic mechanism, making ~D(t) contin-

uous. To summarize, the illusion of realistic motion requires the elements

of the transformation matrices to have �nite and continuous second deriva-

tives. Functions meeting these requirements belong to the C2 family (C

stands for parametric continuity, and superscript 2 denotes that the second

derivatives are regarded). The C2 property implies that the function is also

of type C1 and C0.

The crucial problem of animation is the de�nition of the appropriate

matrices TM(t) and TV(t) to reect user intention and also to give the

illusion of realistic motion. This task is called motion control.

To allow maximumexibility, interpolation and approximation techniques

applied in the design of free form curves are recommended here. The de-
signer of the motion de�nes the position and the orientation of the objects
just at a few knot points of time, and the computer interpolates or approx-
imates a function depending on these knot points taking into account the
requirements of realistic motion. The interpolated function is then sampled
in points required by the animation loop.

t
t∆

T

knot points

motion parameter

sample points

Figure 13.2: Motion control by interpolation

13.1. INTERPOLATION OF POSITION-ORIENTATIONMATRICES 369

13.1 Interpolation of position-orientation

matrices

As we know, arbitrary position and orientation can be de�ned by a matrix

of the following form:

2
6664
A3�3

0

0

0

qT 1

3
7775 =

2
6664

a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

qx qy qz 1

3
7775 : (13:3)

Vector qT sets the position and A3�3 is responsible for de�ning the ori-

entation of the object. The elements of qT can be controlled independently,

adjusting the x, y and z coordinates of the position. Matrix elements
a11; : : : a33, however, are not independent, since the degree of freedom in
orientation is 3, not 9, the number of elements in the matrix. In fact, a

matrix representing a valid orientation must not change the size and the
shape of the object, thus requiring the row vectors of A to be unit vectors
forming a perpendicular triple. Matrices having this property are called
orthonormal.
Concerning the interpolation, the elements of the position vector can be

interpolated independently, but independent interpolation is not permitted
for the elements of the orientation matrix, since the interpolated elements
would make non-orthonormal matrices. A possible solution to this problem
is to interpolate in the space of the roll/pitch/yaw (�; �;) angles (see
section 5.1.1), since they form a basis in the space of the orientations, that

is, any roll-pitch-yaw triple represents an orientation, and all orientations
can be expressed in this way. Consequently, the time functions describing
the motion are:

p(t) = [x(t); y(t); z(t); �(t); �(t); (t)] (13:4)

(p(t) is called parameter vector).
In image generation the homogeneous matrix form of transformation is

needed, and thus, having calculated the position value and orientation an-

gles, the transformation matrix has to be expressed.

370 13. ANIMATION

Using the de�nitions of the roll, pitch and yaw angles:

A =

2
64

cos� sin� 0

� sin� cos� 0

0 0 1

3
75 �

2
64
cos � 0 � sin�

0 1 0

sin� 0 cos �

3
75 �

2
64
1 0 0

0 cos sin

0 � sin cos

3
75 :

(13:5)

The position vector is obviously:

qT = [x; y; z]: (13:6)

We concluded that in order to generate realistic motion, T should have

continuous second derivatives. The interpolation is executed, however, in

the space of the parameter vectors, meaning that this requirement must

be replaced by another one concerning the position values and orientation
angles.

The modeling transformation depends on time indirectly, through the
parameter vector:

T = T(p(t)): (13:7)

Expressing the second derivative of a matrix element Tij:

dTij

dt
= gradpTij � _p; (13:8)

d2Tij

dt2
= (

d

dt
gradpTij) � _p+ gradpTij � �p = h(p; _p) +H(p) � �p: (13:9)

In order to guarantee that d2Tij=dt
2 is �nite and continuous, �p should also

be �nite and continuous. This means that the interpolation method used

for the elements of the parameter vector has to generate functions which
have continuous second derivatives, or in other words, has to provide C2

continuity.
There are several alternative interpolation methods which satisfy the

above criterion. We shall consider a very popular method which is based

on cubic B-splines.

13.2. INTERPOLATION OF THE CAMERA PARAMETERS 371

13.2 Interpolation of the camera

parameters

Interpolation along the path of the camera is a little bit more di�cult,

since a complete camera setting contains more parameters than a position

and orientation. Recall that the setting has been de�ned by the following

independent values:

1. ~vrp, view reference point, de�ning the center of the window,

2. ~vpn, view plane normal, concerning the normal of the plane of the

window,

3. ~vup, view up vector, showing the directions of the edges of the window,

4. wheight; wwidth, horizontal and vertical sizes of the window,

5. ~eye, the location of the camera in the u; v; w coordinate system �xed
to the center of the window,

6. fp; bp, front and back clipping plane,

7. Type of projection.

Theoretically all of these parameters can be interpolated, except for the
type of projection. The position of clipping planes, however, is not often
varied with time, since clipping planes do not correspond to any natural
phenomena, but are used to avoid overows in the computations and to
simplify the projection.

Some of the above parameters are not completely independent. Vectors
~vpn and ~vup ought to be perpendicular unit vectors. Fortunately, the algo-
rithm generating the viewing transformation matrix TV takes care of these
requirements, and should the two vectors not be perpendicular or of unit

length, it adjusts them. Consequently, an appropriate space of indepen-

dently adjustable parameters is:

pcam(t) = [~vrp; ~vpn; ~vup;wheight; wwidth; ~eye; fp; bp]: (13:10)

372 13. ANIMATION

As has been discussed in chapter 5 (on transformations, clipping and

projection), these parameters de�ne a viewing transformation matrix TV if

the following conditions hold:

~vpn� ~vup 6= 0; wheight � 0; wwidth � 0; eyew < 0; eyew < fp < bp:

(13:11)

This means that the interpolation method has to take account not only

of the existence of continuous derivatives of these parameters, but also of

the requirements of the above inequalities for any possible point of time.

In practical cases, the above conditions are checked in the knot points

(keyframes) only, and then animation is attempted. Should it be that the

path fails to provide these conditions, the animation systemwill then require

the designer to modify the keyframes accordingly.

13.3 Motion design

The design of the animation sequence starts by specifying the knot points
of the interpolation. The designer sets several time points, say t1; t2 : : : tn,
and de�nes the position and orientation of objects and the camera in these
points of time. This information could be expressed in the form of the
parameter vector, or of the transformation matrix. In the latter case, the

parameter vector should be derived from the transformation matrix for the
interpolation. This task, called the inverse geometric problem, involves
the solution of several trigonometric equations and is quite straightforward
due to the formulation of the orientation matrix based on the roll, pitch
and yaw angles.

Arranging the objects in ti, we de�ne a knot point for a parameter vector
po(ti) for each object o. These knot points will be used to interpolate a C2

function (e.g. a B-spline) for each parameter of each object, completing the

design phase.
In the animation phase, the parameter functions are sampled in the actual

time instant, and the respective transformation matrices are set. Then the
image is generated.

13.3. MOTION DESIGN 373

These steps are summarized in the following algorithm:

De�ne the time of knot points: t1; : : : ; tn; // design phase

for each knot point k do

for each object o do

Arrange object o:

po(tk) = [x(tk); y(tk); z(tk); �(tk); �(tk); (tk)]o;

endfor

Set camera parameters: pcam(tk);

endfor

for each object o do

Interpolate a C2 function for:

po(t) = [x(t); y(t); z(t); �(t); �(t); (t)]o;

endfor

Interpolate a C2 function for: pcam(t);

Initialize Timer(tstart); // animation phase

do

t = Read Timer;
for each object o do

Sample parameters of object o:
po = [x(t); y(t); z(t); �(t); �(t); (t)]o;

TM;o = TM;o(po);

endfor

Sample parameters of camera: pcam = pcam(t);
TV = TV(pcam);
Generate Image;

while t < tend ;

This approach has several disadvantages. Suppose that having designed

and animated a sequence, we are not satis�ed with the result, because we
�nd that a particular part of the �lm is too slow, and we want to speed it up.
The only thing we can do is to re-start the motion design from scratch and

re-de�ne all the knot points. This seems unreasonable, since it was not our

aim to change the path of the objects, but only to modify the kinematics

of the motion. Unfortunately, in the above approach both the geometry of

374 13. ANIMATION

the trajectories and the kinematics (that is the speed and acceleration along

the trajectories) are speci�ed by the same transformation matrices. That

is why this approach does not allow for simple kinematic modi�cation.

This problem is not a new one for actors and actresses in theaters, since

a performance is very similar to an animation sequence, where the objects

are the actors themselves. Assume a performance were directed in the same

fashion as the above algorithm. The actors need to know the exact time

when they are supposed to come on the stage. What would happen if the

schedule were slightly modi�ed, because of a small delay in the �rst part of

the performance? Every single actor would have to be given a new schedule.

That would be a nightmare, would it not. Fortunately, theaters do not work

that way. Dramas are broken down into scenes. Actors are aware of the

scene when they have to come on, not the time, and there is a special person,

called a stage manager, who keeps an eye on the performance and informs

the actors when they are due on (all of them at once). If there is a delay,
or the timing has to be modi�ed, only the stage manager's schedule has to
change, the actors' schedules are una�ected. The geometry of the trajectory
(movement of actors) and the kinematics (timing) has been successfully
separated.
The very same approach can be applied to computer animation as well.

Now the sequence is broken down into frames (this is the analogy of scenes),
and the geometry of the trajectories is de�ned in terms of frames (F),
not in terms of time. The knot points of frames are called keyframes,
and conveniently the �rst keyframe de�nes the arrangement at F = 1, the
second at F = 2 etc. The kinematics (stage manager) is introduced to the

system by de�ning the sequence of frames in terms of time, resulting in a
function F(t).
Concerning the animation phase, in order to generate an image in time t,

�rst F(t) is evaluated, then the result is used to calculateT(p(F)) matrices.
Tasks, such as modifying the timing of the sequence, or even reversing the

whole animation, can be accomplished by the proper modi�cation of the

frame function F(t) without a�ecting the transformation matrices.
Now the transformation matrices are de�ned indirectly, through F . Thus

special attention is needed to guarantee the continuity of second derivatives

13.3. MOTION DESIGN 375

frame

(frame)1

1 2 3

frame

(frame)
2

1 2 3

 frame

geometry

kinematics

T (t)
1

T (t)
2

t t t
1 2 3

t t t
1 2 3

t t t
1 2 3

time

time

time

motion trajectories

T

T

Figure 13.3: Keyframe animation

of the complete function. Expressing the second derivatives of Tij, we get:

d2Tij

dt2
=

d2Tij

dF2
� (_F)2 + dTij

dF � �F : (13:12)

A su�cient condition for the continuous second derivatives of Tij(t) is
that both F(t) and Tij(F) are C2 functions. The latter condition requires
that the parameter vector p is a C2 type function of the frame variable F .

376 13. ANIMATION

The concept of keyframe animation is summarized in the following

algorithm:

// Design of the geometry

for each keyframe kf do

for each object o do

Arrange object o:

po(kf) = [x(kf); y(kf); z(kf); �(kf); �(kf); (kf)]o;

endfor

Set camera parameters: pcam(kf);

endfor

for each object o do

Interpolate a C2 function for:

po(f) = [x(f); y(f); z(f); �(f); �(f); (f)]o;
endfor

Interpolate a C2 function for: pcam(f);

// Design of the kinematics

for each keyframe kf do De�ne tkf , when F(tkf) = kf ;
Interpolate a C2 function for F(t);

// Animation phase

Initialize Timer(tstart);

do

t = Read Timer;
f = F(t);
for each object o do

Sample parameters of object o:

po = [x(f); y(f); z(f); �(f); �(f); (f)]o;
TM;o = TM;o(po);

endfor

Sample parameters of camera: pcam(f);
TV = TV(pcam);
Generate Image;

while t < tend;

13.4. PARAMETER TRAJECTORY CALCULATION 377

13.4 Parameter trajectory calculation

We concluded in the previous sections that the modeling (TM) and viewing

(TV) transformation matrices should be controlled or animated via param-

eter vectors. Additionally, the elements of these parameter vectors and the

frame function for keyframe animation must be C2 functions | that is, they

must have continuous second derivatives | to satisfy Newton's law which

is essential if the motion is to be realistic. In fact, the second derivatives of

these parameters are proportional to the force components, which must be

continuous in real-life situations, and which in turn require the parameters

to have this C2 property.

We also stated that in order to allow for easy and exible trajectory

design, the designer of the motion de�nes the position and the orientation

of the objects | that is indirectly the values of the motion parameters | in
just a few knot points of time, and lets the computer interpolate a function
relying on these knot points taking into account the requirements of C2

continuity. The interpolated function is then sampled in points required by

the animation loop.
This section focuses on this interpolation process which can be formu-

lated for a single parameter as follows:
Suppose that points [p0; p1; : : : ; pn] are given with their respective time

values [t0; t1; : : : ; tn], and we must �nd a function p(t) that satis�es:

p(ti) = pi; i = 0; : : : ; n; (13:13)

and that the second derivative of p(t) is continuous (C2 type). Function p(t)

must be easily represented and computed numerically, thus it is usually
selected from the family of polynomials or the piecewise combination of
polynomials. Whatever family is used, the number of its independently
controllable parameters, called the degree of freedom, must be at least n,
to allow the function to satisfy n number of independent equations.
Function p(t) that satis�es equation 13.13 is called the interpolation

function or curve of knot or control points [t0; p0; t1; p1; : : : ; tn; pn]. In-

terpolation functions are thus required to pass through its knot points.
In many cases this is not an essential requirement, however, and it seems

advantageous that a function should just follow the general directions pro-
vided by the knot points | that is, that it should only approximate the

378 13. ANIMATION

knot points | if by thus eliminating the \passing through" constraint we

improve other, more important, properties of the generated function. This

latter function type is called the approximation function. This section

considers interpolation functions �rst, then discusses the possibilities of ap-

proximation functions in computer animation.

A possible approach to interpolation can take a single, minimal order

polynomial which satis�es the above criterion. The degree of the polyno-

mial should be at least n � 1 to have n independent coe�cients, thus the

interpolation polynomial is:

p(t) =
n�1X
i=0

ai � ti: (13:14)

The method that makes use of this approach is called Lagrange interpo-

lation. It can be easily shown that the polynomial which is incident to the
given knot points can be expressed as:

p(t) =
nX

i=0

pi � L(n)

i (t); (13:15)

where L
(n)

i (t), called the Lagrange base polynomial, is:

L
(n)

i (t) =

nQ
j=0

j 6=i

(t� tj)

nQ
j=0

j 6=i

(ti � tj)
: (13:16)

Equation 13.15 gives an interesting geometric interpretation to this schema.
The Lagrange base polynomials are in fact weight functions which give
a certain weight to the knot points in the linear combination de�ning p(t).
Thus, the value of p(t) comes from the time-varying blend of the control

points. The roots of blending functions L
(n)
i (t) are t0; : : : ; ti�1; ti+1; : : : tn,

and the function gives positive or negative values in the subsequent ranges
[tj; tj+1], resulting in an oscillating shape. Due to the oscillating blending

functions, the interpolated polynomial also tends to oscillate between even

reasonably arranged knot points, thus the motion exhibits wild wiggles that
are not inherent in the de�nition data. The greater the number of knot

13.4. PARAMETER TRAJECTORY CALCULATION 379

points, the more noticeable the oscillations become since the degree of the

base polynomials is one less that the number of knot points. Thus, although

single polynomial based interpolation meets the requirement of continuous

second derivatives and easy de�nition and calculation, it is acceptable for

animation only if the degree, that is the number of knot points, is small.

A possible and promising direction of the re�nement of the polynomial

interpolation is the application of several polynomials of low degree instead

of a single high-degree polynomial. This means that in order to interpolate

through knot points [t0; p0; t1; p1; : : : ; tn; pn], a di�erent polynomial pi(t) is

found for each range [ti; ti+1] between the subsequent knot points. The

complete interpolated function p(t) will be the composition of the segment

polynomials responsible for de�ning it in the di�erent [ti; ti+1] intervals, that

is:

p(t) =

8>>>>>>><
>>>>>>>:

p0(t) if t0 � t < t1
...
pi(t) if ti � t < ti+1

...
pn�1(t) if tn�1 � t � tn

(13:17)

In order to guarantee that p(t) is a C2 function, the segments must be

carefully connected to provide C2 continuity at the joints. Since this may
mean di�erent second derivatives required at the two endpoints of the seg-
ment, the polynomial must not have a constant second derivative, that is,
at least cubic (3-degree) polynomials should be used for these segments. A
composite function of di�erent segments connected together to guarantee

C2 continuity is called a spline [RA89]. The simplest, but practically the
most important, spline consists of 3-degree polynomials, and is therefore
called the cubic spline. A cubic spline segment valid in [ti; ti+1] can be
written as:

pi(t) = a3 � (t� ti)
3 + a2 � (t� ti)

2 + a1 � (t� ti) + a0: (13:18)

The coe�cients (a3; a2; a1; a0) de�ne the function unambiguously, but
they cannot be given a direct geometrical interpretation. Thus an alterna-

tive representation is selected, which de�nes the values and the derivatives

of the segment at the two endpoints, forming a quadruple (pi; pi+1; p
0
i; p

0
i+1).

The correspondence between the coe�cients of the polynomial can be es-

tablished by calculating the values and the derivatives of equation 13.18.

380 13. ANIMATION

Using the simplifying notation Ti = ti+1 � ti, we get:

pi = pi(ti) = a0;

pi+1 = pi(ti+1) = a3 � T 3
i + a2 � T 2

i + a1 � Ti + a0;

p0i = p0i(ti) = a1;

p0i+1 = p0i(ti+1) = 3a3 � T 2
i + 2a2 � Ti + a1:

(13:19)

These equations can be used to express pi(t) by the endpoint values and

derivatives, proving that this is also an unambiguous representation:

pi(t) = [2(pi � pi+1) + (p0i + p0i+1)Ti] � (
t� ti

Ti

)
3
+

[3(pi+1 � pi)� (2p0i + p0i+1)Ti] � (
t� ti

Ti

)
2
+ p0i � (t� ti) + pi: (13:20)

p (0)
i

p (0)
i+1p’ (0)

i

p’ (0)
i+1

p (T)
i i-1

p (T)
i i

p’ (T)i i

p’ (T)
i i-1

Figure 13.4: Cubic B-spline interpolation

The continuous connection of consecutive cubic segments expressed in
this way is easy because C0 and C1 continuity is automatically provided
if the value and the derivative of the endpoint of one segment is used as
the starting point of the next segment. Only the continuity of the second

derivative (p00(t)) must somehow be obtained. The �rst two elements in
the quadruple (pi; pi+1; p

0
i; p

0
i+1) are the knot points which are known before

the calculation. The derivatives at these points, however, are usually not
available, thus they must be determined from the requirement of C2 contin-

uous connection. Expressing the second derivative of the function de�ned

by equation 13.20 for any k and k + 1, and requiring p00k(tk+1) = p00k+1(tk+1),
we get:

Tk+1p
0
k+2(Tk+Tk+1)p

0
k+1+Tkp

0
k+2 = 3[

Tk

Tk+1

(pk+2�pk+1)+
Tk+1

Tk

(pk+1�pk)]:

(13:21)

13.4. PARAMETER TRAJECTORY CALCULATION 381

Applying this equation for each joint (k = 1; 2; : : : ; n�2) of the composite

curve yields n � 2 equations, which is less than the number of unknown

derivatives (n). By specifying the derivatives | that is the \speed" |

at the endpoints of the composite curve by assigning p00(t0) = vstart and

p0n�1(tn) = vend (we usually expect objects to be at a standstill before their

movement and to stop after accomplishing it, which requires vstart; vend = 0),

however, the problem becomes determinant. The linear equation in matrix

form is:
2
6666666664

1 0 : : :

T1 2(T0 + T1) T0 0 : : :

0 T2 2(T1 + T2) T1 0 : : :
...

: : : 0 Tn�1 2(Tn�1 + Tn�2) Tn�2

: : : 0 1

3
7777777775

2
6666666664

p00
p01
p02
...

p0n�1
p0n

3
7777777775

=

2
6666666664

vstart
3[T0=T1(p2 � p1) + T1=T0(p1 � p0)]
3[T1=T2(p3 � p2) + T2=T1(p2 � p1)]

...

3[Tn�2=Tn�1(pn � pn�1) + Tn�1=Tn�2(pn�1 � pn�2)]
vend

3
7777777775

: (13:22)

By solving this linear equation, the unknown derivatives [p00; : : : ; p
0
n] can

be determined, which in turn can be substituted into equation 13.20 to
de�ne the segments and consequently the composite function p(t).
Cubic spline interpolation produces a C2 curve from piecewise 3-degree

polynomials, thus neither the complexity of the calculations nor the ten-
dency to oscillate increases as the number of knot points increases. The
result is a smooth curve exhibiting no variations that are not inherent in

the series of knot points, and therefore it can provide realistic animation se-

quences. This method, however, still has a drawback which appears during
the design phase, namely the lack of local control. When the animator
desires to change a small part of the animation sequence, he will modify a

knot point nearest to the timing parameter of the given part. The modi�-

cation of a single point (either its value or its derivative), however, a�ects
the whole trajectory, since in order to guarantee second order continuity,

382 13. ANIMATION

the derivatives at the knot points must be recalculated by solving equa-

tion 13.22. This may lead to unwanted changes in a part of the trajectory

far from the modi�ed knot point, which makes the design process di�cult

to execute in cases where very �ne control is needed. This is why we prefer

methods which have this \local control" property, where the modi�cation

of a knot point alters only a limited part of the function.

Recall that the representation of cubic polynomials was changed from the

set of coe�cients to the values and the derivatives at the endpoints when

the cubic spline interpolation was introduced. This representation change

had a signi�cant advantage in that by forcing two consecutive segments to

share two parameters from the four (namely the value and derivative at one

endpoint), C0 and C1 continuity was automatically guaranteed, and only

the continuity of the second derivative had to be taken care of by additional

equations. We might ask whether there is another representation of cubic

segments which guarantees even C2 continuity by simply sharing 3 control
values from the possible four. There is, namely, the cubic B-spline.
The cubic B-spline is a member of a more general family of k-order B-

splines which are based on a set of k-order (degree k�1) blending functions
that can be used to de�ne a p(t) function by the linear combination of its
knot points [t0; p0; t1; p1; : : : ; tn; pn]:

p(t) =
nX

i=0

pi �Ni;k(t); k = 2; : : : n; (13:23)

where the blending functions Ni;k are usually de�ned by the Cox-deBoor
recursion formulae:

Ni;1(t) =

8<
:
1 if ti � t < ti+1

0 otherwise

(13:24)

Ni;k(t) =
(t� ti)Ni;k�1(t)

ti+k�1 � ti
+

(ti+k � t)Ni+1;k�1(t)

ti+k � ti+1

; if k > 1: (13:25)

The construction of these blending functions can be interpreted geometri-
cally. At each level of the recursion two subsequent blending functions are

taken and they are blended together by linear weighting (see �gure 13.5).

13.4. PARAMETER TRAJECTORY CALCULATION 383

linear basis functions

quadratic basis functions

cubic basis functions

linear blending

linear blending

basis function
linear blending function

N (t)i,2

N (t)i,3

N (t)i,4

1

1

1

Figure 13.5: Construction of B-spline blending functions

It is obvious from the construction process that Ni;k(t) is non-zero only
in [ti; ti+k]. Thus a control point pi can a�ect the generated

p(t) =
nX

i=0

pi �Ni;k(t)

only in [ti; ti+k], and therefore the B-spline method has the local control

property. The function p(t) is a piecewise polynomial of degree k�1, and it
can be proven that its derivatives of order 0; 1; : : : ; k � 2 are all continuous
at the joints. For animation purposes C2 continuity is required, thus 4-order
(degree 3, that is cubic) B-splines are used.
Examining the cubic B-spline method more carefully, we can see that the

interpolation requirement, that is p(ti) = pi, is not provided, because at ti
more than one blending functions are di�erent from zero. Thus the cubic

B-spline o�ers an approximation method. The four blending functions

a�ecting a single point, however, are all positive and their sum is 1, that
is, the point is always in the convex hull of the 4 nearest control points,

and thus the resulting function will follow the polygon of the control points
quite reasonably.

384 13. ANIMATION

The fact that the B-splines o�er an approximation method does not mean

that they cannot be used for interpolation. If a B-spline which passes

through points [t0; p0; t1; p1; : : : ; tn; pn] is needed, then a set of control points

[c�1; c0; c1 : : : cn+1] must be found so that:

p(tj) =
n+1X
i=�1

ci �Ni;k(tj) = pj : (13:26)

This is a linear system of n equations which have n+2 unknown variables.

To make the problem determinant the derivatives at the beginning and at

the end of the function must be de�ned. The resulting linear equation can

be solved for the unknown control points.

13.5 Interpolation with quaternions

The previous section discussed several trajectory interpolation techniques

which determined a time function for each independently controllable mo-
tion parameter. These parameters can be used later on to derive the trans-
formation matrix. This two-step method guarantees that the \inbetweened"
samples are really valid transformations which do not destroy the shape of
the animated objects.

Interpolating in the motion parameter space, however, generates new
problems which need to be addressed in animation. Suppose, for the sake of
simplicity, that an object is to be animated between two di�erent positions
and orientations with uniform speed. In parameter space straight line seg-
ments are the shortest paths between the two knot points. Unfortunately

these line segments do not necessarily correspond to the shortest \natural"
path in the space of orientations, only in the space of positions. The core of
the problem is the selection of the orientation parameters, that is the roll-

pitch-yaw angles, since real objects rotate around a single (time-varying)
direction instead of around three super�cial coordinate axes, and the de-

pendence of the angle of the single rotation on the roll-pitch-yaw angles is
not linear (compare equations 5.26 and 5.30). When rotating by angle �

around a given direction in time t, for instance, the linearly interpolated
roll-pitch-yaw angles will not necessarily correspond to a rotation by � � �
in � � t (� 2 [0::1]), which inevitably results in uneven and \non-natural"

13.5. INTERPOLATION WITH QUATERNIONS 385

motion. In order to demonstrate this problem, suppose that an object lo-

cated in [1,0,0] has to be rotated around vector [1,1,1] by 240 degrees and

the motion is de�ned by three knot points representing rotation by 0, 120

and 240 degrees respectively (�gure 13.6). Rotation by 120 degrees moves

the x axis to the z axis and rotation by 240 degrees transforms the x axis to

y axis. These transformations, however, are realized by 90 degree rotations

around the y axis then around the x axis if the roll-pitch-yaw representation

is used. Thus the interpolation in roll-pitch-yaw angles forces the object to

rotate �rst around the y axis by 90 degrees then around the x axis instead

of rotating continuously around [1,1,1]. This obviously results in uneven

and unrealistic motion even if this e�ect is decreased by a C2 interpolation.

x

y

z

x y

z

[1,1,1]

axis of rotation

desired trajectory

trajectory generated by roll-pitch-yaw interpolation

Figure 13.6: Problems of interpolation in roll-pitch-yaw angles

This means that a certain orientation change cannot be inbetweened by
independently interpolating the roll-pitch-yaw angles in cases when these
e�ects are not tolerable. Rather the axis of the �nal rotation is required, and

the 2D rotation around this single axis must be interpolated and sampled in
the di�erent frames. Unfortunately, neither the roll-pitch-yaw parameters

nor the transformation matrix supply this required information including

the axis and the angle of rotation. Another representation is needed which
explicitly refers to the axis and the angle of rotation.

In the mid-eighties several publications appeared promoting quaternions
as a mathematical tool to describe and handle rotations and orientations in

386 13. ANIMATION

graphics and robotics [Bra82]. Not only did quaternions solve the problem of

natural rotation interpolation, but they also simpli�ed the calculations and

out-performed the standard roll-pitch-yaw angle based matrix operations.

Like a matrix, a quaternion q can be regarded as a tool for changing one

vector ~u into another ~v:

~u
q

=) ~v: (13:27)

Matrices do this change with a certain element of redundancy, that is, there

is an in�nite number of matrices which can transform one vector to another

given vector. For 3D vectors, the matrices have 9 elements, although 4 real

numbers can de�ne this change unambiguously, namely:

1. The change of the length of the vector.

2. The plane of rotation, which can be de�ned by 2 angles from two given
axes.

3. The angle of rotation.

A quaternion q, on the other hand, consists only of the necessary 4 num-
bers, which are usually partitioned into a pair consisting of a scalar element
and a vector of 3 scalars, that is:

q = [s; x; y; z] = [s; ~w]: (13:28)

Quaternions are four-vectors (this is why they were given this name),
and inherit vector operations including addition, scalar multiplication, dot
product and norm, but their multiplication is de�ned specially, in a way

somehow similar to the arithmetic of complex numbers, because quaternions
can also be interpreted as a generalization of the complex numbers with s

as the real part and x; y; z as the imaginary part. Denoting the imaginary
axes by i, j and k yields:

q = s+ xi+ yj+ zk: (13:29)

In fact, Sir Hamilton introduced the quaternions more than a hundred years
ago to generalize complex numbers, which can be regarded as pairs with
special algebraic rules. He failed to �nd the rules for triples, but realized

that the generalization is possible for quadruples with the rules:

i2 = j2 = k2 = ijk = �1; ij = k; etc.

13.5. INTERPOLATION WITH QUATERNIONS 387

To summarize, the de�nitions of the operations on quaternions are:

q1 + q2 = [s1; ~w1] + [s2; ~w2] = [s1 + s2; ~w1 + ~w2];

�q = �[s; ~w] = [�s; �~w];

q1 � q2 = [s1; ~w1] � [s2; ~w2] = [s1s2 � ~w1 � ~w2; s1 ~w2 + s2 ~w1 + ~w1 � ~w2];

hq1; q2i = h[s1; x1; y1; z1]; [s2; x2; y2; z2]i = s1s2 + x1x2 + y1y2 + z1z2;

jjqjj = jj[s; x; y; z]jj=
q
hq; qi =

p
s2 + x2 + y2 + z2:

(13:30)

Quaternion multiplication and addition satis�es the distributive law. Ad-

dition is commutative and associative. Multiplication is associative but is
not commutative. It can easily be shown that the multiplicative identity is
I = [1;~0]. With respect to quaternion multiplication the inverse quaternion
is:

q�1 =
[s;�~w]

jjqjj2
(13:31)

since
[s; ~w] � [s;�~w] = [s2 + j~wj2;~0] = jjqjj2 � [1;~0]: (13:32)

As for matrices, the inverse reverses the order of multiplication, that is:

(q2 � q1)�1 = q�11 � q�12 : (13:33)

Our original goal, the rotation of 3D vectors using quaternions, can be
achieved relying on quaternion multiplication by having extended the 3D
vector by an s = 0 fourth parameter to make it, too, a quaternion:

~u
q

=) ~v : [0; ~v] = q � [0; ~u] � q�1 =
[0; s2~u+ 2s(~w � ~u) + (~w � ~u)~w + ~w � (~w � ~u)]

jjqjj2 : (13:34)

Note that a scaling in quaternion q = [s; ~w] makes no di�erence to the

resulting vector v, since scaling of [s; ~w] and [s;�~w] in q�1 is compensated
for by the attenuation of jjqjj2. Thus, without the loss of generality, we
assume that q is a unit quaternion, that is

jjqjj2 = s2 + j~wj2 = 1 (13:35)

388 13. ANIMATION

For unit quaternions, equation 13.34 can also be written as:

[0; ~v] = q � [0; ~u] � q�1 = [0; ~u+ 2s(~w � ~u) + 2~w � (~w � ~u)] (13:36)

since

s2~u = ~u� j~wj2~u and (~w � ~u)~w � j~wj2~u = ~w � (~w � ~u): (13:37)

In order to examine the e�ects of the above de�ned transformation, vector

~u is �rst supposed to be perpendicular to vector ~w, then the parallel case

will be analyzed.

If vector ~u is perpendicular to quaternion element ~w, then for unit quater-

nions equation 13.36 yields:

q � [0; ~u] � q�1 = [0; ~u(1 � 2j~wj2) + 2s(~w � ~u)] = [0; ~v]: (13:38)

u

w

α
2

v = u(1−2|w|) + 2s w ux

w x u
s w ux2

Figure 13.7: Geometry of quaternion rotation for the perpendicular case

That is, ~v is a linear combination of perpendicular vectors ~u and ~w � ~u

(�gure 13.7), it thus lies in the plane of ~u and ~w � ~u, and its length is:

j~vj = j~uj
q
(1� 2j~wj2)2 + (2sj~wj)2 = j~uj

q
(1 + 4j~wj2(s2 + j~wj2 � 1) = j~uj:

(13:39)

Since ~w is perpendicular to the plane of ~u and the resulting vector ~v, and
the transformation does not alter the length of the vector, vector ~v is, in
fact, a rotation of ~u around ~w. The cosine of the rotation angle (�) can be

expressed by the dot product of ~u and ~v, that is:

cos� =
~u � ~v
j~uj � j~vj =

(~u � ~u)(1 � 2j~wj2) + 2s~u � (~w � ~u)

j~uj2 = 1� 2j~wj2: (13:40)

13.5. INTERPOLATION WITH QUATERNIONS 389

If vector ~u is parallel to quaternion element ~w, then for unit quaternions

equation 13.36 yields:

[0; ~v] = q � [0; ~u] � q�1 = [0; ~u]: (13:41)

Thus the parallel vectors are not a�ected by quaternion multiplication as

rotation does not alter the axis parallel vectors.

General vectors can be broken down into a parallel and a perpendicular

component with respect to ~w because of the distributive property. As has

been demonstrated, the quaternion transformation rotates the perpendicu-

lar component by an angle that satis�es cos� = 1� 2j~wj2 and the parallel

component is una�ected, thus the transformed components will de�ne the

rotated version of the original vector ~u by angle � around the vector part

of the quaternion.
Let us apply this concept in the reverse direction and determine the ro-

tating quaternion for a required rotation axis ~d and angle �. We concluded
that the quaternion transformation rotates the vector around its vector part,
thus a unit quaternion rotating around unit vector ~d has the following form:

q = [s; r � ~d]; s2 + r2 = 1 (13:42)

Parameters s and r have to be selected according to the requirement that

quaternion q must rotate by angle �. Using equations 13.40 and 13.42, we
get:

cos� = 1� 2r2; s =
p
1� r2: (13:43)

Expressing parameters s and r, then quaternion q that represents a rotation
by angle � around a unit vector ~d, we get:

q = [cos
�

2
; sin

�

2
� ~d]: (13:44)

The special case when sin�=2 = 0, that is � = 2k� and q = [�1;~0], poses
no problem, since a rotation of an even multiple of � does not a�ect the

object, and the axis is irrelevant.

Composition of rotations is the \concatenation" of quaternions as in ma-
trix representation since:

q2 � (q1 � [0; ~u] � q�11) � q�12 = (q2 � q1) � [0; ~u] � (q2 � q1)�1: (13:45)

390 13. ANIMATION

Let us focus on the interpolation of orientations between two knot points

in the framework of quaternions. Suppose that the orientations are de-

scribed in the two knot points by quaternions q1 and q2 respectively. For

the sake of simplicity, we suppose �rst that q1 and q2 represent rotations

around the same unit axis ~d, that is:

q1 = [cos
�1

2
; sin

�1

2
� ~d]; q2 = [cos

�2

2
; sin

�2

2
� ~d]: (13:46)

Calculating the dot product of q1 and q2,

hq1; q2i = cos
�1

2
� cos �2

2
+ sin

�1

2
� sin �2

2
= cos

�2 � �1

2
;

we come to the interesting conclusion that the angle of rotation between

the two orientations represented by the quaternions is, in fact, half of the
angle between the two quaternions in 4D space.

q1 q2 q1 q2

Figure 13.8: Linear versus spherical interpolation of orientations

Our ultimate objective is to move an object from an orientation repre-
sented by q1 to a new orientation of q2 by an even and uniform motion. If
linear interpolation is used to generate the path of orientations between q1
and q2, then the angles of the subsequent quaternions will not be constant,
as is demonstrated in �gure 13.8. Thus the speed of the rotation will not
be uniform, and the motion will give an e�ect of acceleration followed by

deceleration, which is usually undesirable.
Instead of linear interpolation, a non-linear interpolation must be found

that guarantees the constant angle between the subsequent interpolated
quaternions. Spherical interpolation obviously meets this requirement,where

the interpolated quaternions are selected uniformly from the arc between q1
and q2. If q1 and q2 are unit quaternions, then all the interpolated quater-

nions will also be of unit length. Unit-size quaternions can be regarded

13.5. INTERPOLATION WITH QUATERNIONS 391

as unit-size four-vectors which correspond to a 4D unit-radius sphere. An

appropriate interpolation method must generate the great arc between q1
and q2, and as can easily be shown, this great arc has the following form:

q(t) =
sin(1� t)�

sin �
� q1 +

sin t�

sin �
� q2; (13:47)

where cos � = hq1; q2i (�gure 13.9).

θ

4D sphere
q

q

1

2

Figure 13.9: Interpolation of unit quaternions on a 4D unit sphere

In order to demonstrate that this really results in a uniform interpolation,
the following equations must be proven for q(t):

jjq(t)jj = 1; hq1; q(t)i = cos(t�); hq2; q(t)i = cos((1� t)�): (13:48)

That is, the interpolant is really on the surface of the sphere, and the angle

of rotation is a linear function of the time t.
Let us �rst prove the second assertion (the third can be proven similarly):

hq1; q(t)i =
sin(1 � t)�

sin �
+

sin t�

sin �
� cos � =

sin � � cos t�
sin �

� sin t� � cos �
sin �

+
sin t�

sin �
� cos � = cos(t�): (13:49)

Concerning the norm of the interpolant, we can use the de�nition of the

norm and the previous results, thus:

jjq(t)jj2 = hq(t); q(t)i = hsin(1� t)�

sin �
� q1 +

sin t�

sin �
� q2; q(t)i =

sin(1� t)�

sin �
�cos(t�)+ sin t�

sin �
�cos((1� t)�) =

sin ((1� t)� + t�)

sin �
= 1 (13:50)

392 13. ANIMATION

If there is a series of consecutive quaternions q1; q2; : : : ; qn to follow dur-

ing the animation, this interpolation can be executed in a similar way to

that discussed in the previous section. The blending function approach

can be used, but here the constraints are slightly modi�ed. Supposing

b1(t); b2(t); : : : ; bn(t) are blending functions, for any t, they must satisfy

that:

jjb1(t)q1 + b2(t)q2 + : : :+ bn(t)qnjj = 1 (13:51)

which means that the curve must lie on the sphere. This is certainly more

di�cult than generating a curve in the plane of the control points, which

was done in the previous section. Selecting bi(t)s as piecewise curves de�ned

by equation 13.47 would solve this problem, but the resulting curve would

not be of C1 and C2 type.

Shoemake [Sho85] proposed a successive linear blending technique on the
surface of the sphere to enforce the continuous derivatives. Suppose that
a curve segment adjacent to q1; q2; : : : qn is to be constructed. In the �rst
phase, piecewise curves are generated between q1 and q2, q2 and q3, etc.:

q(1)(t1) =
sin(1 � t1)�1

sin �1
q1 +

sin t1�1

sin �1
q2;

q(2)(t2) =
sin(1 � t2)�2

sin �2
q2 +

sin t2�2

sin �2
q3;

...

q(n�1)(tn�1) =
sin(1� tn�1)�n�1

sin �n�1
qn�1 +

sin tn�1�n�1

sin �n�1
qn: (13:52)

In the second phase these piecewise segments are blended to provide a
higher order continuity at the joints. Let us mirror qi�1 with respect to qi
on the sphere generating q�i�1, and determine the point ai that bisects the
great arc between qi+1 and q�i�1 (see �gure 13.10). Let us form another great

arc by mirroring ai with respect to qi generating a�i as the other endpoint.
Having done this, a C2 approximating path g(t) has been produced from the

neighborhood of qi�1 (since qi�1 � a�i) through qi to the neighborhood of qi+1

(since qi+1 � ai). This great arc is subdivided into two segments producing

g(i�1)(t) between a�i and qi and g(i)(t) between qi and ai respectively.

In order to guarantee that the �nal curve goes through qi�1 and qi+1

without losing its smoothness, a linear blending is applied between the

13.5. INTERPOLATION WITH QUATERNIONS 393

piecewise curves q(i�1)(t), q(i)(t) and the new approximation arcs g(i�1)(t),

gi(t) in such a way that the blending gives weight 1 to q(i�1)(t) at ti�1 = 0,

to q(i+1)(t) at ti = 1 and to the approximation arcs g(i�1) and g(i) at ti�1 = 1

and ti = 0 respectively, that is:

q̂(i�1)(ti�1) = (1� ti�1) � q(i�1)(ti�1) + ti�1 � g(i�1)(ti�1)
q̂(i)(ti) = (1 � ti) � g(i)(ti) + ti � q(i)(ti):

(13:53)

This method requires uniform timing between the successive knot points.

By applying a linear transformation in the time domain, however, any kind

of timing can be speci�ed.

approximating
curve

qi-1

qi-1

qi+1

qi *

ai

ai*

original curve

blended curve

4D sphere

^

q(t)

q(t)

g(t)

Figure 13.10: Shoemake's algorithm for interpolation of unit quaternions on a

4D unit sphere

Once the corresponding quaternion of the interpolated orientation is de-

termined for a given time parameter t, it can be used for rotating the objects
in the model. Comparing the number of instructions needed for (spherical)
quaternion interpolation and rotation of the objects by quaternion multipli-
cation, we can see that the method of quaternions not only provides more
realistic motion but is slightly more e�ective computationally.

However, the traditional transformation method based on matrices can
be combined with this new approach using quaternions. Using the inter-

polated quaternion a corresponding transformation matrix can be set up.

More precisely this is the upper-left minor matrix of the transformation ma-
trix, which is responsible for the rotation, and the last row is the position

vector which is interpolated by the usual techniques. In order to identify
the transformation matrix from a quaternion, the way the basis vectors are

394 13. ANIMATION

transformed when multiplied by the quaternion must be examined. By ap-

plying unit quaternion q = [s; x; y; z] to the �rst, second and third standard

basis vectors [1,0,0], [0,1,0] and [0,0,1], the �rst, second and the third rows

of the matrix can be determined, thus:

A3�3 =

2
64
1� 2y2 � 2z2 2xy + 2sz 2xz � 2sy

2xy � 2sz 1 � 2x2 � 2z2 2yz + 2sx

2xz + 2sy 2yz � 2sx 1� 2x2 � 2y2

3
75 : (13:54)

During the interactive design phase of the animation sequence, we may

need the inverse conversion which generates the quaternion from the (or-

thonormal) upper-left part of the transformation matrix or from the roll-

pitch-yaw angles. Expressing [s; x; y; z] from equation 13.54 we get:

s =
q
1� (x2 + y2 + z2) =

1

2

p
a11 + a22 + a33 + 1;

x =
a23 � a32

4s
; y =

a31 � a13

4s
; z =

a12 � a21

4s
: (13:55)

The roll-pitch-yaw (�; �;) description can also be easily transformed into
a quaternion if the quaternions corresponding to the elementary rotations
are combined:

q(�; �;) = [cos
�

2
; (0; 0; sin

�

2
)] � [cos �

2
; (0; sin

�

2
; 0)] � [cos

2
; (sin

2
; 0; 0)]:

(13:56)

13.6 Hierarchical motion

So far we have been discussing the animation of individual rigid objects
whose paths could be de�ned separately taking just several collision con-
straints into consideration. To avoid unexpected collisions in these cases, the

animation sequence should be reviewed and the de�nition of the keyframes

must be altered iteratively until the animation sequence is satisfactory.
Real objects usually consist of several linked segments, as for example

a human body is composed of a trunk, a head, two arms and two legs.

The arms can in turn be broken down into an upper arm, a lower arm,

hand, �ngers etc. A car, on the other hand, is an assembly of its body
and the four wheels (�gure 13.11). The segments of a composed object (an

13.6. HIERARCHICAL MOTION 395

assembly) do not move independently, because they are linked together by

joints which restrict the relative motion of linked segments. Revolute joints,

such as human joints and the coupling between the wheel and the body of

the car, allow for speci�c rotations about a �xed common point of the

two linked segments. Prismatic joints, common in robots and in machines

[Lan91], however, allow the parts to translate in a given direction. When

these assembly structures are animated, the constraints generated by the

features of the links must be satis�ed in every single frame of the animation

sequence. Unfortunately, it is not enough to meet this requirement in the

keyframes only and animate the segments separately. A running human

body, for instance, can result in frames when the trunk, legs, and the arms

are separated even if they are properly connected in the keyframes. In

order to avoid these annoying e�ects, the constraints and relationships of

the various segments must continuously be taken into consideration during

the interpolation, not just in the knot points. This can be achieved if the
segments are not animated separately but their relative motion is speci�ed.

Figure 13.11: Examples of multi-segment objects

Recall that the motion of an individual object is de�ned by a time-varying

modeling transformation matrix which places the object in the common
world coordinate system. If the relative motion of object i must be de�ned
with respect to object j, then the relative modeling transformation Tij of
object i must place it in the local coordinate system of object j. Since

object j is �xed in its own modeling coordinate system, Tij will determine

the relative position and orientation of object i with respect to object j. A
point ~ri in object i's coordinate system will be transformed to point:

[~rj; 1] = [~ri; 1] �Tij =) ~rj = ~ri �Aij + ~pij (13:57)

396 13. ANIMATION

in the local modeling system of object j if Aij and ~pij are the orientation

matrix and translation vector of matrix Tij respectively. While animating

this object, matrix Tij is a function of time. If only orientation matrix Aij

varies with time, the relative position of object i and object j will be �xed,

that is, the two objects will be linked together by a revolute joint at point

~pij of object j and at the center of its own local coordinate system of object

i. Similarly, if the orientation matrix is constant in time, but the position

vector is not, then a prismatic joint is simulated which allows object i to

move anywhere but keeps its orientation constant with respect to object j.

Transformation Tij places object i in the local modeling coordinate sys-

tem of object j. Thus, the world coordinate points of object i can be

generated if another transformation | object j's modeling transformation

Tj which maps the local modeling space of object j onto world space | is

applied:

[~rw; 1] = [~rj; 1] �Tj = [~ri; 1] �Tij �Tj: (13:58)

In this way, whenever object j is moved, object i will follow it with a given
relative orientation and position since object j's local modeling transforma-
tion will a�ect object i as well. Therefore, object j is usually called the
parent segment of object i and object i is called the child segment of
object j. A child segment can also be a parent of other segments. In a sim-

ulated human body, for instance, the upper arm is the child of the trunk, in
turn is the parent of the lower arm (�gure 13.12). The lower arm has a child,
the hand, which is in turn the parent of the �ngers. The parent-child rela-
tionships form a hierarchy of segments which is responsible for determining
the types of motion the assembly structure can accomplish. This hierarchy

usually corresponds to a tree-structure where a child has only one parent,
as in the examples of the human body or the car. The motion of an assem-
bly having a tree-like hierarchy can be controlled by de�ning the modeling
transformation of the complete structure and the relative modeling transfor-
mation for every single parent-child pair (joints in the assembly). In order

to set these transformations, the normal interactive techniques can be used.

First we move the complete human body (including the trunk, arms, legs
etc.), then we arrange the arms (including the lower arms, hand etc.) and
legs, then the lower arms, hands, �ngers etc. by interactive manipulation.

In the animation design program, this interactive manipulation updates the

modeling transformation of the body �rst, then the relative modeling trans-

13.6. HIERARCHICAL MOTION 397

....

Tbody

head

arm 1,2

leg 1,2

finger 1,5 foot1

T T

T

T

T

lower arm lower leg

T T

world coordinate
 system

head

finger 1 finger 5 foot 1

Figure 13.12: Transformation tree of the human body

398 13. ANIMATION

formation of the arms and legs, then the relative transformation of the lower

arms etc. Thus, in each keyframe, the modeling transformation in the joints

of hierarchy can be de�ned. During interpolation, these transformations are

interpolated independently and meeting the requirements of the individual

joints (in a revolute joint the relative position is constant), but the overall

transformation of a segment is generated by the concatenation of the rel-

ative transformations of its ancestors and the modeling transformation of

the complete assembly structure. This will guarantee that the constraints

imposed by the joints in the assembly will be satis�ed.

Figure 13.13: Assemblies having non tree-like segment structure

13.6.1 Constraint-based systems

In tree-like assemblies independent interpolation is made possible by the
assumption that each joint enjoys independent degree(s) of freedom in its
motion. Unfortunately, this assumption is not always correct, and this can
cause, for example, the leg to go through the trunk which is certainly not

\realistic". Most of these collision problems can be resolved by reviewing the
animation sequence that was generated without taking care of the collisions

and the interdependence of various joints, and modifying the keyframes until

a satisfactory result is generated. This try-and-check method may still work
for problems where there are several objects in the scene and their collision

must be avoided, but this can be very tiresome, so we would prefer methods
which resolve these collision and interdependence problems automatically.

The application of these automatic constraint resolution methods is essential

13.6. HIERARCHICAL MOTION 399

for non tree-like assemblies (�gure 13.13), where the degree of freedom is

less than the individually controllable parameters of the joints, because the

independent interpolation of a subset of joint parameters may cause other

joints to fall apart even if all requirements are met in the keyframes.

Such an automatic constraint resolution algorithm basically does the same

as the user who interactively tries to modify the de�nition of the sequence

and checks whether or not the result satis�ed the constraints. The algo-

rithm is controlled by an error function which is non-zero if a constraint

is not satis�ed and usually increases as we move away from the allowed

arrangements. The motion algorithm tries to minimize this function by in-

terpolating a C2 function for each controllable parameter, calculating the

maximum of this error function along the path and then modifying the knot

points of the C2 function around the parameters where the error value is

large. Whenever a knot point is modi�ed, the trajectory is evaluated again

and a check is made to see the error value has decreased or not. If it has
decreased, then the previous modi�cation is repeated; if it has increased,
the previous modi�cation is inverted. The new parameter knot point should
be randomly perturbed to avoid in�nite oscillations and to reduce the prob-
ability of reaching a local minimum of the error function. The algorithm
keeps repeating this step until either it can generate zero error or it decides

that no convergence can be achieved possibly because of overconstraining
the system. This method is also called the relaxation technique.
When animating complex structures, such as the model of the human

body, producing the e�ect of realistic motion can be extremely di�cult and
can require a lot of expertise and experience of traditional cartoon designers.

The C2 interpolation of the parameters is a necessary but not a su�cient
requirement for this. Generally, the real behavior and the internal structure
of the simulated objects must be understood in order to imitate their mo-
tion. Fortunately, the most important rule governing the motion of animals
and humans is very simple: Living objects always try to minimize the energy

needed for a given change of position and orientation and the motion must

satisfy the geometric constraints of the body and the dynamic constraints of

the muscles. Thus, when the motion parameters are interpolated between
the keyframe positions, the force needed in the di�erent joints as well as

the potential and kinetic energy must be calculated. This seems simple, but

the actual calculation can be very complex. Fortunately, the same problems
have arisen in the control of robots, and therefore the solution methods de-

400 13. ANIMATION

veloped for robotics can also be used here [Lan91]. The previous relaxation

technique must be extended to �nd not only a trajectory where the error

including the geometric and dynamic constraints is zero, but one where the

energy generated by the \muscles" in the joints is minimal.

Finally it must be mentioned that an important �eld of animation, called

the scienti�c visualization, focuses on the behavior of systems that are

described by a set of physical laws. The objective is to �nd an arrangement

or movement that satis�es these laws.

13.7 Double bu�ering

Animation means the fast generation of images shown one after the other

on the computer screen. If the display of these static images takes a very
short time, the human eye is unable to identify them as separate pictures,
but rather interprets them as a continuously changing sequence. This phe-

nomenon is well known and is exploited in the motion picture industry.

Display
processor

frame
buffer 1

frame
buffer 2

Exchange

Video
refresh

R
G
B

Figure 13.14: Double bu�er animation systems

When an image is generated on the computer screen, it usually evolves

gradually, depending on the actual visibility algorithm. Painter's algorithm,

for example, draws the polygons in order of distance from the camera; thus
even those polygons that turn out to be invisible later on will be seen on
the screen for a very short time during the image generation. The z-bu�er

algorithm, on the other hand, draws a polygon point if the previously dis-

played polygons do not hide it, which can also cause the temporary display
of invisible polygons. The evolution of the images, even if it takes a very

13.8. TEMPORAL ALIASING 401

short time, may cause noticeable and objectionable e�ects which need to

be eliminated. We must prevent the observer from seeing the generation

process of the images and present to him the �nal result only. This problem

had to be solved in traditional motion pictures as well. The usual way of

doing it is via the application of two frame bu�ers, which leads to a method

of double-bu�er animation (�gure 13.14). In each frame of the anima-

tion sequence, the content of one of the frame bu�ers is displayed, while the

other is being �lled up by the image generation algorithm. Once the image

is complete, the roles of the two frame bu�ers are exchanged. Since it takes

practically no time | being only a switch of two multiplexers during the

vertical retrace | only complete images are displayed on the screen.

13.8 Temporal aliasing

As has been mentioned, animation is a fast display of static image sequences
providing the illusion of continuous motion. This means that the motion
must be sampled in discrete time instances and then the \continuous" mo-
tion produced by showing these static images until the next sampling point.
Thus, sampling artifacts, called temporal aliasing, can occur if the sam-

pling frequency and the frequency range of the motion do not satisfy the
sampling theorem. Well-known examples of temporal aliasing are backward
rotating wheels and the jerky motion which can be seen in old movies.
These kinds of temporal aliasing phenomena are usually called strobing.
Since the core of the problem is the same as spatial aliasing due to the

�nite resolution raster grid, similar approaches can be applied to solve it,
including either post-�ltering with supersampling, which generates several
images in each frame time and produces the �nal one as their average, or
pre-�ltering, which solves the visibility and shading problems as a function
of time and calculates the convolution of the time-varying image with an

appropriate �lter function. The �ltering process will produce motion blur

for fast moving objects just as moving objects cause blur on normal �lms

because of �nite exposure time. Since visibility and shading algorithms have

been developed to deal with static object spaces and images, and most of
them are not appropriate for a generalization to take time-varying phenom-
ena into account, temporal anti-aliasing methods usually use a combination

of post-�ltering and supersampling. (An exceptional case is a kind of ray

402 13. ANIMATION

tracing which allows for some degree of dynamic generalization as proposed

by Cook [CPC84] creating a method called distributed ray tracing.)

Let �T be the interval during which the images, called subframes, are

averaged. This time is analogous to the exposure time when the shutter is

open in a normal camera. If n number of subframes are generated and box

�ltering is used, then the averaged color at some point of the image is:

I =
1

n

n�1X
i=0

I(t0 +
i ��T

n
): (13:59)

The averaging calculation can be executed in the frame bu�er. Before

writing a pixel value into the frame bu�er, its red, green and blue compo-

nents must be divided by n, and the actual pixel operation must be set to

\arithmetic addition". The number of samples, n, must be determined to

meet (at least approximately) the requirements of the sampling theorem,
taking the temporal frequencies of the motion into consideration. Large
n values, however, are disadvantageous because temporal supersampling

increases the generation time of the animation sequence considerably. For-
tunately, acceptable results can be generated with relatively small n if this
method is combined with stochastic sampling (see section 11.4), that is,
if the sample times of the subframes are selected randomly rather than uni-
formly in the frame interval. Stochastic sampling will transform temporal

aliasing into noise appearing as motion blur. Let � be a random variable
distributed in [0,1] to perturb the uniform sample locations. The modi�ed
equation to calculate the averaged color is:

I =
1

n

n�1X
i=0

I(t0+
(i+ �) ��T

n
): (13:60)

Temporal �ltering can be combined with spatial �ltering used to elimi-
nate the \jaggies" [SR92]. Now an image (frame) is averaged from n static
images. If these static images are rendered assuming a slightly shifting pixel
grid, then the averaging will e�ectively cause the static parts of the image
to be box �ltered. The shift of the pixel grid must be evenly distributed

in [(0; 0) : : : (1; 1)] assuming pixel coordinates. This can be achieved by the

proper control of the real to integer conversion during image generation.
Recall that we used the Trunc function to produce this, having added 0.5

to the values in the initialization phase. By modifying this 0.5 value in the
range of [0,1], the shift of the pixel grid can be simulated.

