
Chapter 2

ALGORITHMICS FOR

IMAGE GENERATION

Before going into the details of various image synthesis algorithms, it is
worth considering their general aspects, and establishing a basis for their

comparison in terms of e�ciency, ease of realization, image quality etc.,
because it is not possible to understand the speci�c steps, and evaluate the
merits or drawbacks of di�erent approaches without keeping in mind the
general objectives. This chapter is devoted to the examination of algorithms
in general, what has been called algorithmics after the excellent book of D.

Harel [Har87].
Recall that a complete image generation consists of model decomposition,

geometricmanipulation, scan conversion and pixel manipulation algorithms.
The resulting picture is their collective product, each of them is responsible
for the image quality and for the e�ciency of the generation.

Graphics algorithms can be compared, or evaluated by considering the
reality of the generated image, that is how well it provides the illusion of
photos of the real world. Although this criterion seems rather subjective, we
can accept that the more accurately the model used approximates the laws

of nature and the human perception, the more realistic the image which can

be expected. The applied laws of nature fall into the category of geometry
and optics. Geometrical accuracy regards how well the algorithm sustains

the original geometry of the model, as, for example, the image of a sphere
is expected to be worse if it is approximated by a polygon mesh during

synthesis than if it were treated as a mathematical object de�ned by the

25

26 2. ALGORITHMICS FOR IMAGE GENERATION

equation of the sphere. Physical, or optical accuracy, on the other hand, is

based on the degree of approximations of the laws of geometric and physical

optics. The quality of the image will be poorer, for example, if the reection

of the light of indirect lightsources is ignored, than if the laws of reection

and refraction of geometrical optics were correctly built into the algorithm.

Image synthesis algorithms are also expected to be fast and e�cient and

to �t into the memory constraints. In real-time animation the time allowed

to generate a complete image is less than 100 msec to provide the illusion of

continuous motion. In interactive systems this requirement is not much

less severe if the system has to allow the user to control the camera position

by an interactive device. At the other extreme end, high quality pictures

may require hours or even days on high-performance computers, thus only

20{30 % decrease of computational time would save a great amount of cost

and time for the user. To describe the time and storage requirements of an

algorithm independently of the computer platform, complexity measures

have been proposed by a relatively new �eld of science, called theory of
computation. Complexity measures express the rate of the increase of the
required time and space as the size of the problem grows by providing
upper and lower limits or asymptotic behavior. The problem size is usually
characterized by the number of the most important data elements involved

in the description and in the solution of the problem.
Complexity measures are good at estimating the applicability of an al-

gorithm as the size of the problem becomes really big, but they cannot
provide characteristic measures for a small or medium size problem, be-
cause they lack the information of the time unit of the computations. An

algorithm having const1 � n
2 computational time requirement in terms of

problem size n, denoted usually by �(n2), can be better than an algorithm
of const2 �n, or �(n), if const1 << const2 and n is small. Consequently, the
time required for the computation of a \unit size problem" is also critical
especially when the total time is limited and the allowed size of the problem

domain is determined from the overall time requirement. The unit calcu-

lation time can be reduced by the application of more powerful computers.
The power of general purpose processors, however, cannot meet the require-
ments of constantly increasing expectations of the graphics community. A

real-time animation system, for example, has to generate at least 15 images

per second to provide the illusion of continuous motion. Suppose that the
number of pixels on the screen is about 106 (advanced systems usually have

2.1. COMPLEXITY OF ALGORITHMS 27

1280�1024 resolution). The maximum average time taken to manipulate a

single pixel (tpixel), which might include visibility and shading calculations,

cannot exceed the following limit:

tpixel <
1

15 � 106
� 66 nsec: (2:1)

Since this value is less than a single commercial memory read or write

cycle, processors which execute programs by reading the instructions and

the data from memories are far too slow for this task, thus special solutions

are needed, including:

1. Parallelization meaning the application of many computing units

running parallelly, and allocating the computational burden between

the parallel processors. Parallelization can be carried out on the level
of processors, resulting in multiprocessor systems, or inside the pro-
cessor, which leads to special graphics chips capable of computing
several pixels parallelly and handling tasks such as instruction fetch,

execution and data transfer simultaneously.

2. Hardware realization meaning the design of a special digital net-

work instead of the application of general purpose processors with
information about the algorithm contained by the architecture of the
hardware, not by a separate software component as in general purpose
systems.

The study of the hardware implementation of algorithms is important not
only for hardware engineers but for everyone involved in computer graphics,
since the requirements of an e�ective software realization are quite similar to
those indispensable for hardware translation. It means that a transformed

algorithm ready for hardware realization can run faster on a general purpose
computer than a naive implementation of the mathematical formulae.

2.1 Complexity of algorithms

Two complexity measures are commonly used to evaluate the e�ectiveness

of algorithms: the time it spends on solving the problem (calculating the

result) and the size of storage (memory) it uses to store its own temporary

28 2. ALGORITHMICS FOR IMAGE GENERATION

data in order to accelerate the calculations. Of course, both the time and

storage spent on solving a given problem depend on the one hand on the

nature of the problem and on the other hand on the amount of the input

data. If, for example, the problem is to �nd the greatest number in a list of

numbers, then the size of the input data is obviously the length of the list,

say n. In this case, the time complexity is usually given as a function of n,

say T (n), and similarly the storage complexity is also a function of n, say

S(n). If no preliminary information is available about the list (whether the

numbers in it are ordered or not, etc.), then the algorithm must examine

each number in order to decide which is the greatest. It follows from this

that the time complexity of any algorithm �nding the greatest of n numbers

is at least proportional to n. It is expressed by the following notation:

T (n) =
(n): (2:2)

A rigorous de�nition of this and the other usual complexity notations can be
found in the next subsection. Note that such statements can be made with-
out having any algorithm for solving the given problem, thus such lower

bounds are related rather to the problems themselves than to the con-
crete algorithms. Let us then examine an obvious algorithm for solving the
maximum-search problem (the input list is denoted by k1; : : : ; kn):

FindMaximum(k1; : : : ; kn)
M = k1; // M : the greatest found so far

for i = 2 to n do

if ki > M then

M = ki;
endif

endfor

return M ;
end

Let the time required by the assignment operator (=) be denoted by

T=, the time required to perform the comparison (ki > M) by T> and the
time needed to prepare for a cycle by Tloop (the time of an addition and a

comparison).
The time T spent by the above algorithm can then be written as:

T = T= + (n� 1) � T> +m � T= + (n� 1) � Tloop (m � n� 1); (2:3)

2.1. COMPLEXITY OF ALGORITHMS 29

where m is number of situations when the variable M must be updated.

The value of m can be n� 1 in the worst case (that is when the numbers

in the input list are in ascending order). Thus:

T � T= + (n� 1) � (T> + T= + Tloop): (2:4)

The conclusion is that the time spent by the algorithm is at most propor-

tional to n. This is expressed by the following notation:

T (n) = O(n): (2:5)

This, in fact, gives an upper bound on the complexity of the maximum-

searching problem itself: it states that there exists an algorithm that can

solve it in time proportional to n. The lower bound (T (n) =
(n)) and the

worst-case time complexity of the proposed algorithm (T (n) = O(n)) coin-
cide in this case. Hence we say that the algorithm has an optimal (worst-
case optimal) time complexity. The storage requirement of the algorithm is
only one memory location that stores M , hence the storage complexity is
independent of n, that is constant:

S(n) = O(1): (2:6)

2.1.1 Complexity notations

In time complexity analysis usually not all operations are counted but rather
only those ones that correspond to a representative set of operations called

key operations, such as comparisons or assignments in the previous ex-
ample. (The key operations should always be chosen carefully. In the case
of matrix-matrix multiplication, as another example, the key operations are
multiplications and additions.) The number of the actually performed key
operations is expressed as a function of the input size. In doing so, one

must ensure that the number (execution time) of the unaccounted-for op-

erations is at most proportional to that of the key operations so that the
running time of the algorithm is within a constant factor of the estimated
time. In storage complexity analysis, the maximum amount of storage ever

required during the execution of the algorithm is measured, also expressed

as a function of the input size. However, instead of expressing these func-
tions exactly, rather their asymptotic behavior is analyzed, that is when

30 2. ALGORITHMICS FOR IMAGE GENERATION

the input size approaches in�nity, and expressed by the following special

notations.

The notations must be able to express both that the estimations are valid

only within a constant factor and that they reect the asymptotic behavior

of the functions. The so-called \big-O" and related notations were originally

suggested by Knuth [Knu76] and have since become standard complexity

notations [PS85].

Let f; g : N 7! R be two real-valued functions over the integer numbers.

The notation

f = O(g) (2:7)

denotes that we can �nd c > 0 and n0 2 N so that f(n) � c � g(n) if n > n0,

that is, the function f grows at most at the rate of g in asymptotic sense.

In other words, g is an upper bound of f . For example, n2 + 3n + 1 =
O(n2) = O(n3) = : : : but n2 + 3n+ 1 6= O(n). The notation

f =
(g) (2:8)

denotes that we can �nd c > 0 and n0 2 N so that f(n) � c � g(n) if n > n0,

that is, f grows at least at the rate of g. In other words, g is a lower bound
of f . For example, n2 + 3n + 1 =
(n2) =
(n). Note that f =
(g) is
equivalent with g = O(f). Finally, the notation

f = �(g) (2:9)

denotes that we can �nd c1 > 0; c2 > 0 and n0 2 N so that c1 � g(n) �
f(n) � c2 � g(n) if n > n0, that is, f grows exactly at the rate of g. Note
that f = �(g) is equivalent with f = O(g) and f =
(g) at the same time.
An interesting property of complexity classi�cation is that it is maximum

emphasizing with respect to weighted sums of functions, in the following
way. Let the function H(n) be de�ned as the positively weighted sum of
two functions that belong to di�erent classes:

H(n) = a � F (n) + b �G(n) (a; b > 0) (2:10)

where

F (n) = O(f(n)); G(n) = O(g(n)); g(n) 6= O(f(n)); (2:11)

2.1. COMPLEXITY OF ALGORITHMS 31

that is, G(n) belongs to a higher class than F (n). Then their combination,

H(n), belongs to the higher class:

H(n) = O(g(n)); H(n) 6= O(f(n)): (2:12)

Similar statements can be made about
 and �.

The main advantage of the notations introduced in this section is that

statements can be formulated about the complexity of algorithms in a

hardware-independent way.

2.1.2 Complexity of graphics algorithms

Having introduced the \big-O" the e�ectiveness of an algorithm can be

formalized. An alternative interpretation of the notation is that O(f(n))
denotes the class of all functions that grow not faster than f as n!1. It
de�nes a nested sequence of function classes:

O(1) � O(log n) � O(n) � O(n log n) � O(n2) � O(n3) � O(an) (2:13)

where the basis of the logarithm can be any number greater than one, since
the change of the basis can be compensated by a constant factor. Note,
however, that this is not true for the basis a of the power (a > 1).

Let the time complexity of an algorithm be T (n). Then the smaller the
smallest function class containing T (n) is, the faster the algorithm is. The
same is true for storage complexity (although this statement would require
more preparation, it would be so similar to that of time complexity that it
is left for the reader).

When analyzing an algorithm, the goal is always to �nd the smallest upper

bound, but it is not always possible. When constructing an algorithm, the
goal is always to reach the tightest known lower bound (that is to construct
an optimal algorithm), but it is neither always possible.
In algorithm theory, an algorithm is \good" if T (n) = O(nk) for some

�nite k. These are called polynomial algorithms because their running time

is at most proportional to a polynomial of the input size. A given compu-

tational problem is considered as practically tractable if a polynomial algo-
rithm exists that computes it. The practically non-tractable problems are

those for which no polynomial algorithm exists. Of course, these problems

32 2. ALGORITHMICS FOR IMAGE GENERATION

can also be solved computationally, but the running time of the possible

algorithms is at least O(an), that is exponentially grows with the input size.

In computer graphics or generally in CAD, where in many cases real-time

answers are expected by the user (interactive dialogs), the borderline be-

tween \good" and \bad" algorithms is drawn much lower. An algorithm

with a time complexity of O(n17), for example, can hardly be imagined as

a part of a CAD system, since just duplicating the input size would cause

the processing to require 217 (more than 100,000) times the original time

to perform the same task on the bigger input. Although there is no com-

monly accepted standard for distinguishing between acceptable and non-

acceptable algorithms, the authors' opinion is that the practical borderline

is somewhere about O(n2).

A further important question arises when estimating the e�ectiveness of

graphics or generally, geometric algorithms: what should be considered as

the input size? If, for example, triangles (polygons) are to be transformed
from one coordinate system into another one, then the total number of
vertices is a proper measure of the input size, since these shapes can be
transformed by transforming its vertices. If n is the number of vertices
then the complexity of the transformation is O(n) since the vertices can
be transformed independently. If n is the number of triangles then the

complexity is the same since each triangle has the same number of (three)
vertices. Generally the input size (problem size) is the number of (usually
simple) similar objects to be processed.
If the triangles must be drawn onto the screen, then the more pixels they

cover the more time is required to paint each triangle. In this case, the size

of the input is better characterized by the number of pixels covered than
by the total number of vertices, although the number of pixels covered is
related rather to the output size. If the number of triangles is n and they
cover p pixels altogether (counting overlappings) then the time complexity
of drawing them onto the screen is O(n + p) since each triangle must be

�rst transformed (and projected) and then painted. If the running time of

an algorithm depends not only on the size of the input but also on the size
of the output, then it is called an output sensitive algorithm.

2.1. COMPLEXITY OF ALGORITHMS 33

2.1.3 Average-case complexity

Sometimes the worst-case time and storage complexity of an algorithm is

very bad, although the situations responsible for the worst cases occur very

rarely compared to all the possible situations. In such cases, an average-

case estimation can give a better characterization than the standard worst-

case analysis. A certain probability distribution of the input data is assumed

and then the expected time complexity is calculated. Average-case analysis

is not as commonly used as worst-case analysis because of the following

reasons:

� The worst-case complexity and the average-case complexity for any

reasonable distribution of input data coincide in many cases (just as

for the maximum-search algorithm outlined above).

� The probability distribution of the input data is usually not known.

It makes the result of the analysis questionable.

� The calculation of the expected complexity involves hard mathemat-
ics, mainly integral calculus. Thus average-case analysis is usually not

easy to perform.

Although one must accept the above arguments (especially the second one),

the following argument puts average-case analysis into new light.
Consider the problem of computing the convex hull of a set of n distinct

points in the plane. (The convex hull is the smallest convex set containing
all the points. It is a convex polygon in the planar case with its vertices
coming from the point set.) It is known [D�ev93] that the lower bound of the
time complexity of any algorithm that solves this problem is
(n log n). Al-

though there are many algorithms computing the convex hull in the optimal
O(n log n) time (see Graham's pioneer work [Gra72], for example), let us
now consider another algorithm having a worse worst-case but an optimal
average-case time complexity. The algorithm is due to Jarvis [Jar73] and is

known as \gift wrapping". Let the input points be denoted by:

p1; : : : ; pn: (2:14)

The algorithm �rst searches for an extremal point in a given direction.

This point can be that with the smallest x-coordinate, for example. Let

34 2. ALGORITHMICS FOR IMAGE GENERATION

it be denoted by pi1 . This point is de�nitely a vertex of the convex hull.

Then a direction vector ~d is set so that the line having this direction and

going through pi1 is a supporting line of the convex hull, that is, it does not

intersect its interior. With the above choice for pi1 , the direction of
~d can be

the direction pointing vertically downwards. The next vertex of the convex

hull, pi2 , can then be found by searching for that point p 2 fp1; : : : ; pngnpi1
for which the angle between the direction of ~d and the direction of ~pi1p is

minimal. The further vertices can be found in a very similar way by �rst

setting ~d to ~pi1pi2 and pi2 playing the role of pi1, etc. The search continues

until the �rst vertex, pi1 , is discovered again. The output of the algorithm

is a sequence of points:

pi1 ; : : : ; pim (2:15)

where m � n is the size of the convex hull. The time complexity of the

algorithm is:
T (n) = O(mn) (2:16)

since �nding the smallest \left bend" takes O(n) time in each of the m main
steps. Note that the algorithm is output sensitive. The maximal value of m
is n, hence the worst-case time complexity of the algorithm is O(n2).
Let us now recall an early result in geometric probability, due to R�enyi

and Sulanke [RS63] (also in [GS88]): the average size of the convex hull of
n random points independently and uniformly distributed in a triangle
is:

E[m] = O(log n): (2:17)

This implies that the average-case time complexity of the \gift wrapping"

algorithm is:
E[T (n)] = O(n log n): (2:18)

The situation is very interesting: the average-case complexity belongs to a
lower function class than the worst-case complexity; the di�erence between

the two cases cannot be expressed by a constant factor but rather it grows

in�nitely as n approaches in�nity! What does this mean?
The n input objects of the algorithm can be considered as a point of a

multi-dimensional con�guration space, sayKn. In the case of the convex hull

problem, for example, Kn = R2n, since each planar point can be de�ned by
two coordinates. In average-case analysis, each point of the con�guration

space is given a non-zero probability (density). Since there is no reason

2.2. PARALLELIZATION OF ALGORITHMS 35

for giving di�erent probability to di�erent points, a uniform distribution is

assumed, that is, each point of Kn has the same probability (density). Of

course, the con�guration space Kn must be bounded in order to be able to

give non-zero probability to the points. This is why R�enyi and Sulanke chose

a triangle, say T , to contain the points and Kn was T � T � : : :� T = T n

in that case. Let the time spent by the algorithm on processing a given

con�guration K 2 Kn be denoted by � (K). Then, because of uniform

distribution, the expected time complexity can be calculated as:

E [T (n)] =
Z

Kn

1

jKnj
� (K)dK; (2:19)

where j � j denotes volume. The asymptotic behavior of E[T (n)] (as n!1)

characterizes the algorithm in the expected case. It belongs to a function
class, say O(f(n)). Let the smallest function class containing the worst-case
time complexity T (n) be denoted by O(g(n)). The interesting situation is
when O(f(n)) 6= O(g(n)), as in the case of \gift wrapping".
One more observation is worth mentioning here. It is in connection with

the maximum-emphasizing property of the \big-O" classi�cation, which was
shown earlier (section 2.1.1). The integral 2.19 is the continuous analogue
of a weighted sum, where the in�nitesimal probability dK=jKnj plays the
role of the weights a; b in equations 2.10{2.12. How can it then happen that,
although the weight is the same everywhere in Kn (analogous to a = b), the

result function belongs to a lower class than the worst-case function which
is inevitably present in the summation? The answer is that the ratio of the
situations \responsible for the worst-case" complexity and all the possible
situations tends to zero as n grows to in�nity. (A more rigorous discussion
is to appear in [M�ar94].)

2.2 Parallelization of algorithms

Parallelization is the application of several computing units running paral-
lelly to increase the overall computing speed by distributing the computa-

tional burden between the parallel processors.

As we have seen, image synthesis means the generation of pixel colors ap-
proximating an image of the graphics primitives from a given point of view.

36 2. ALGORITHMICS FOR IMAGE GENERATION

More precisely, the input of this image generation is a collection of graph-

ics primitives which are put through a series of operations identi�ed as

transformations, clipping, visibility calculations, shading, pixel manipula-

tions and frame bu�er access, and produce the pixel data stored in the

frame bu�er as output.

pixels

operations

primitives

?

memory
AA ���

?��� AA

Figure 2.1: Key concepts of image generation

The key concepts of image synthesis (�gure 2.1) | primitives, operations
and pixels | form a simple structure which can make us think that oper-

ations represent a machine into which the primitives are fed one after the
other and which generates the pixels, but this is not necessarily true. The
�nal image depends not only on the individual primitives but also on their
relationships used in visibility calculations and in shading. Thus, when a
primitive is processed the \machine" of operations should be aware of the

necessary properties of all other primitives to decide, for instance, whether
this primitive is visible in a given pixel. This problem can be solved by two
di�erent approaches:

1. When some information is needed about a primitive it is input again
into the machine of operations.

2. The image generation \machine" builds up an internal memory about
the already processed primitives and their relationships, and uses this

memory to answer questions referring to more than one primitives.

Although the second method requires redundant storage of information and

therefore has additional memory requirements, it has several signi�cant ad-

vantages over the �rst method. It does not require the model decomposition

phase to run more times than needed, nor does it generate random order

query requests to the model database. The records of the database can be

2.2. PARALLELIZATION OF ALGORITHMS 37

accessed once in their natural (most e�ective) order. The internal memory

of the image synthesis machine can apply clever data structures optimized

for its own algorithms, which makes its access much faster than the access of

modeling database. When it comes to parallel implementation, these advan-

tages become essential, thus only the second approach is worth considering

as a possible candidate for parallelization. This decision, in fact, adds a

fourth component to our key concepts, namely the internal memory of

primitive properties (�gure 2.1). The actual meaning of the \primitive

properties" will be a function of the algorithm used in image synthesis.

When we think about realizing these algorithms by parallel hardware,

the algorithms themselves must also be made suitable for parallel execu-

tion, which requires the decomposition of the original concept. This decom-

position can either be accomplished functionally | that is, the algorithm

is broken down into operations which can be executed parallelly | or be

done in data space when the algorithm is broken down into similar parallel
branches working with a smaller amount of data. Data decomposition can
be further classi�ed into input data decomposition where a parallel branch
deals with only a portion of the input primitives, and output data decom-
position where a parallel branch is responsible for producing the color of
only a portion of the pixels. We might consider the parallelization of the

memory of primitive properties as well, but that is not feasible because this
memory is primarily responsible for storing information needed to resolve
the dependence of primitives in visibility and shading calculations. Even
if visibility, for instance, is calculated by several computing units, all of
them need this information, thus it cannot be broken down into several

independent parts. If separation is needed, then this has to be done by
using redundant storage where each separate unit contains nearly the same
information. Thus, the three basic approaches of making image synthesis
algorithms parallel are:

1. Functional decomposition or operation based parallelization

which allocates a di�erent hardware unit for the di�erent phases of

the image synthesis. Since a primitive must go through every single

phase, these units pass their results to the subsequent units forming

a pipeline structure (�gure 2.2). When we analyzed the phases

needed for image synthesis (geometric manipulations, scan conversion
and pixel operations etc.), we concluded that the algorithms, the ba-

38 2. ALGORITHMICS FOR IMAGE GENERATION

frame bu�er

?

?

?

?

phase 1

phase 2

phase n

primitives

?

memory

AA

���

�
�
��

Figure 2.2: Pipeline architecture

sic data types and the speed requirements are very di�erent in these
phases, thus this pipeline architecture makes it possible to use hard-
ware units optimized for the operations of the actual phase. The

pipeline is really e�ective if the data are moving in a single direction
in it. Thus, when a primitive is processed by a given phase, subse-
quent primitives can be dealt with by the previous phases and the
previous primitives by the subsequent phases. This means that an n

phase pipeline can deal with n number of primitives at the same time.

If the di�erent phases require approximately the same amount of time
to process a single primitive, then the processing speed is increased
by n times in the pipeline architecture. If the di�erent phases need
a di�erent amount of time, then the slowest will determine the over-
all speed. Thus balancing the di�erent phases is a crucial problem.

This problem cannot be solved in an optimal way for all the di�erent
primitives because the \computational requirements" of a primitive
in the di�erent phases depend on di�erent factors. Concerning geo-
metric manipulations, the complexity of the calculation is determined

by the number of vertices in a polygon mesh representation, while the

complexity of pixel manipulations depends on the number of pixels
covered by the projected polygon mesh. Thus, the pipeline can only

be balanced for polygons of a given projected size. This optimal size
must be determined by analyzing the \real applications".

2.2. PARALLELIZATION OF ALGORITHMS 39

frame bu�er

branch 1 branch 2 branch n

? ? ?

primitives

�
��= ?

Z
ZZ~

Figure 2.3: Image parallel architecture

2. Image space or pixel oriented parallelization allocates di�erent
hardware units for those calculations which generate the color of a
given subset of pixels (�gure 2.3). Since any primitive may a�ect
any pixel, the parallel branches of computation must get all primi-
tives. The di�erent branches realize the very same algorithm including
all steps of image generation. Algorithms which have computational

complexity proportional to the number of pixels can bene�t from this
architecture, because each branch works on fewer pixels than the num-
ber of pixels in the frame bu�er. Those algorithms, however, whose
complexities are independent of the number of pixels (but usually pro-
portional to some polynomial of the number of primitives), cannot be

speeded up in this way, since the same algorithm should be carried
out in each branch for all the di�erent primitives, which require the
same time as the calculation of all primitives by a single branch. Con-
cerning only algorithms whose complexities depend on the number of
pixels, the balancing of the di�erent branches is also very important.

Balancing means that from the same set of primitives the di�erent

phases generate the same number of pixels and the di�culty of calcu-
lating pixels is also evenly distributed between the branches. This can
be achieved if the pixel space is partitioned in a way which orders ad-

jacent pixels into di�erent partitions, and the color of the pixels in the

di�erent partitions is generated by di�erent branches of the parallel
hardware.

40 2. ALGORITHMICS FOR IMAGE GENERATION

branch 1 branch 2 branch n

primitives

visibility/pixel op.

@
@
@R ?

�
�
�	

?

�
��/

C
CCW

S
SSw

frame bu�er

Figure 2.4: Object parallel architecture

3. Object space or primitive oriented parallelization allocates dif-
ferent hardware units for the calculation of di�erent subsets of prim-
itives (�gure 2.4). The di�erent branches now get only a portion

of the original primitives and process them independently. However,
the di�erent branches must meet sometimes because of the following
reasons: a) the image synthesis of the di�erent primitives cannot be
totally independent because their relative position is needed for visi-
bility calculations, and the color of a primitive may a�ect the color of

other primitives during shading; b) any primitive can a�ect the color
of a pixel, thus, any parallel branch may try to determine the color of
the same pixel, which generates a problem that must be resolved by
visibility considerations. Consequently, the parallel branches must be
bundled together into a single processing path for visibility, shading

and frame bu�er access operations. This common point can easily be
a bottleneck. This is why this approach is not as widely accepted and

used as the other two.

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 41

The three alternatives discussed above represent theoretically di�erent

approaches to build a parallel system for image synthesis. In practical appli-

cations, however, combination of the di�erent approaches can be expected

to provide the best solutions. This combination can be done in di�erent

ways, which lead to di�erent heterogeneous architectures. The image par-

allel architecture, for instance, was said to be ine�cient for those methods

which are independent of the number of pixels. The �rst steps of image

synthesis, including geometric manipulations, are typically such methods,

thus it is worth doing them before the parallel branching of the compu-

tation usually by an initial pipeline. Inside the parallel branches, on the

other hand, a sequence of di�erent operations must be executed, which can

be well done in a pipeline. The resulting architecture starts with a single

pipeline which breaks down into several pipelines at some stage.

The analysis of the speed requirements in the di�erent stages of a pipeline

can lead to a di�erent marriage between pipeline and image parallel ar-
chitectures. Due to the fact that a primitive usually covers many pixels
when projected, the time allowed for a single data element decreases dras-
tically between geometric manipulations, scan conversion, pixel operations
and frame bu�er access. As far as scan conversion and pixel operations
are concerned, their algorithms are usually simple and can be realized by

a special digital hardware that can cope with the high speed requirements.
The speed of the frame bu�er access step, however, is limited by the access
time of commercial memories, which is much less than needed by the per-
formance of other stages. Thus, frame bu�er access must be speeded up by
parallelization, which leads to an architecture that is basically a pipeline

but at some �nal stage it becomes an image parallel system.

2.3 Hardware realization of graphics

algorithms

In this section the general aspects of the hardware realization of graph-

ics, mostly scan conversion algorithms are discussed. Strictly speaking,

hardware realization means a special, usually synchronous, digital network
designed to determine the pixel data at the speed of its clock signal.

42 2. ALGORITHMICS FOR IMAGE GENERATION

In order to describe the di�culty of the realization of a function as a

combinational network by a given component set, the measure, called com-

binational complexity or combinational realizability complexity, is intro-

duced:

Let f be a �nite valued function on the domain of a subset of natural

numbers 0; 1 : : : N . By de�nition, the combinational complexity of f is D if

the minimal combinational realization of f , containing no feedback, consists

of D devices from the respective component set.

One possible respective component set contains NAND gates only, an-

other covers the functional elements of MSI and LSI circuits, including:

1. Adders, combinational arithmetic/logic units (say 32 bits)

which can execute arithmetical operations.

2. Multiplexers which are usually responsible for the then : : : else : : :

branching of conditional operations.

3. Comparators which generate logic values for if type decisions.

4. Logic gates which are used for simple logic operations and decisions.

5. Encoders, decoders and memories of reasonable size (say 16

address bits) which can realize arbitrary functions having small do-
mains.

The requirement that the function should be integer valued and should
have integer domain would appear to cause serious limitation from the point
of view of computer graphics, but in fact it does not, since negative, frac-
tional and oating point numbers are also represented in computers by
binary combinations which can be interpreted as a positive integer code

word in a binary number system.

2.3.1 Single-variate functions

Suppose that functions f1(k); f2(k); : : : ; fn(k) having integer domain have
to be computed for the integers in an interval between ks and ke.

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 43

A computer program carrying out this task might look like this:

for k = ks to ke do

F1 = f1(k); F2 = f2(k); : : : Fn = fn(k);

write(k; F1; F2; : : : Fn);

endfor

If all the fi(k)-s had low combinational complexity, then an independent

combinational network would be devoted to each of them, and a separate

hardware counter would generate the consecutive k values, making the hard-

ware realization complete. This works for many pixel level operations, but

usually fails for scan conversion algorithms due to their high combinational

complexity.

Fortunately, there is a technique, called the incremental concept, which
has proven successful for many scan conversion algorithms. According to
the incremental concept, in many cases it is much simpler to calculate the
value f(k) from f(k�1) instead of using only k, by a function of increment,
F :

f(k) = F(f(k � 1); k): (2:20)

If this F has low complexity, it can be realized by a reasonably simple
combinational network. In order to store the previous value f(k � 1), a
register has to be allocated, and a counter has to be used to generate the
consecutive values of k and stop the network after the last value has been

computed. This consideration leads to an architecture of �gure 2.5.
What happens if even F has too high complexity inhibiting its realization

by an appropriate combinational circuit? The incremental concept might be
applied to F as well, increasing the number of necessary temporary registers,
but hopefully simplifying the combinatorial part, and that examination can

also be repeated recursively if the result is not satisfactory. Finally, if this
approach fails, we can turn to the simpli�cation of the algorithm, or can
select a di�erent algorithm altogether.
Generally, the derivation of F requires heuristics, the careful examina-

tion and possibly the transformation of the mathematical de�nition or the

computer program of f(k). Systematic approaches, however, are available

if f(k) can be regarded as the restriction of a di�erentiable real function

fr(r) to integers both in the domain and in the value set, since in this case

44 2. ALGORITHMICS FOR IMAGE GENERATION

-CLK
> k counter

6

6ks

>f1(k)reg.

6

MPX
stepload

6

f1(ks)
6

66

-SELECT

(load/step)

-

??ke

�
�A

A comp

�STOP <

>fn(k)reg.

6

MPX
stepload

6

6

66

-

-

k

F1 Fn

fn(ks)
6 6

F1 Fn

Figure 2.5: General architecture implementing the incremental concept

fr(k) can be approximated by Taylor's series around fr(k � 1):

fr(k) � fr(k � 1) +
dfr

dk
jk�1 ��k = fr(k � 1) + f 0r(k � 1) � 1 (2:21)

The only disappointing thing about this formula is that f 0r(k � 1) is usu-
ally not an integer, nor is fr(k � 1), and it is not possible to ignore the

fractional part, since the incremental formula will accumulate the error to
an unacceptable degree. The values of fr(k) should rather be stored tem-
porarily in a register as a real value, the computations should be carried out
on real numbers, and the �nal f(k) should be derived by �nding the nearest
integer from fr(k). The realization of oating point arithmetic is not at

all simple; indeed its high combinational complexity makes it necessary to
get rid of the oating point numbers. Non-integers, fortunately, can also be
represented in �xed point form where the low bF bits of the code word
represent the fractional part, and the high bI bits store the integer part.
From a di�erent point of view, a code word having binary code C repre-

sents the real number C � 2�bF . Since �xed point fractional numbers can be
handled in the same way as integers in addition, subtraction, comparison

and selection (not in division or multiplication where they have to be shifted

after the operation), and truncation is simple in the above component set,
they do not need any extra calculation.

Let us devote some time to the determination of the length of the register
needed to store fr(k). Concerning the integer part, f(k), the truncation of

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 45

fr(k) may generate integers from 0 to N , requiring bI > log2N . The number

of bits in the fractional part has to be set to avoid incorrect f(k) calculations

due to the cumulative error in fr(k). Since the maximum length of the

iteration is N if ks = 0 and ke = N , and the maximum error introduced

by a single step of the iteration is less than 2�bF , the cumulative error is

maximumN �2�bF . Incorrect calculation of f(k) is avoided if the cumulative

error is less than 1:

N � 2�bF < 1 =) bF > log2N: (2:22)

Since the results are expected in integer form they must be converted to

integers at the �nal stage of the calculation. The Round function �nding

the nearest integer for a real number, however, has high combinational

complexity. Fortunately, the Round function can be replaced by the Trunc
function generating the integer part of a real number if 0:5 is added to the
number to be converted. The implementation of the Trunc function poses
no problem for �xed point representation, since just the bits corresponding
to the fractional part must be neglected. This trick can generally be used

if we want to get rid of the Round function.
The proposed approach is especially e�cient if the functions to be cal-

culated are linear, since that makes f 0(k � 1) = �f a constant parameter,
resulting in the network of �gure 2.6. Note that the hardware consists of
similar blocks, called interpolators, which are responsible for the generation
of a single output variable.

The transformed program for linear functions is:

F1 = f1(ks) + 0:5; F2 = f2(ks) + 0:5; : : : Fn = fn(ks) + 0:5;

�f1 = f 01(k); �f2 = f 02(k); : : : �fn = f 0n(k);
for k = ks to ke do

write(k;Trunc(F1);Trunc(F2); : : : ;Trunc(Fn));
F1 += �f1; F2 += �f2; : : : Fn += �fn;

endfor

The simplest example of the application of this method is the DDA line

generator (DDA stands for Digital Di�erential Analyzer which means ap-
proximately the same as the incremental method in this context). For

notational simplicity, suppose that the generator has to work for those

46 2. ALGORITHMICS FOR IMAGE GENERATION

-CLK
> k counter

6

6ks

>fr1 register

6

MPX
stepload

6

6
�
� A

A
P6

66
�f1

-SELECT

(load/step)

-

??ke

�
�A

A comp

�STOP <

>fn1 register

6

MPX
stepload

6

6
�
� A

A
P6

66
�fn

-

-

k F1 Fn

fn(ks) + 0:5f1(ks) + 0:5

Figure 2.6: Hardware for linear functions

(x1; y1; x2; y2) line segments which satisfy:

x1 � x2; y1 � y2; x2 � x1 � y2 � y1: (2:23)

Line segments of this type can be approximated by n = x2�x1+1 pixels
having consecutive x coordinates. The y coordinate of the pixels can be

calculated from the equation of the line:

y =
y2 � y1

x2 � x1
� (x� x1) + x1 = m � x+ b: (2:24)

Based on this formula, the algorithm needed to draw a line segment is:

for x = x1 to x2 do

y = Round(m � x+ b);
write(x; y; color);

endfor

The function f(x) = Round(m�x+b) contains multiplication, non-integer
addition, and the Round operation to �nd the nearest integer, resulting

in a high value of combinational complexity. Fortunately the incremental

concept can be applied since it can be regarded as the truncation of the
real-valued, di�erentiable function:

fr(x) = m � x+ b+ 0:5 (2:25)

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 47

Since fr is di�erentiable, the incremental formula is:

fr(x) = fr(x) + f 0r(x� 1) = fr(x) +m: (2:26)

The register storing fr(x) in �xed point format has to have more than

log2N integer and more than log2N fractional bits, where N is the length

of the longest line segment. For a display of 1280 � 1024 pixel resolution

a 22 bit long register is required if it can be guaranteed by a previous

clipping algorithm that no line segments will have coordinates outside the

visible region of the display. From this point of view, clipping is not only

important in that it speeds up the image synthesis by removing invisible

parts, but it is also essential because it ensures the avoidance of overows

in scan conversion hardware working with �xed point numbers.

-CLK
> x counter

6

6x1

> m � x+ b

6

MPX
stepload

6

6
y1 + 0:5

�
� A

A
P6

66
m

-SELECT

(load/step)

-

??x2

�
�A

A comp

�STOP <

x y

Figure 2.7: DDA line generator

The slope of the line m = (y2 � y1)=(x2 � x1) has to be calculated only
once and before inputting it into the hardware.

This example has con�rmed that the hardware implementation of linear

functions is a straightforward process, since it could remove all the multipli-
cations and divisions from the inner cycle of the algorithm, and it requires
them in the initialization phase only. For those linear functions where the

fractional part is not relevant for the next phases of the image generation

and j�f j � 1, the method can be even further optimized by reducing the
computational burden of the initialization phase as well.

48 2. ALGORITHMICS FOR IMAGE GENERATION

If the fractional part is not used later on, its only purpose is to determine

when the integer part has to be incremented (or decremented) due to over-

ow caused by the cumulative increments �f . Since �f � 1, the maximum

increase or decrease in the integer part must necessarily also be 1. From this

perspective, the fractional part can also be regarded as an error value show-

ing how accurate the integer approximation is. The error value, however,

is not necessarily stored as a fractional number. Other representations, not

requiring divisions during the initialization, can be found, as suggested by

the method of decision variables.

Let the fractional part of fr be fract and assume that the increment �f

is generated as a rational number de�ned by a division whose elimination

is the goal of this approach:

�f =
K

D
: (2:27)

The overow of fract happens when fract + �f > 1. Let the new error
variable be E = 2D � (fract�1), requiring the following incremental formula

for each cycle:

E(k) = 2D � (fract(k)� 1) = 2D � ([fract(k� 1) + �f]� 1) = E(k� 1) +2K:
(2:28)

The recognition of overow is also easy:

fract(k) � 1:0 =) E(k) � 0 (2:29)

If overow happens, then the fractional part is decreased by one, since
the bit which has the �rst positional signi�cance overowed to the integer
part:

fract(k) = [fract(k � 1) + �f]� 1 =) E(k) = E(k � 1) + 2(K �D):

(2:30)
Finally, the initial value of E comes from the fact that fract has to be

initialized to 0:5, resulting in:

fract(0) = 0:5 =) E(0) = �D: (2:31)

Examining the formulae of E, we can conclude that they contain inte-

ger additions and comparisons, eliminating all the non-integer operations.
Clearly, it is due to the multiplication by 2D, where D compensates for the

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 49

fractional property of �f = K=D and 2 compensates for the 0:5 initial value

responsible for replacing Round by Trunc.

The �rst line generator of this type has been proposed by Bresenham

[Bre65].

Having made the substitutions, K = y2 � y1 and D = x2 � x1, the code

of the algorithm in the �rst octant of the plane is:

BresenhamLine(x1; y1; x2; y2)

�x = x2 � x1; �y = y2 � y1;

E = ��x;

dE+ = 2(�y ��x); dE� = 2�y;

y = y1;

for x = x1 to x2 do

if E � 0 then E += dE�;

else E += dE+; y++;
write(x; y; color);

endfor

2.3.2 Multi-variate functions

The results of the previous section can be generalized to higher dimensions,
but, for the purposes of this book, only the two-variate case has any practical

importance, and this can be formulated as follows:

l

l

l

K (l) K (l)

k

e

s

s e

Figure 2.8: The domain of the two-variate functions

Let a set of two-variate functions be f1(k; l); f2(k; l); : : : ; fn(k; l) and sup-

pose we have to compute them for domain points (�gure 2.8):

S = f(k; l) j ls � l � le; Ks(l) � k � Ke(l)g: (2:32)

50 2. ALGORITHMICS FOR IMAGE GENERATION

A possible program for this computation is:

for l = ls to le do

for k = Ks(l) to Ke(l) do

F1 = f1(k; l); F2 = f2(k; l); : : : Fn = fn(k; l);

write(k; l; F1; F2; : : : Fn);

endfor

endfor

Functions f , Ks, Ke are assumed to be the truncations of real valued,

di�erentiable functions to integers. Incremental formulae can be derived for

these functions relying on Taylor's approximation:

fr(k + 1; l) � fr(k; l) +
@fr(k; l)

@k
� 1 = fr(k; l) + �fk(k; l); (2:33)

Ks(l+ 1) � Ks(l) +
dKs(l)

dl
� 1 = Ks(l) + �Ks(l); (2:34)

Ke(l+ 1) � Ke(l) +
dKe(l)

dl
� 1 = Ke(l) + �Ke(l): (2:35)

The increments of fr(k; l) along the boundary curve Ks(l) is:

fr(Ks(l+ 1); l + 1) � fr(Ks(l); l) +
dfr(Ks(l); l)

dl
= fr(Ks(l); l) + �f l;s(l):

(2:36)
These equations are used to transform the original program computing fi-s:

S = Ks(ls) + 0:5; E = Ke(ls) + 0:5;
F s
1 = f1(Ks(ls); ls) + 0.5; : : : F s

n = fn(Ks(ls); ls) + 0:5;
for l = ls to le do

F1 = F s
1 ; F2 = F s

2 ; : : : Fn = F s
n;

for k = Trunc(S) to Trunc(E) do
write(k; l;Trunc(F1);Trunc(F2); : : : ;Trunc(Fn));

F1 += �fk
1 ; F2 += �fk

2 ; : : : Fn += �fk
n ;

endfor

F s
1 += �f

l;s
1 ; F s

2 += �f
l;s
2 ; : : : F s

n += �f l;s
n ;

S += �Ks; E += �Ke;

endfor

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 51

l counter <

6ls

A
A�

�
comp

6 6 r

le

�STOP
<

Interpolator
<

6 6
�KsKs(ls)

Interpolator
<

6 6
�KeKe(ls)

> k counter

A
A�

�
comp

>

6 6

FS
1

Interpolator
>

6 6
�f

l;s
1

f1(Ks(ls); ls) fn(Ks(ls); ls)

Interpolator

>

�fk
1

�

-

load step

FS
n

Interpolator
>

6 6
�f l;sn

Interpolator

>

�fkn

load step

6 6f1(k; l) fn(k; l)

66 kl

6

CLK

-�

S K 6 6�

F1 Fn

6 6

r

r

- -r r rSEL

r r r

rrr

Figure 2.9: Hardware realization of two-variate functions

Concerning the hardware realization of this transformed program, a two
level hierarchy of interpolators should be built. On the lower level interpo-

lators have to be allocated for each Fi, which are initialized by a respective
higher level interpolator generating F s

i . The counters controlling the oper-
ation also form a two-level hierarchy. The higher level counter increments
two additional interpolators, one for start position S, and one for end con-
dition E, which, in turn, serve as start and stop control values for the lower

level counter. Note that in the modi�ed algorithm the longest path where
the round-o� errors can accumulate consists of

max
l
fl � ls +Ke(l)�Ks(l)g � Pk + Pl

steps, where Pk and Pl are the size of the domain of k and l respectively.

The minimum length of the fractional part can be calculated by:

bF > log2(Pk + Pl): (2:37)

A hardware implementation of the algorithm is shown in �gure 2.9.

52 2. ALGORITHMICS FOR IMAGE GENERATION

2.3.3 Alternating functions

Alternating functions have only two values in their value set, which al-

ternates according to a selector function. They form an important set of

non-di�erentiable functions in computer graphics, since pattern generators

responsible for drawing line and tile patterns and characters fall into this

category. Formally an alternating function is:

f(k) = F (s(k)); s(k) 2 f0; 1g: (2:38)

Function F may depend on other input parameters too, and it usually has

small combinational complexity. The selector s(k) may be periodic and is

usually de�ned by a table. The hardware realization should, consequently,

�nd the kth bit of the de�nition table to evaluate f(k). A straightforward

way to do that is to load the table into a shift register (or into a circular
shift register if the selector is periodic) during initialization, and in each
iteration select the �rst bit to provide s(k) and shift the register to prepare
for the next k value.

s(k) shift reg. �

6

F

6f(k)

s(k)
���
CLK

��

Figure 2.10: Hardware for alternating functions

Alternating functions can also be two-dimensional, for example, to gener-
ate tiles and characters. A possible architecture would require a horizontal
and a vertical counter, and a shift register for each row of the pattern. The

vertical counter selects the actual shift register, and the horizontal counter,

incremented simultaneously with the register shift, determines when the
vertical counter has to be incremented.

