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Preface

Computer graphics basically aims at rendering complex virtual world models and presenting
images on a computer screen. To obtain an image of a virtual world, surfaces visible in pixels
should be determined, and the rendering equation is used to calculate the color values of the
pixels. The rendering equation, even in its simplified form, contains a lot of complex opera-
tions, including the computation of the vectors, their normalization and the evaluation of the
output radiance, which makes the process rather resource demanding. A real-time animation
system has to generate at least 
	 images per second to provide the illusion of continuous mo-
tion. Suppose that the number of pixels on the screen is about 
�� (advanced systems usually
have 
��� � 
��� resolution). Thus the maximum average time to manipulate a single pixel,
which might include visibility and rendering calculations, cannot exceed the following limit:

 �
	 � 
��� � �� �!"#. Since this value is comparable to a few commercial memory read or
write cycles, processors which execute programs by reading the instructions and the data from
memories are far too slow for this task, thus special solutions are needed. One alternative is the
hardware realization, i.e. the design of a special digital network.

Hardware realization requires the original algorithms to be transformed to use only simple
operations that are supported by the hardware elements. The idea behind this is to carry out
the expensive computations just for a few points or pixels, and the rest can be approximated
from these representative points by much simpler expressions using incremental evaluation.
One way of doing this is the tessellation of the original surfaces to polygon meshes and using
the vertices of the polygons as representative points. These techniques are based on linear
(or in the extreme case, constant) interpolation. These methods are particularly efficient if the
geometric properties can also be determined in a similar way, connecting incremental shading
to the incremental visibility calculations of polygon mesh models.

Of course, when speeding up the algorithms, we cannot allow significant decrease of the
realism. For example, the jaggies, which are common in all raster graphics systems should be
reduced, which is called the anti-aliasing. The surfaces usually do not have constant material
properties, but patterns or textures may appear. Such phenomena should also be handled by the
graphics system, which is the area of texture mapping. Sometimes it is not enough to compute
only the direct reflection of the light, but multiple reflections should also be taken into account.
The family of algorithms that are capable of doing this is called global illumination.

This thesis contributes to the state of the art of rendering by proposing new rendering al-
gorithms that overcome the drawbacks of linear interpolations and are comparable in image
quality with the already known sophisticated techniques but allow for simple hardware imple-
mentation. These algorithms include the filtered line drawing, Phong shading, texture mapping

vii
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and ray-bundle based global illumination.
The thesis is organized as follows:

� Chapter 1 is an introductory part to image synthesis process.

� Chapter 2 is a survey of various functions on scan-lines and triangles.

� Chapter 3 focuses on some line drawing algorithms, application of some filtering tech-
niques and introduces a new approach called “incremental cone-filtering lines”.

� Chapter 4 is a survey of linear interpolation on triangles, visibility calculations based on
the z-buffer algorithm and an overview of constant and Gouraud shading methods.

� Chapter 5 is an overview of Phong shading and its related methods, such as normals
shading, dot product, angular shading, etc.

� Chapter 6 introduces a new shading algorithm based on “spherical interpolation” as an
alternative to Phong shading.

� Chapter 7 introduces a new method called “quadratic shading”.

� Chapter 8 is an overview of texture mapping and includes the application of our new
method “quadratic interpolation” for this task.

� Chapter 9 focuses on ray-bundle global illumination and its hardware implementation.

� Chapter 10 contains the conclusions and the summary of the new results.
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Chapter 1

Introduction

The objective of image synthesisor rendering is to provide the user with the illusion of watch-
ing real objects on the computer screen. The image is generated from an internal model that is
called the virtual world . To provide the illusion of watching the real world, the color sensation
of an observer looking at the artificial image generated by the graphics system must be similar
to the color perception which would be obtained in the real world (Figure 1.1).

Tone
mapping
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Radiance
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λ
λ

λ

λ

Power
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Figure 1.1: Tasks of rendering

The color perception of humans depends on the light power reaching the eye from a given

1



1. INTRODUCTION 2

direction. The power, in turn, is determined from the radiance [SK95] of the visible points.
The radiance depends on the shape and optical properties of the objects and on the intensity of
the light sources.

The image synthesis uses an internal model consisting of the geometry of the virtual world ,
optical material properties and the description of the lighting in the scene. From these, ap-
plying the laws of physics (e.g. rendering equation) the real world optical phenomena can be
simulated to find the light distribution in the scene.

The rendering equation [Kaj86] describes the light-material interaction on a single wave-
length and has the following form:

��
�� 
� � � ���
�� 
� � � �� ���
�� 
� �� (1.1)

where ��
�� 
� � is the radiance function at surface point 
� when looking from viewing direction

� , ���
�� 
� � is the self-emission and � is an integral operator called light transport operator
that is responsible for calculating a single reflection of the light. This equation expresses the
radiance of a surface as a sum of its own emission � ��
�� 
� � and the reflection of the radiances
of those points that are visible from here (� �)(
�, 
� ). To find the possible visible points, all
incoming directions should be considered and the other contribution of the directions should be
summed, which is done by the light transport operator:

�� ���
�� 
� � �
�
�

����
�� 
����
�� � ���
�� 
�� 
� � � ��� �	
 ��	
� (1.2)

where � is the directional hemisphere, ��
�� 
�� is the visibility function defining the point that
is visible from point 
� at illumination or lighting direction 
�, ���
�� 
�� 
� � is the bi-directional
reflection/refraction function (BRDF for short), �	
 is the angle between direction vector 
� the
surface normal 
� , and ��	
 is the differential solid angle at direction 
� (Figure 1.2).
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Figure 1.2: Geometry of the rendering equation



1. INTRODUCTION 3

BRDFs define the optical material properties of the surfaces. Some materials are dull and
reflect light dispersely and about equally in all directions (diffuse reflections); others are shiny
and reflect light only in certain directions relative to the viewer and light source (specular re-
flections).

First of all, consider diffuse — optically very rough — surfaces reflecting a portion of the
incoming light with radiance uniformly distributed in all directions. Looking at the wall, sand,
etc. the perception is the same regardless of the viewing direction (Figure 1.3). If the BRDF is
independent of the viewing direction, it must also be independent of the light direction because
of the Helmholtz-symmetry [Min41], thus the BRDF of these diffuse surfacesis constant on a
single wavelength:

��
�������
�� 
� � � ��� (1.3)

where �� is the diffuse reflection parameter, 
� is the direction of the incident light, and 
� is the
viewing direction.

L

N
V I
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Figure 1.3: Diffuse reflection

Specular surfacesreflect most of the incoming light around the ideal reflection direction

�, which is the mirror direction of lighting direction 
� onto surface normal 
� , thus the BRDF
should be maximum at this direction and should decrease sharply (Figure 1.4).
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Figure 1.4: Specular reflection
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The Phong BRDF[Pho75] was the first model proposed for specular materials, which uses
the ���� function for this purpose, thus the BRDF is the following:

��
	
��
�
�� 
�� 
� � � �� � ���
� �

��� �	

� �� � �


� � 
� ��

� 
� � 
�� � (1.4)

where �� is the specular reflection parameter, 
� is the mirror direction of 
� onto the surface
normal 
� , � is the shininess parameter, and 
�, 
� , 
� and 
� are supposed to be unit vectors.

Blinn [Bli77] proposed an alternative to this BRDF, which has the following form:
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where 
� is the halfway unit vector between 
� and 
� defined as:


� �

�� 
�

�
�� 
� � � (1.6)

Unlike Phong and Blinn models, which are only empirical constructions, Cook-Torrance
BRDF [CT81] is derived from physical laws and from the statistical analysis of the microfacet
structure of the surface and results in the following formula:

��
�����
�� 
�� 
� � �
$ � 
�� � % �&� 
� � 
��
� � � 
� � 
�� � � 
� � 
� �

� ���

��
�� � �


� � 
�� � � 
� � 
� �

�
� � 
��
� � � �


� � 
�� � � 
� � 
��
�
� � 
��

� 


��
� � (1.7)

where $ is the probability density of the microfacet normals, and % is the wavelength (&)
dependent Fresnel function computed from the refraction index and the extinction coefficient
of the material [SK95].

Examining these BRDF models, we can come to the conclusion that the reflected radiance
formulae are relatively simple functions of dot products (i.e. cosine angles) of the pairs of unit
vectors, including, for example, the light vector 
�, viewing vector 
� , halfway vector 
� , normal
vector 
� , etc.

1.1 Tasks of image synthesis

Image synthesis is basically a transformation of objects from modeling space to the color dis-
tribution of the display defined by the digital image (Figure 1.6). Its techniques mostly depend
on the space where the geometry of the internal model is represented. The photo is taken of
the model by a “software camera”. The position and direction of the camera are determined
by the user, and the generated image is displayed on the computer screen (Figure 1.5). The
transformation involves the following characteristic steps:
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� Primitive decomposition: The first step of image generation is the decomposition of
objects used for modeling into points, lines, or polygons suitable for the image synthe-
sis algorithms [Kun93]. In order to allow geometric transformations, the allowed type
of objects should be limited. Suppose, for example, that the scene consists of spheres.
Unfortunately, the transformation of a sphere, even if we use linear transformations, is
not necessarily a sphere, which changes the type of the object and makes the calculation
process complicated. In order to overcome this problem, the tessellation finds the sets
of geometric objects whose type is invariant under homogeneous linear transformation.
These types are the point, the line segment and the polygon. Tessellation approximates
all surface types by points, line segments and polygons.

� Transformation and clipping : Objects are defined in a variety of local coordinate sys-
tems. However, the generated image is required in a coordinate system of the screen since
eventually the color distribution of the screen has to be determined. This requires geo-
metric transformation. On the other hand, it is obvious that the photo will only reproduce
those portions of the model, which lie in the finite pyramid defined by the camera as the
apex, and the sides of the �� window. The process of removing those invisible parts that
fall outside the pyramid is called clipping [Kuz95].

� Rasterization, visibility computations and shading: In the screen coordinate system
the pixels that cover the projection of the objects should be identified, which is called the
rasterization. Whenever the visible object is identified, its color needs to be computed
using the approximated rendering equation.

� Tone mapping and display: The result of the solution of the rendering equation is the
radiance function sampled at different wavelengths and at different pixels. Computer
screens can produce controllable electromagnetic waves, or colored light, mixed from
three separate wavelengths for their observers. Thus image synthesis should compute the
�, �, � intensities that can be produced by the color monitor. This step is generally
referred to as tone mapping. In order to simplify this process, the rendering equation is
solved just only for three wavelengths, which directly correspond to the wavelengths of
the red, green and blue phosphors. We have to note that this is only an approximation,
but due to the fact that it can eliminate the tone mapping operation, became popular in
real-time graphics systems.

Note that transformation and clipping handle geometric primitives such as points, lines or
polygons, while in visibility and shading computation — if it is done in image space — the
primary object is the pixel. Since the number of pixels is far more than the number of primitives,
the last step is critical for real-time rendering.

For the sake of simplicity and without loss of generality, in this thesis we assume that the
polygon mesh consists of triangles only (this assumption has the important advantages that three
points are always on a plane and the triangle formed by the points is convex).
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The model in world coordinates

The transformed model in screen coordinates

The rendered image

Figure 1.5: The evolution of the image
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Figure 1.6: Dataflow of image synthesis

1.2 Incremental shading techniques

Incremental shading models take a very drastic approach to simplifying the rendering equation,
namely eliminating all the factors which can cause multiple interdependence of the radiant
intensities of different surfaces. To achieve this, they allow only non-refracting transparency
(where the refraction index is 
), and reflection of the light from point, directional and ambient
light sources, while ignoring the multiple reflections, i.e. the light coming from other surfaces.

The reflection of the light from light sources can be evaluated without the intensity of other
surfaces, so the dependence between them has been eliminated. In fact, non-refracting trans-
mission is the only feature left which can introduce dependence, but only in one way, since only
those objects can alter the image of a given object which are behind it, looking at the scene from
the camera.
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Figure 1.7: Radiance calculation in local illumination methods

If the indirect illumination coming from other surfaces is ignored and only directional and
positional light sources are present (Figure 1.7), � �� is a Dirac-delta type function which sim-
plifies the integral of the rendering equation to a discrete sum:
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(1.8)

where ���� is the outgoing radiance, � � is the self emission, �� and �� are the ambient reflection
parameter and the ambient intensity respectively, and � ��� is the incoming radiance generated by
light source �.

The radiance values are needed for each pixel, which, in turn, require the rendering equation
to be solved for the visible surface. The rendering equation, even in its simplified form, contains
a lot of complex operations, including the computation of the vectors, their normalization and
the evaluation of the output radiance, which makes the process rather resource demanding.

1.2.1 Rasterization

The image consists of pixels, thus rasterization approximates all objects by sets of pixels. Recall
that thanks to tessellation, we have to consider only point, line segment and triangle rasteriza-
tion. During rasterization, we also have to take into account that many different objects may
be projected onto the same pixel, thus they would be approximated by the same pixel. It must
be found out which object is used to determine the color of the pixel. This step is generally
referred as the visibility computation [Kau93].

Wire frame rendering

Wire frame rendering draws only the edges of the triangles approximating complex surfaces.
Since the intersections of these edges on the scene do not significantly modify the perception
of the image, the visibility computation can be ignored. Wire frame rendering is very fast,
however, the images are difficult to perceive, because parts, that otherwise should be invisible,
also show up. On the other hand, it is difficult to find out which parts are in front. To guide the
human perception, pixels that represent points close to the observer are drawn with intensive
colors. This technique, that can be interpreted as using fog in the scene, is called depth cueing.

Shaded rendering

Shaded rendering draws tessellated triangles including their interior not just their edges. For
each pixel belonging to the projection of a triangle, the visibility problem should be solved and
the color of the visible point should be computed. For the solution of the visibility problem,
the z-buffer algorithm has become the most popular. This algorithm recognizes that from those
patches that can be projected onto a given pixel that patch is really visible which is the closest
to the eye. In order to find the patch with the minimum distance, a separate buffer is maintained
which stores these distance values and patches are compared and inserted into the buffer during
rendering.

The calculation of the color of the visible surfaces is called the shading. In light-surface
interaction the surface illuminated by an incident beam may reflect a portion of the incoming
energy in various directions or it may absorb the rest. To find the color of the surfaces, we
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have to determine the incident illumination and to compute the light reflected towards the eye
according to the optical properties of the surface.

This can be rather time consuming if we used it independently for each pixel. However,
the distance of two close points from the camera, or their colors are usually quite similar. This
makes interpolation techniques worthwhile. Interpolation can be used to speed up the rendering
of the triangle mesh, where the expensive computations take place just at the vertices and the
data of the internal points are interpolated. A simple interpolation scheme would compute the
color and linearly interpolate it inside the triangle (Gouraud shading [Gou71]). However, specu-
lar reflections may introduce strong non-linearity, thus linear interpolation can introduce severe
artifacts (left of Figure 1.9). The core of the problem is that the color may be a strongly non-
linear function of the pixel coordinates, especially if specular highlights occur on the triangle,
and this non-linear function can hardly be well approximated by a linear function (Figure 1.8).

Ambient

Diffuse

Specular
Lightsource

Eye

Figure 1.8: Ambient, diffuse, and specular reflections

The artifacts of Gouraud shading can be eliminated by a non-linear interpolation called
Phong shading [Pho75] (right of Figure 1.9). In Phong shading, vectors used by the BRDFs in
the rendering equation are interpolated from the real vectors at the vertices of the approximat-
ing triangle; the interpolated vectors are normalized and the rendering equation is evaluated at
every pixel for diffuse and specular reflections and for each lightsource, which is rather time
consuming. The main problem of Phong shading is that it requires complex operations on the
pixel level, thus its hardware implementation is not suitable for real-time rendering.

Texture mapping

So far we have assumed the optical material properties are constant on the surfaces. This as-
sumption does not hold in practice, but the BRDF itself is a function of the surface point. To
define such a function, the surface is mapped to the unit square, called texture space, where the
BRDF data are stored. This means that during rendering each pixel should be transformed to
the texture space where the optical data are available. This method is called texture mapping
(bottom of Figure 1.5).
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Figure 1.9: Comparison of linear interpolation i.e. Gouraud shading (left) and non-linear interpolation
by Phong shading (right)

1.3 The objectives of this thesis

This thesis contributes to the state of the art of rendering by proposing new image synthesis
algorithms that overcome the drawbacks of linear interpolations and are comparable in image
quality with the already known, sophisticated techniques but allow for simple hardware imple-
mentation. These algorithms cover filtered line drawing, Phong shading, texture mapping and
ray-bundle based global illumination.

In order to achieve these goals, the following methodology was used. First, sophisticated
rendering algorithms providing the required visual quality were analyzed. Since these are too
intensive computationally, their hardware realization is not feasible. Based on a general frame-
work of using the incremental concept, the algorithms have been transformed to an equivalent
or approximately equivalent form with the aim of direct hardware support [AVJ01] [Abb95].

The new algorithms have been implemented in software and their functional properties
have been evaluated. Then, the algorithms also have been specified in VHDL [Ash90] [Per91]
[WWD�95], which is a popular computer hardware description language, assuming the delay
times according to Xilinx Synthesis Technology real FPGA device [Xil01]. The conversion al-
lowed the direct simulation in Model-Technology environments [Inc94], and the demonstrations
show that the algorithms can really provide real-time rendering.



Chapter 2

Hardware implementation of rendering
functions

In incremental image synthesis all operations are applied to linear objects, including points,
lines and triangles. These linear objects are the results of the tessellation process. The objects
are then transformed to the screen coordinate system and clipped. Note that the reason of
selecting these linear objects is that their type is invariant to these operations, i.e. a transformed
and clipped line segment is also a line segment, while a transformed and clipped triangle list is
also a triangle list. Suppose that these objects are already in the screen coordinate system.

Since these linear objects correspond to linear or in special cases constant functions, the
rendering of these objects requires the computation of linear or constant expressions over the
pixel grid. This chapter discusses how it can be realized efficiently by synchronous digital
networks.

2.1 Functions on scan-lines

This section reviews the implementation strategies of simple functions that shade the pixels in
a single scan-line.

2.1.1 One-variate constant functions

In this case we have to generate the sequence of � values from ������ to ���� and with each �
value we have to give a constant color � . For the generation of an � series, a counter is needed
that is initialized by ������ and a comparator to stop the counter when � � ����.

The resulting algorithm is:

for � � ������ to � � ���� do
Store � in the raster memory at �� � ;

endfor

The hardware implementation of one-variate constant functions is shown in Figure 2.1.

11
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Figure 2.1: Hardware implementation of one-variate constant functions

2.1.2 One-variate linear functions

Let us consider the implementation of the following linear function:

���� � '�� � '�� (2.1)

for � from ������ to ����.
If we implemented this directly, the hardware should compute a floating point multiplication

and an addition for each value, which is rather demanding. To eliminate the multiplication, we
introduce the incremental concept which computes ��� � 
� from the previous value ����
instead of �� � 
�, using the following formula:

��� � 
� � '��� � 
� � '� � '�� � '� � '� � ���� � '��

Note that in this way the computation requires just a single addition.
The sequence of ���� can be generated by the following algorithm:

� � '������� � '��
for � � ������ to ���� do

Store � in the raster memory at �� � ;
� += '��

endfor

The hardware implementation of one-variate linear functions is shown in Figure 2.2.
Note that the incremental concept traced back the computation of the multiplication to a

single addition. However, function � and the parameters are not necessarily integers, and it
is not possible to ignore the fractional part, since the incremental formula will accumulate the
error to an unacceptable degree. The realization of floating point addition is not at all simple.
Non-integers, fortunately, can also be represented in fixed point form where the low (� bits of
the code word represent the fractional part, and the high (� bits store the integer part. From a
different point of view, a code word having binary code ) represents the real number ) � ���� .
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Let us determine the length of the register needed to store � . Concerning the integer part, if � can
have values from � to � , then (� * ����� bits are needed. The number of bits in the fractional
part has to be set to avoid incorrect � calculations due to the cumulative error in � . Since the
maximum length of the iteration is + , �+ � �������� � ��������, and the maximum error
introduced by a single step of the iteration is less than ���� , the cumulative error is maximum
+���� . Incorrect calculations of � is avoided if the cumulative error is less than 
:

+���� , 
 �	 (� * ����+� (2.2)

Since the results are expected in integer form, they must be converted to integers at the
final stage of the calculation. The Round function finding the nearest integer for a real number,
however, has high combinational complexity. Fortunately, the Round function can be replaced
by the Trunc function generating the integer part of a real number if ��	 is added to the number
to be converted. The implementation of the Trunc function poses no problem for fixed point
representation, since just the bits corresponding to the fractional part must be neglected. This
trick can generally be used if we want to get rid of the Round function.

counter Register

comp.

CLK

start

end
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IX
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< <
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X
Figure 2.2: Hardware implementation of one-variate linear functions

2.1.3 One-variate quadratic functions

Let us consider the implementation of the following quadratic function:

���� � '��
� � '�� � '�� (2.3)

for � from ������ to ����.
To eliminate the multiplication, we apply the incremental concept two times. First the

quadratic expression is reduced to a linear one:

��� � 
� � '��� � 
�� � '��� � 
� � '� � ���� � ������

where ����� � �'�� � '� � '�.



2.2 FUNCTIONS ON TRIANGLES 14

Then we apply the incremental concept once more for the linear function �����:

���� � 
� � ����� � �'��

The resulting algorithm is:

� � '��
�
����� � '������� � '��

�� � �'������� � '� � '��
for � � ������ to ���� do

Store � in the raster memory at �� � ;
� += ���
�� += �'��

endfor

The hardware implementation of one-variate quadratic functions is shown in Figure 2.3.
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Figure 2.3: Hardware implementation of one-variate quadratic functions

2.2 Functions on triangles

This section reviews the implementation strategies of simple functions on scan-lines that are
used to fill image space triangles. A complete triangle is rendered by generating those scan-
lines and the pixels in these scan-lines which cover this triangle. For each scan-line, the start
and end points should be identified and the interpolation parameters need to be initialized, then
the scan-line interpolation can be initiated. As the hardware algorithm considers only horizontal
sided triangles — if not so — the image space triangle should be divided at �� coordinate to two
horizontal sided parts a lower and an upper (Figure 2.4). In this section we will consider only
lower horizontal sided triangle. The upper part can be handled similarly. Note that the color
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is two-variate function ���� � �. If only a scan-line is considered then � is constant and there
���� � � will be represented by a one-variate function ����.

Image space
    triangle

x

y

   Single
 scan-line

Single 
 pixel

X1,Y1

X2,Y2

X3,Y3

   Horizontal
 sided triangle
  (lower part)

y

xX1,Y1

X2,Y2

   Horizontal
 sided triangle
  (upper part)

Figure 2.4: Image space triangle and horizontal sided triangle

2.2.1 Two-variate constant functions

In this case we have to generate the sequence of ��� � � integer values called pixels that are
inside a horizontal sided triangle. The algorithm generates the pixels on a scan-line by scan-
line basis. In a single scan-line the � coordinate is constant.

When we step onto the next scan-line, � is incremented, and �������� � and ������ � coor-
dinates should be determined by the following equations and are illustrated in a raster grid by a
lower part horizontal sided triangle (Figure 2.5):

�������� � �
� � ��
�� � ��

� ��� ���� ����

������ � �
� � ��
�� � ��

� ��� ���� ���� (2.4)

Since �������� � and ������ � are linear functions, they can be simplified by applying the
incremental concept:

�������� � 
� � �������� � � �������

������ � 
� � ������ � � ����� (2.5)

where

������ �
�� ���

�� � ��
� ���� �

�� ���

�� � ��
� (2.6)
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The resulting algorithm is:

������ � ���
���� � ���
for � = �� to �� do

for � = ������ to ���� do
Store � in the raster memory at �� � ;

endfor
������ += �������
���� += �����

endfor

The hardware implementation of two-variate constant functions is shown in Figure 2.5 .
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Figure 2.5: Hardware implementation of two-variate constant functions (left) and a raster grid (right)

2.2.2 Two-variate linear functions

Let us consider the implementation of the following linear function:

���� � � � '�� � '�� � '�� (2.7)

for ��� � � pairs that are inside a horizontal sided triangle. The ��� � � pairs are generated
scan-line by scan-line as discussed in the previous section.

To eliminate the multiplication, we introduce the incremental concept of each scan-line and
for their start edges:

��� � 
� � � � ���� � � � '��

��� � ������� � � 
� � ���� � � � ����� � ��

where ����� � � � '������� � '��
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The resulting algorithm is:

������ � ���
���� � ���
������ � '������� � '������� � '��
�� � '������� � '��
for � � �� to �� do

� � �������
for � � ������ to ���� do

Store � in the raster memory at �� � ;
� += '��

endfor
������ += ���
������ += �������
���� += �����

endfor

The hardware implementation of two-variate linear functions is shown in Figure 2.6.
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Figure 2.6: Hardware implementation of two-variate linear functions

The registers usually have two data inputs � and -. � is the input to the register when the
load signal is active, and - is the input to the register for each clock. The clock signal of the
subsystem responsible for the internal pixels of the scan-lines is the system clock. However,
the clock signal controlling the elements that compute the interpolation at the start edge is the
output of the comparator detecting the end of the scan-line.
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2.2.3 Two-variate quadratic functions

Let us consider the implementation of the following quadratic function:

���� � � � '��
� � '��� � '��

� � '�� � '�� � '�� (2.8)

To simplify Equation 2.8, we introduce the incremental concept for the scan-lines and for
their start edges. First, the quadratic function is reduced to a linear one for the scan-lines:

��� � 
� � � � ���� � � � ����� � ��

where ����� � � � �'�� � '�� � '� � '�.

Applying the incremental concept once more for the linear function ����� � �, we obtain
the incremental value inside the scan-lines:

���� � 
� � � � ����� � � � �'��

When we step onto the next scan-line, � is incremented, and the start ������ and the end
���� coordinates should be determined by Equation 2.6.

Now let us consider the computation on the start edge. The quadratic function ���� � � will
be reduced to a linear one:

��� � ������� � � 
� � ���� � � � ���������� � ��

where

���������� � � � '��
�
����� � ��'�� � '�� � '� � '�������� � '�� � �'�� � '� � '��

Applying the incremental concept once more for the linear function ���������� � �, we ob-
tain the incremental value on the start edges:

��������� � ������� � � 
� � ���������� � � � ��'��
�
����� � '������� � '���

To obtain the incremental value for the scan-lines at the start edges we should apply the
incremental concept once more for the linear function ����� � �:

���� � ������� � � 
� � ����� � � � �'������� � '��
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Let us group the above formulation in the following algorithm:

������ = ��� ���� = ���
��������� � � � '��

�
����� � '������������� � '��

�
����� � '������� � '������� � '��

���������� � � � '��
�
����� � ��'������� � '������� � '� � '��������

+ '������� � �'������� � '� � '��
���������� � � � �'������� � '������� � '� � '��
for � = �� to �� do

���� � � = ��������� � ��
����� � � = ���������� � ��
for � = ������ to ���� do

Store ���� � � in the raster memory at �� � ;
���� � � += ����� � �� ����� � � += �'��

endfor
���������� � � += �'������� � '��
��������� � � += ���������� � ��
���������� � � += ��'��

�
����� � '������� � '���

������ += ������� ���� += �����
endfor

The hardware implementation of two-variate quadratic functions is shown in Figure 2.7.
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As we have already discussed it in Section 2.1.2, function � and the parameters are not
integers, thus we have to use fixed point representation. However, now the number of fractional
bits should be determined differently. In order to obtain ���� � � for some �� � pixel,

+� 
 ������ � ���

iteration steps are executed on the start edge and

+� 
 ������ ����

steps on the horizontal span. A single iteration step involves the calculation of increments �� or
������� as an addition with a constant, then the increase of � or ������ by the current increment
values. The maximum error introduced by an addition with a constant is ���� , thus after .
steps, the cumulative error of the increment is less than . � ���� . Consequently, the cumulative
error in values � and ������ after + steps is less than:

��
���

. � ���� � +�+ � 
� � ��������� (2.9)

Incorrect calculations of � is avoided if the cumulative error is less than 
. Since a single
value requires at most +� steps on the start edge and +� steps on the horizontal span, we
obtain:

�+��+��
��+� �+� �
��� �������� , 
 �	 (� * �����+��+��
��+� �+� �
���
�
(2.10)

If the horizontal and vertical sizes of the largest allowed triangle are 	
� pixels, then this
formula results in the requirement of �� fractional bits.

Note that quadratic interpolation roughly doubles the number of fractional bits compared
with linear interpolation.



Chapter 3

Drawing lines

Line drawing algorithms take very important part in the design of computer graphics software
and hardware, where many images are mostly composed of line segments. The task is to identify
the set of those pixels that approximate the appearance of �� or �� lines [Gar75]. Simple
sampling algorithms would make it too obvious that the approximation consists of a set of
small rectangles, creating jagged or stair-cased images. These jaggies can be eliminated by
sophisticated filtering, which is called the anti-aliasing.

A scan-conversion algorithm for lines computes the coordinates of the pixels that lie on or
near to an ideal, infinitely thin straight line imposed on a �� raster grid. In principle, we would
like the sequence of pixels to lie as close to the ideal line as possible and to be as straight as pos-
sible. If we consider one-pixel-thick approximation to an ideal line, the properties will change
according to its slope. For lines with slopes between �
 and 
 inclusive, exactly one-pixel
should be illuminated in each column, but for lines with slopes outside this range, exactly one-
pixel should be illuminated in each row. All lines should be drawn with constant brightness, in-
dependently of its length and orientation, and as rapidly as possible [RBX90] [SKM94] [BB99].

Let the two end points of the line segment be ���� ��� and ���� ��� respectively. Then the
slope of the line is:

. �
�� � ��
�� ���

�
��

��
� (3.1)

Since we will consider only the cases of slope � 
 . 
 
, [Abb98] we have:

� , �� � �� 
 �� ����

3.1 Bresenham algorithm

In the incremental concept . must be real or fractional binary because the slope is a frac-
tion. Bresenham developed a classic algorithm, which uses only integer arithmetic. The
choice of pixels is made by testing the sign of a Discriminator based on the Midpoint princi-
ple [FvDFH90] [Che97]. The Discriminator obeys a simple recursive strategy where the chosen
pixel will be the closest to the true line.

21
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We assume that the slope of the line is between � and 
, where ���� ��� represents the
lower-left endpoint and ���� ��� represents the upper-right endpoint.

Consider the line in Figure 3.1 where the previously selected pixel appears as black circle
and the two pixels from which to choose at the next stage are shown as unfilled circles. Assume
that we have just selected the pixel $ at ��� � �� � and now must choose between the pixel
one increment to right (called the east pixel, /) or the pixel one increment to right and one
increment up (called the north-east pixel, �/). Let 0 be the intersection point of the line being
scan-converted with the grid line � � �� � 
. In Bresenham’s formulation, the difference
between the vertical distances from / and �/ to 0 is computed, and the sign of the difference
is used to select the pixel whose distance from 0 is smaller as the best approximation to the
line. In the Midpoint formulation, we observe on which side of the line the Midpoint + lies. If
+ lies above the line, pixel / is closer to line, and if + lies below the line, pixel �/ is closer
to the line. The line may pass exactly between / and �/, or both pixels may lie on one side
of the line. Also the error which is the vertical distance between the chosen pixel and the actual
line is always less than a half.

M
Q

P(X

NE

Previous
    pixel

 Choices for
current pixel

Choices for
  next pixel

Desired
    lineE

P P,Y )

Figure 3.1: Pixel grid for Bresenham’s Midpoint based line generator

Now all we need is a way to calculate on which side of the line + lies. Let us represent the
line by an implicit function with coefficients �, (, and #:

% ��� � � � � �� � ( � � � # � �� (3.2)

If �� � �� � ��, and �� � �� ���, the slope-intercept form can be written as:

� �
��

��
�� ���

therefore:

% ��� � � � �� �� ��� � � �� ��� � �� (3.3)
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here � � ��� ( � ��� and # � � ��� .
It can easily be verified that % ��� � � is zero on the line, positive for points below the line,

and negative for points above the line. To apply the Midpoint criterion, we need only to compute
% �+� � % ��� � 
� �� � ��	�, and to test its sign. Because our decision is based on the value
of the function at ��� �
� �� ���	�, we define a decision variable �1 � % ��� �
� �� ���	�.
By definition, �1 � � � ��� � 
� � ( � ��� � ��	� � #.

If �1 
 �, then pixel / is selected, + is incremented by one in � direction, and the next
position we need to consider is ��� � �� �� � ��	�. Here we have:

�1�/� � % ��� � �� �� � ��	� � � � ��� � 
� � ( � ��� � ��	� � #� � � �1 � �� (3.4)

where we call the increment to add �/� � � � �� .
If �1 * �, then pixel �/ is selected, + is incremented by one step in both � and �

coordinates, and the next position we need to consider is ��� � �� �� � 
�	�. Here we have:

�1��/� � % ��� ��� �� �
�	� � � � ��� �
��( � ��� ���	��#���( � �1���(� (3.5)

where we call the increment to add �/� � �� ( � �� ��� .
Since ���� ��� is on the line, % ���� ��� � �, so we can directly calculate the initial value

of �1 for choosing between / and �/. The first midpoint is at ��� � 
� �� � ��	�� and:

% ��� � 
� �� � ��	� � % ���� ��� � ��
(

�
� % ���� ��� ��� � ��

�
� % ���� ��� � �1������

(3.6)
Using �1�����, we choose the second pixel, and so on. To eliminate the fraction in �1�����, we
multiply the original function % ��� � � (Equation 3.2) by �:

% ��� � � � � � �� �� � ( � � � #��

This also multiplies the constants �/� and �/� and the decision variable �1����� without
affecting its sign.

Bresenham summarized the above formulation in to the following algorithm (note that we
renamed the decision variable �1 to /):

BresenhamLineGenerator���� ��� ��� ��� ��
��=��-��� �� =��-��;
/= - ��; �/� = � ��� ; �/� = ���� - ���;
� � ��;
for � � �� to ��

if / 
 � then / += �/�;
else / += �/�; � ++;
endif
Add Frame Buffer ��� �� ��;

endfor
end
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3.1.1 Hardware implementation of Bresenham’s line-drawing algorithm

The hardware implementation of Bresenham’s line-drawing algorithm is straightforward. Note
that the selection of the pixel coordinates �� � is evaluated at every clock cycle, where the �
coordinate is always incremented by 
, and the increment of the � coordinate depends on the
sign of the decision variable /. If the sign of / is zero or negative, there is no increment in the
� coordinate and, if the sign of / is positive, the � coordinate is incremented by 
. Note that
the generated line is “jagged” as shown in bottom of Figure 3.11 because we did not apply any
filtering techniques. The block scheme of this hardware is shown in Figure 3.2. We can follow
the operation of this hardware through its timing sequence shown in Figure 3.3. The control
sequence of the hardware is given by the following behavioral model:

ARCHITECTURE Behavior OF BresenhamLG IS
BEGIN -- The line runs from (0,0) to (7,5)

PROCESS ( ClkX )
VARIABLE Xi,Yi,Ev: bit_vector_16;
VARIABLE Running: BOOLEAN := FALSE;
BEGIN
IF ( Running = FALSE ) THEN

IF ( Start = ’1’ ) THEN
Stop <= ’0’;
Running := TRUE;
Ev := E;
Xi := X1;
Yi := Y1;

END IF;
ELSE

IF( ClkX = ’0’ ) THEN
IF ( Xi > X2 ) THEN
Running := FALSE;
Stop <= ’1’;

ELSE
IF ( Ev < 0 ) THEN

Ev := (Ev + Edec);
ELSE

ClkY <= ’1’, ’0’ AFTER Delay;
Ev := (Ev + Einc);
Yi := (Yi + 1);

END IF;
END IF;

ELSE -- Add-Frame-Buffer and inrement X
X <= Xi;
Y <= Yi;
Xi := (Xi + 1);

END IF;
END IF;

END PROCESS;
END Behavior;
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Figure 3.2: Hardware implementation of Bresenhame’s line-drawing algorithm

Figure 3.3: Time sequence of the hardware implementation of Bresenhame’s line-drawing algorithm



3.2 ANTI-ALIASING LINES 26

3.2 Anti-aliasing lines

Line anti-aliasing methods are important techniques to handle the jagged lines [CW99] [Lui94]
[Cro81]. These jaggies are the result of the improper sampling, which can be reduced by fil-
tering. In order to realize this filtering, anti-aliasing line drawing algorithms have to calculate
an integral over the intersection of one-pixel wide line and support of the filter kernel centered
around the pixel concerned. The support and the shape of the filter depend on the selected filter
type.

An ideal low pass filter would require the !��# function to be convolved with the line, but
this is quite intensive computationally, has infinite support, and may result in negative colors,
which cannot be displayed. Thus approximations of the !��# function are used in practice. The
simplest and the most popular approximation is the box filter, which is 
 inside a pixel area and
� otherwise.

3.2.1 Box-filtering lines

For box filtering, the intersection of the one-pixel wide line segment and the pixel concerned has
to be calculated. The color of the pixel will be a sum of the line color and the background color,
weighted by the intersection area and that area of the pixel which is not inside the intersection,
respectively.

Looking at Figure 3.4, we can see that a maximum of three pixels may intersect a pixel
rectangle in each column if the slope is between � and �	 degrees. Let the vertical distance of
the three closest pixels to the center of the line be !, � and 2 respectively, and suppose ! , � , 2.
By geometric considerations !, � , 
, !� � � 
 and 2 � 
 should also hold.

One pixel wide
   line segment

1

r
s

t

At

A

Ar

s

0

1

Figure 3.4: Box filtering of a line segment

Unfortunately, the areas of intersection, ��, �� and ��, depend not only on !, � and 2, but
also on the slope of the line segment. This dependence, however, can be ignored by using the
following approximation:

�� � �
� !�� �� � �
� ��� �� � �� (3.7)



3.2 ANTI-ALIASING LINES 27

These equations are accurate only if the line segment is horizontal, but can be accepted as a fair
approximation for lines with a slope from � to �	 degrees. Variables ! and � are calculated for a
line � � . �� � (:

! � . �� � (� �34���. �� � (� � /2232���� � � 
� !� (3.8)

where /2232��� is, in fact, the accuracy of the digital approximation of the line for vertical
coordinate � . The color contribution of the two closest pixels in this pixel column is:

�� � � � �
� /2232����� �� � � �/2232���� (3.9)

These formulae are also primary candidates for incremental evaluation since if the closest
pixel has the same � coordinate for an � � 
 as for �:

���� � 
� � ������ � �.� ���� � 
� � ����� � � �.�

If the � coordinate has been incremented when stepping from � to � � 
, then:

���� � 
� � ������ � �. � �� ���� � 
� � ����� � � �.� ��

The incremental algorithm of Bresenham’s line generator using Box filter is:

AntiAliasedBresenhamLine���� ��� ��� ��� ��
��=��-��� �� =��-��;
/= - � ���; �/� = � ��� ; �/� = ���� - ���;
���= �� / ��; ��� = � - ���;
�� = � + ���; �� = - ���;
� � ��;
for � � �� to ��

if / 
 � then
/ += �/�; �� -= ���; �� += ���;

else
/ += �/�; �� += ���; �� -= ���; � ++;

endif
Add Frame Buffer ��� �� ���; Add Frame Buffer ��� � +
� ���;

endfor
end

This algorithm assumes that the frame buffer is initialized such that each pixel has the color
derived without taking this new line into account, and thus the new contribution can simply be
added to it. This is true only if the frame buffer is initialized to the color of background and
lines do not cross each other. The artifact resulting from crossed lines is usually negligible.

In the general case � must rather be regarded as a weight value determining the portions of
the new line color and the color already stored in the frame buffer, which corresponds to the
color of objects behind the new line. This requires program line “Add Frame Buffer ��� �� ��”
to be replaced by the following statements:
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old-color = frame-buffer ��� � �;
frame-buffer ��� � � = line-color � � � old-color � �
� ��;

3.2.2 Incremental cone-filtering lines

Box filter is a piece-wise constant approximation of the !��# function. An even better approx-
imation is provided by a piece-wise linear function, which is called the cone filter. For cone
filtering, the volume of the intersection between the one-pixel wide line segment and the one-
pixel radius cone centered around the pixel concerned has to be calculated. The height of the
cone must be selected to guarantee that the volume of the cone is 
. Looking at Figure 3.5, we
can see that a maximum of three pixels may have intersection with a base circle of the cone in
each column if the line slope is between � and �	 degrees.

D

Figure 3.5: Cone-filtering of a line segment

Let the distance between the pixel center and the center of the line be �. For possible
intersection, � must be in the range of ��
�	 � � � 
�	�� For a pixel center ��� � �, the convolution
integral — that is the volume of the cone segment above a pixel — depends only on the value of
�, thus it can be computed for discrete � values and stored in a lookup table � ��� during the
design of the algorithm. The number of table entries depends on the number of intensity levels
available to render lines, which in turn determines the necessary precision of the representation
of �. Since � � � � 
� intensity levels are enough to eliminate the aliasing, the lookup table is
defined here for three and four fractional bits. Since function � ��� is obviously symmetrical,
the number of necessary table entries for three and four fractional bits is 
�	 � �� � 
� and

�	 � �� � �� respectively. The precomputed � ��� tables for three and four fractional bits, are
shown in Figure 3.6.

Now the generation of � and the subsequent pixel coordinates must be discussed. Gupta
and Sproull [GSS81] proposed a modification of the Bresenham algorithm to produce the pixel
address and introduce an incremental scheme to generate the subsequent � distances. However,
it required floating point multiplications on the pixel level, which are hard to realize in hard-
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Figure 3.6: Precomputed � ��� weight tables

ware. Thus we propose a new algorithm that has a similar approach, but applies just fixed point
additions [Abb01].

Let the slope of the line be 5, and the vertical distance between the center of the line and the
closest pixel be � (note that, for the sake of simplicity only lines slopes in the range of �� � � � �	�
are considered).

For geometric reasons, as illustrated by Figure 3.7, the � values for the three vertically
arranged pixels are:

� � � � ���5 � � � ���
����� � ��� ��

� � ����

�� � �
� �� � ��� 5 � �� �
���

����� � ��� ��
� �� ����

�
 � �
 � �� � ���5 � � �
���

����� � ��� ��
� � ���� (3.10)
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Figure 3.7: Incremental calculation of distance �

Let us realize that these formulae can also be simplified by the incremental concept. Assume
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first that the Bresenham algorithm does not increment the � coordinate:

��� � 
� � ���� �
��

��
�

��� � 
� � ���� �
���

����� ��� ��
� ���� � ���� (3.11)

Now we consider the case when the Bresenham algorithm increments the � coordinate:

��� � 
� � 
�
	
����� ��

��



�

��� � 
� � ����� �
	

� ��

��



� ���

����� ��� ��

� ����� �
�� ����

����� ��� ��
� ����� � ���� (3.12)

The complicated operations including divisions and square root in Equations 3.10, 3.11
and 3.12 should be executed once for the whole line, thus the pixel level algorithms contain
just simple instructions and a single addition not counting the averaging with the colors already
stored in the frame buffer.

In the subsequent program expressions that are difficult to calculate are evaluated at the
beginning, and stored in the following variables:

�"�3. �

�

����� � ��� ��
� �� � �� � �"�3.� (3.13)

Summarizing the new incremental cone-filtering line-drawing algorithm is:

IncrementalConeFilteringLine ���� ��� ��� ��� ��
�� = ��-��; �� = �� � ���
/ = - ��� �/� =2 ��� � �/� = ���� - ���;

�"�3. � 
 
�
����� � ��� ��; �� = �� � �"�3.�

� � ��;
for � � �� to �� do

if / 
 � then
/ += �/�; � += ���;

else
/ += �/�; � += ���; � ++;

endif
�
 = � + ��; �� = - � + ���
Add Frame Buffer ��� �� � �����
Add Frame Buffer ��� � +
� � ������
Add Frame Buffer ��� � -
� � ��
���

endfor
end
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3.2.3 Hardware implementation of incremental cone-filtering lines

The hardware implementation of incremental cone-filtering lines algorithm is based on Bre-
senham line generator algorithm to enhance the generated line by removing the jaggies, where
three adjacent pixels are intensified in the � coordinate for every step on the � coordinate.
The three pixels are ��� � �� ��� � � 
� and ��� � � 
�. The hardware is composed of two
stages, stage one and stage two. Stage one loads the initial values for all registers and coun-
ters, calculates the �� � coordinates of the center line, and the values for all the variables used.
Stage two computes the three pixels coordinates, fetches their color values from a precomputed
color table according to their relevant indexed values stored in the registers �, �
, and �� ,
respectively. In stage one, each of the working registers /, �, �
, and �� requires one clock
cycle to modify its value, so four clock cycles are needed to complete stage one operation. At
the working registers � and / the sign of the decision variable / will be checked, if the sign of
/ is zero or negative � is incremented by 
, / is incremented by �/�, and � is incremented
by ���. If the sign of / is positive, both � and � are incremented by 
, / is incremented
by �/�, and � is incremented by ���. When this process is over, the --� (start stage two
signal) is activated. The working registers �� and �
 are modified as follows, �
 � ����
and �� � �� � ��. Stage two needs only three clock cycles to compute the three pixels
coordinates and stors their colors in the raster memory. Because Stage two does not depend on
�
 and �� , so the two stages can overlap each other by two clock cycles (Figure 3.10). Stage
two has no operation for the forth clock cycle, because it waits for stage one to complete its
operation. At the initialization process � is initialized to ���, and �� and �
 are initialized
to zero. To have visible time sequence, the line runs from ��� �� to ��� 	�� The block scheme of
this hardware is shown in Figure 3.8 and its generated timing sequence is given by Figure 3.9.

The initialization process and the control of the working registers are given by the following
behavioral model:

ARCHITECTURE Behavior OF Control1 IS
BEGIN

PROCESS ( CLK )
VARIABLE State: INTEGER RANGE 0 to 15 := 0;
BEGIN
IF ( CLK = ’1’ ) THEN

CASE State IS -- 0 to 11; are the loading states
WHEN 12 => -- 12 to 15; are the working states
IF ( StopSS2 = ’1’ ) THEN

StartS2 <= ’0’; State := 0;
ELSE

Sel1Out <= Sel_D; Sel1In <= Sel_D; PM <= ’1’;
IF ( EOut = ’1’ ) THEN -- E is negative or zero
Sel2 <= Sel_dDm; -- Delta D mince

ELSE -- E is positive
Sel2 <= Sel_dDp; -- Delta D plus

END IF;
ClkMpxR <= ’1’ AFTER Delay1, ’0’ AFTER Delay2;
State := 13;

END IF;



3.2 ANTI-ALIASING LINES 32

WHEN 13 =>
Sel1In <= Sel_E; Sel1Out <= Sel_E; PM <= ’1’;
IF ( EOut = ’1’ ) THEN

Sel2 <= Sel_dEm; -- Delta E mince
ELSE

Sel2 <= Sel_dEp; -- Delta E plus
ClkY <= ’1’, ’0’ AFTER Delay;

END IF;
StartS2 <= ’1’ AFTER Delay1, ’0’ AFTER Delay2;
ClkMpxR <= ’1’ AFTER Delay1, ’0’ AFTER Delay2;
State := 14;

WHEN 14 => -- DL = Delta low, --dD = Delta D
Sel1Out <= Sel_D; Sel1In <= Sel_DL; Sel2 <= Sel_dD; PM <= ’1’;
ClkMpxR <= ’1’ AFTER Delay1, ’0’ AFTER Delay2;
State := 15;

WHEN 15 => -- DH = Delta high, --dD = Delta D
Sel1Out <= Sel_D; Sel1In <= Sel_DH; Sel2 <= Sel_dD; PM <= ’0’;
ClkMpxR <= ’1’ AFTER Delay1, ’0’ AFTER Delay2;
State := 12;

END CASE;
END IF;

END PROCESS;
END Behavior;
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Figure 3.8: Hardware implementation of incremental cone-filtering lines
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Figure 3.9: The time sequences of incremental cone-filtering lines
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Figure 3.10: The overlapped operations in the hardware of incremental cone-filtering lines
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Figures 3.11 and 3.12 illustrate the results of Bresenham line-drawing algorithm, and the
Bresenham’s line-drawing with box-filtering and incremental cone-filtering algorithms.

Figure 3.11: Comparison of lines drawn by Bresenham’s algorithm (bottom), box-filtering (middle) and
the incremental cone-filtering (top)

Figure 3.12: Comparison of coarsely tessellated wire-frame spheres (�� triangles) drawn by
Bresenham’s algorithm (left), box-filtering (middle) and the incremental cone-filtering (right)
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3.3 Depth cueing

To enhance the appearance of �� wire-frame images, a depth cueing procedure is applied,
which uses more intensive colors for rendering those pixels which are closer to the eye position
and the pixels become darker as the line gets further into the background, so the line seems
to fade into the distance (Figure 3.13). A basic line drawing algorithm can generate the pixel
address of a �� digital line, therefore it must be extended to produce the color intensities by
an incremental algorithm. In order to derive an incremental formula, the increment of inten-
sity � is determined. Let the �� screen space coordinates of the two end points of the line
be ���� ��� ��� and ���� ��� ��� respectively and suppose that the � values are in the range
�� � � � �����. Assume that the intensity factor of depth cueing is )��� for � � � and )��� for
����. The number of pixels composing this digital line is � � .������ � ���� ��� � ����.
The perceived color, taking into account the effect of depth cueing, is:

���� � �� � )��� � �� �
	
)��� � )��� � )���

����

� �


� (3.14)

The difference in the color of the two pixel centers is �� � ������� ������ � . This constant
value should be added to the pixel color, which can be realized by a simple hardware similar to
that of Figure 2.6.

Figure 3.13 also demonstrates hidden surface removal (visibility calculation), which finds
the surface points that are visible through the given pixels, that are the nearest from the eye
towards the center of the concerned pixels. For this, the z-buffer method is used.

Figure 3.13: Comparison of coarsely tessellated wire-frame spheres (�� triangles) hidden surface
removed, without depth-cueing (left) and with depth-cueing (right)



Chapter 4

Shaded surface rendering with linear
interpolation

As mentioned in Section 1.2, the rendering equation, even in its simplified form, contains a lot
of complex operations, including the computation of the vectors, their normalization and the
evaluation of the output radiance, which makes the process rather resource demanding.

The speed of rendering could be significantly increased if it were possible to carry out the
expensive computations just for a few points or pixels, and the rest could be approximated from
these representative points by much simpler expressions. One way of obtaining this is the tes-
sellation of the original surfaces to triangle meshes and using the vertices of the triangles as
representative points. These techniques are based on linear (or in the extreme case, constant)
interpolation requiring a value of the function to be approximated at the representative points,
which leads to the incremental concept. These methods are particularly efficient if the geo-
metric properties can also be determined in a similar way, connecting incremental shading to
the incremental visibility calculations of triangle mesh models. Only triangle mesh models are
considered, thus the geometry should be approximated by a triangle mesh before the algorithms
can be used. It is assumed that the geometry has been transformed to the screen coordinate
system suitable for visibility calculations and projection. In the screen coordinate system the
�� � coordinates of a point are equal to the corresponding coordinates of that pixel in which
this point can be seen, and the � coordinate increases with the distance from the viewer, thus it
is the basis of visibility calculations (Figure 4.1). Note, on the other hand, that the vectors used
by the rendering equation are not transformed, because the viewing transformation is not angle
preserving, thus the transformation would distort the angles between them.

4.1 Rasterizing an image space triangle

Having transformed the triangles to the screen space, those pixels that cover the projection of
the triangle should be identified. This is a triangle filling algorithm (Section 2.2).

In the following sections a visibility algorithm and incremental shading algorithms are dis-
cussed, which are capable to work parallel to the triangle rasterization algorithm [YR97].

36
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Figure 4.1: Transformation to the screen coordinate system

4.2 Linear interpolation on a triangle

In image synthesis functions should be computed on image space triangles (Figure 2.4). The
most important family contains linear functions.

Suppose that the function to be interpolated is 6��� � � where 6 can be either vector or scalar
and �� � are the pixel coordinates (Figure 4.2).
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Figure 4.2: Linear interpolation on a triangle
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The function is defined by values at the vertices of the triangle, i.e. we have:

6� � 6���� ���� 6� � 6���� ���� 6� � 6���� ����

Linearity means that:

6��� � � � � �� � ( � � � #� (4.1)

The question is whether or not these parameters �, ( and # are worth computing and using
in the interpolation scheme or their computation requires too much overhead.

In this section three linear interpolation methods are discussed and compared.

4.2.1 2D linear interpolation

This alternative computes the �, ( and # parameters of the interpolation scheme and uses the
standard form of the �� function during interpolation. These parameters can be computed
from the constraints at the vertices:

6� � � ��� � ( � �� � #�

6� � � ��� � ( � �� � #�

6� � � ��� � ( � �� � #� (4.2)

This is a system of linear equations for unknown parameters �, ( and #.
When the parameters are available, function 6 for a given �� � requires the evaluation of

� � � � ( � � � #� which, in turn, needs two multiplications and two additions. This step can
also be speeded up by the incremental concept since:

6�� � 
� � � � 6��� � � � ��

thus a new function value requires just a single addition.

4.2.2 Using a sequence of 1D linear interpolations

It is usually simpler to replace the two-variate interpolation scheme by two one-variate schemes,
one running on the edges of the triangle and the other running inside horizontal spans called
scan-lines.

Thus it is enough to consider a one-variate interpolation either on the edge of the triangle
or inside the scan-line. This alternative uses the values of the coordinates and the vectors at the
start and end edges of the triangle at each scan-line, which are evaluated from the coordinates
and the vectors at the three vertices, and applies a running variable � between the start and end
edges of each scan-line. That is � � � at the start edge and � � 
 at the end edge, where

� �
� �������

���� �������

� (4.3)
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The scheme of interpolation on the scan-line is as follows:

6��� � �
� �� � 6����� � � � 6���� (4.4)

Substituting � in Equation 4.4 for the � coordinate of a single scan-line, we obtain:

6��� �
���� ��

���� �������

� 6����� � � �������

���� �������

� 6���� (4.5)

Applying the incremental concept to Equation 4.5 yields to:

6�� � 
� � 6��� �
6��� � 6�����
���� �������

(4.6)

4.2.3 Interpolation with blending functions

Originally, the interpolating function is linear. Let us express 6 with � blending functions:

6��� � � � ����� � � � 6� � ����� � � � 6� � ����� � � � 6� (4.7)

where
����� � � � ���� � ���� � ���

(� � 
� �� �� is a linear weighting function. The interpolation criterion requires that ����� � � �

 at vertex � and � in the other two vertices. From this criterion, the parameters ����� ���� ���� of
each weighting function can be determined.

4.3 An image space hidden surface elimination algorithm:
the z-buffer algorithm

One of the simplest visible-surface algorithms to implement in either software or hardware, is
the z-buffer algorithm. In addition to a frame-buffer �%7� in which color values are stored,
a z-buffer ��7� is designed with the same number of entries, in which a z-value is stored for
each pixel. The z-buffer is initialized to infinity, representing the z-value at the back-clipping
plane, and the frame buffer is initialized to the background color. The smallest value that can
be stored in the z-buffer represents the � coordinate of the front clipping plane. Triangles are
scan-converted into the frame buffer in arbitrary order. During the scan-conversion process, if
the triangle point being scan-converted at ��� � � is closer to the viewer than the point whose
color and depth are currently in the buffers, then the new point’s color and depth replace the old
values.
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The basic form of the z-buffer algorithm is:

Initialize frame-buffer to background color;
Initialize each cell of z-buffer�� to �;
for each object 8 do

for each pixel $ covered by the projection of 8 do
if z-coordinate of the surface point , z-buffer �$ � then

color of $ = color of surface point;
z-buffer�$ � = depth of surface point;

endif
endfor

endfor

No presorting is necessary and no object-object comparisons are required. The entire pro-
cess is no more than a search over each set of pairs �7���� � �� %7���� � � for fixed � and � , to
find the smallest ��. The z-buffer and the frame-buffer record the information associated with
the smallest � for each ��� � �.

4.3.1 Hardware implementation of z-buffer algorithm

Having approximated the surface by a triangle mesh, the surface is given by the set of mesh
vertices, which should have been transformed to screen coordinate system. The visibility cal-
culation of the surface is thus a series of visibility computations for screen coordinate system
triangles. This allows us to consider only the problem of scan conversion of single triangle.
Let the vertices of the triangle in screen coordinates be 
2� � ���� ��� ���, 
2� � ���� ��� ���
and 
2� � ���� ��� ���, respectively. The scan-conversion algorithm should determine the �� �
pixel addresses and the corresponding � coordinates of those pixels which belong to this tri-
angle (Figure 4.3). If the �� � pixel addresses are already available, then the calculation of
the corresponding � coordinate can exploit the fact that the triangle is on a plane, thus the �
coordinate is some linear function of the �� � coordinates. This linear function can be derived
from the equation of the plane, using the notation 
� and 
2 to represent the normal vector and
the points of the plane respectively:


� � 
2 � 
� � 
2� (4.8)

where

� � �
2� � 
2��
 �
2� � 
2���

Let us denote the constant 
� � 
2� by ), and express the equation in scalar form, sub-
stituting the coordinates of the vertices 
2 � ��� �� ���� � �� and the normal of the plane

� � ��� � �� � ���. The function of ���� � � is then:

���� � � �
) � �� �� � �� � �

��
� (4.9)

This linear function must be evaluated for those pixels which cover the pixel space triangle de-
fined by the vertices ���� ���, ���� ��� and ���� ���. Equation 4.9 is suitable for the application
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Figure 4.3: Screen space triangle

of the incremental concept. In order to make the boundary curve differentiable and simple to
compute, the triangle is split into two parts by a horizontal line at the position of the vertex
which is in between the two vertices in the � direction (horizontal sided triangle).

The computational burden for the evaluation of the linear expression of the � coordinate
and for the calculation of the starting and ending coordinates of the horizontal spans of pixels
covering the triangle can be significantly reduced by the incremental concept (Figure 4.4).
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Figure 4.4: Incremental concept in z-buffer calculations

Expressing ��� � 
� � � as a function of ���� � �, we get:

��� � 
� � � � ���� � � �
����� � �

��
� 
 � ���� � �� ��

��
� ���� � � � ��� � (4.10)
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Since ��� does not depend on the actual �� � coordinates, it has to be evaluated once for the
triangle. In a scan-line, the calculation of a � coordinate requires a single addition according to
Equation 4.10.

Since � and � vary linearly along the left and right edges of the triangle, the start and end
edges of a scan-line can be obtained by the following expressions in the range of �� 
 � 
 ��:

�������� � 
� � �������� � �
�� ���

�� � ��
� ������ ���������� ��

������ � 
� � ������ � �
�� ���

�� � ��
� ���� �������� ��

�������� � 
� � �������� � �
�� � ��

�� � ��
� ������ ���������� �� (4.11)

The complete incremental z-buffer algorithm is:

������ � �� � ��	� ���� � �� � ��	� ������ � �� � ��	�
for � � �� to �� do

� � ������;
for � = Trunc �������� to Trunc ������ do

�=Trunc ���;
if � , z-buffer ��� � � then

frame-buffer ��� � � = computed color; z-buffer ��� � � � �;
endif
� += ��� ;

endfor
������ += ��������� �; ���� += ������� �; ������ += ��������� �;

endfor

Having represented the numbers in a fixed-point format, the hardware implementation for
this algorithm is straightforward. This will be combined with Gouraud shading in Section 4.4.2.

4.4 Incremental shading algorithms

Incremental shading algorithms follow the idea of computing the solution of the rendering equa-
tion just at a few representative points and interpolate the result of other points:

���� � �� � �� � �� �
��
���

�� � � ��� � (4.12)

where ���� is the outgoing radiance, � � is the self emission, �� and �� are the ambient reflection
parameter and ambient intensity respectively, and �� � ��� � ��� �	
�

����� � ���� Æ� is the cosine

weighted BRDF, i.e. ���
��� 
�� 
� � � ��� �	
�
.

According to the interpolation strategies, two important classes should be identified: con-
stant shading and Gouraud shading [Gou71] [Nar95] incorporating linear interpolation.
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4.4.1 Constant shading

Constant shading, also called flat shading, implies that the rendering equation is evaluated once
for each triangle, and the color of the triangle is approximated by a constant value (left of
Figure 4.7), usually obtained from the center of the triangle:

)��� � ����� (4.13)

where ) is the color value at position �.
Constant shading is fast and simple. In general, constant shading of triangle meshes provides

an accurate rendering for an object if all the following assumptions are valid:

� The object is not an approximation of an object with a curved surface.

� All light-sources illuminating the object are sufficiently far from the surface, so that 
� � 
�
and the attenuation function are constant over the surface.

� The viewing position is sufficiently far from the surface so that 
� � 
� is constant over the
surface.

4.4.2 Gouraud shading

In Gouraud shading the rendering equation is evaluated at the vertices of the triangle and the
color is linearly interpolated inside the triangles (right of Figure 4.7). Since in this case the
difference of the color of the adjacent pixels is constant due to linear interpolation scheme, this
strategy requires just a single addition per pixel, which can be easily implemented in hardware.

For the color computation inside the scan line, we have:

)��� � �
� ����������� � ��������� (4.14)

For each scan-line, the color at the intersection of the scan-line with a triangle edge is
linearly interpolated from the colors at the edge end-points.

Recall that the same approach was applied to calculate the � coordinate in z-buffer method
(Section 4.3). Because of their algorithmic similarity, the same hardware implementation can
be used to compute the � coordinate, and the �, �, �, color coordinates.

The last equation in Equation 4.11 can be used again, but it actually represents three equa-
tions, one for each color coordinate, �������:

)�� � 
� � )�� � �
������� � ���������

���� � ������
� )�� � � ��� (4.15)
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The complete incremental algorithm for Gouraud shading is:

������ � �� � ��	� ���� � �� � ��	�
������ � �� � ��	� ������ � �� � ��	� ������ � �� � ��	�
for � � �� to �� do

� � ������� � � ������� � � ������;
for � = Trunc �������� to Trunc ������ do

Store (Trunc(�), Trunc(�), Trunc(�)) in raster memory at �� � ;
� += ��� ; � += ��� ; � += ��� �

endfor
������ += ��������� �; ���� += ������� �;
������ += ��������� �; ������ += ��������� �; ������ += ��������� �;

endfor

4.5 Hardware implementation of Gouraud shading and
z-buffer algorithms

The possibility of hardware implementation makes Gouraud shading very attractive and popular
in advanced graphics hardware systems, although it has several severe drawbacks.

In this section we combine the algorithms of Gouraud shading and z-buffer introduced in the
previous sections for a common hardware implementation. The block scheme of this hardware
is shown in Figure 4.5, we can follow the operations of the hardware of a lower horizontal sided
triangle through its timing sequence shown in Figure 4.6.

The linear interpolator of the hardware implementation of Gouraud shading algorithm com-
bined with z-buffer algorithm is given by the following behavioral model:

ARCHITECTURE Behavior OF Interpolator IS
BEGIN

PROCESS ( CLK )
VARIABLE TmpVal: bit_vector_24 := (others => ’0’);
BEGIN

IF ( CLK = ’1’ ) THEN
IF ( sel = ’1’ ) THEN
TmpVal := InitVal;

ELSE
IF ( step = ’1’ ) THEN

int_to_bit_Vector(bit_vector_to_int(TmpVal) +
bit_vector_to_int(StepVal), TmpVal);

END IF;
END IF;
OutVal <= TmpVal AFTER Delay;

END IF;
END PROCESS;

END Behavior;
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Figure 4.5: Hardware implementation of Gouraud shading and z-buffer algorithms

Figure 4.6: Timing diagram of the hardware implementation of Gouraud shading and z-buffer
algorithms
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Figure 4.7: An interpolation of color in a triangle, with constant and Gouraud shadings



Chapter 5

Drawing triangles with Phong shading

Phong shading implies that at every pixel the vectors being involved in the BRDF are interpo-
lated, normalized and their dot product is computed, then substituted into the simplified render-
ing equation:

���� � �� � �� � �� �
��
���

�� � � ��� � (5.1)

where �� is the self emission, �� and �� are the ambient reflection parameter and ambient inten-
sity respectively, and

�� � ��� � ��� �	
�
� � ��� � ���� Æ�

is the cosine weighted BRDF, where �	
�
is the angle between the surface normal 
� and the

direction of the �th light source 
�, and Æ is the angle between the halfway vector 
� and the
surface normal 
� . According to this formula, the rendering equation requires the computation
of the angle of vectors that vary inside the triangle. In order to emphasize this, � ��� can be
regarded as a function of 
� , 
� and 
� vectors (note that this function depends on as many 
�
and 
� vectors as many light sources exist). Alternatively, � ��� can be supposed to be the function
of angles �	
�

and Æ. Thus Phong shading can be interpreted as the calculation of these vectors
and angles and then the evaluation of the simplified rendering equation.

To be general, let us consider the interpolation of two vectors 
4 and 
1 that can be any from
the light vector 
�, normal vector 
� , viewing vector 
� , etc. on a single scan-line.

Suppose that the vectors vary according to a linear function. The generic formulae of the
computation of the cosine of the angle between 
4��� and 
1��� are then:


4��� � �
� ��
4����� � �
4����


4� �

4���

�
4���� �

1��� � �
� ��
1����� � �
1����


1� �

1���

�
1���� �
��� � � 
4� � 
1�� (5.2)
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Note that this method requires a lot of pixel level operations, including linear interpolation
of vectors and the evaluation of the rendering equation. Since dot products provide the cosine
angle only if the vectors are unit vectors, normalization is required which involves � multiplica-
tions, � additions, a square root and � divisions. These complex operations are rather expensive
computationally and make Phong shading slow and inappropriate for real time hardware ren-
dering.

The superior rendering quality of Phong shading forced research to try to find a reason-
able compromise between Gouraud and Phong algorithms, to keep the image quality but also
to allow hardware implementation. In Textronix terminals, for example, the method called
pseudo-Phong shading was implemented. Pseudo-Phong shading recursively decomposed the
triangles into small triangles setting the vectors at the vertices according to a linear formula, and
used Gouraud shading when the small triangles are rendered. If the size of the small triangles
are comparable to the size of the pixels, then this corresponds to Phong shading. However,
when they are close to the original triangle, this corresponds to Gouraud shading. Another fam-
ily of algorithms used highlight tests [Wat89] to determine whether or not a specular highlight
intersects the triangle. If there is no intersection, then Gouraud shading is used, otherwise the
triangle is rendered with Phong shading. Duff [Duf79] extended the incremental approach of
Gouraud shading to Phong shading. The simplification using Taylor’s approximation proposed
in [BW86]. This approach assumed that the Phong-Blinn reflection model is used. The deter-
mination of the derivatives of the reflected radiance is quite complicated and requires expensive
computation, and this computation must be repeated at each pixel for diffuse and specular reflec-
tions and for each lightsource. Besides, according to the nature of Taylor’s series, the approx-
imation is good around the point where the derivatives were computed. Neighboring triangles
may have different color variation on their edges, which leads to Mach banding over the edges
of the triangles. Claussen [Cla90] compared different simplification strategies of the Phong illu-
mination formulae and vector interpolation [BERW97]. Spherical interpolation elegantly traces
back the interpolation to the interpolation of a single angle inside a scan-line [KB89]. However,
finding the parameters of a scan-line is also rather complicated where it requires vector compu-
tation for diffuse and specular reflections and the evaluation of the rendering equation at each
pixel and for each light-source. The computational cost is also proportional to the number of
light sources.

The following sections review the possible interpolation strategies.

5.1 Normals shading

This is an approximation algorithm for speeding up Phong shading where no time-consuming
normalization is needed, but some artifacts will occur in the image [Cla90] [HBB01] .


���� � �
� ��
������ � �
�����

���� � �
� �� 
������ � � 
�����

���� � �
� �� 
������ � � 
�����

)��� � ����� 
���� � 
����� 
���� � 
������ (5.3)
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This approach saves the time consuming normalization step. This, of course, results in in-
correct cosine angles, which can be tolerated if the vectors do not change intensively on the
triangles [DWS�88].

5.2 Dot product interpolation

Dot product interpolation is a reduced type of Phong shading [Cla90], which is intermediate
in complexity between Gouraud shading and Phong shading. It is used to avoid the expensive
computation and normalization of any of the direction vectors.


���� � 
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� ��� 
� � 
������� � �� 
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������

���� � 
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������� � �� 
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������

)��� � ����� 
���� � 
����� 
���� � 
������ (5.4)

Dot product interpolation applies a linear interpolation for the cosine angles ���� �	
 � 
� � 
��.
It is as good as this cosine function can be assumed to be linear.

5.3 Polar angles interpolation

Polar angle interpolation interpolates the polar angles:

������ � ������� 
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��������
���� � ������� 
� � 
������
Æ����� � ������� 
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��������

Æ��� � ������� 
� � 
������

���� � �
� �������� � ������

Æ��� � �
� ��Æ����� � �Æ����

)��� � �������� ����� ��� Æ����� (5.5)

5.4 Angular interpolation

The angular rotations of direction vectors 
�� 
� or 
� are linearly related to the position along
a straight line across the triangle. Vectors interpolated according to this assumption have a
constant length and are all in one plane, the plane spanned by start and end vector (Figure 5.1).

The interpolation will be done by two steps, first the vector is interpolated along the edges;
next, the resulting vectors are used for interpolation along the span.

For the sake of simplicity, we shall consider only diffuse reflections, thus only the angle
of 
� and 
� is used. For each 
� and 
� , there is a mapping of the triangle on the unisphere
indicating the range of that vector across the triangle. A scan-line across the triangle is mapped
on two circular paths, indicating the variation of 
� and 
� along the scan-line. These paths,
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     Linear
interpolation

  Angular or Spherical
         interpolation N Nstart end

Figure 5.1: Comparison of linear and spherical interpolation of direction vectors

from 
������ to 
���� and from 
������ to 
����, are parts of great-circles. These two great-circles
intersect at -. Let 9 be the angle between the two great-circles, � be the angle between - and

������, � be the angle between - and 
������. Having � linearly changing along the scan-line, we
define �� to be the angle between 
������ and 
��, and �� to be the angle between 
������ and 
��.

�� and 
�� are linearly interpolated along the scan-line. With this we have the spherical triangle
-� ��� ��, dependent on � (Figure 5.2). For this triangle a standard formula is given by the
spherical trigonometry, which leads to the following relation between �	
�

(the angle between 
��

and 
��) and the linearly incremented angles �� and �� [KB89]:

��� �	
�
� ����� � ��� ������ ��� � ����� � ��� ����� � ��� ��� 9�

)��� � �������� �	
�
�� (5.6)

Note that �, �, and 9 are constant along the scan-line:

��� 9 � �
������ 
 
����� � � 
������ 
 
������ (5.7)

In [KB89] it was also shown that instead of interpolating the two independently varying
vectors 
� and 
� , only one vector can be interpolated. Realizing that only the relative position
of vectors 
� and 
� is of interest not their absolute position. Vector 
0 is defined at each vertex
of the triangle that is found by rotating 
� around the same axis and with the same angle as
needed to rotate 
� to be aligned with a fixed vector 
8, (where 
8 � ��� �� 
�). In this case only
vector 
0 is interpolated across the formed triangle 0� 8 -, where 
- is the third vertex lies on
the great circle, such that the arc segment 0� - is perpendicular to the arc segment - 8, and :
is defined as the changing angle between 
0� and 
8�

In this special case we have:

���:� � ����; � ;�� ��� !�

)��� � ��������:��� (5.8)

where ;� is the angle between 
0����� and 
0�, ; is the angle between 
0����� and 
-, and ! is the
angle between 
- and 
8�
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Figure 5.2: Vectors and angles variations along the mapped scan-line on two circular paths

5.5 Phong shading and Taylor’s series approximation

For the sake of simplicity, assume that the light source is at infinity and the interpolated triangles
are planar, so 
�� is independent of the surface point, resulting that the linear interpolation is only
dependent on 
�� in diffuse reflection and on � 
�� � 
���� in specular reflection, considering the
viewing direction 
� � at finite position.

Phong shading (Blinn model) can be implemented more efficiently by combining the fol-
lowing reflection and interpolation equations of successive � and � [BW86]:


���� � � � 
�� � 
�� � 
)�

���� � � � 
�� � 
/� � 
% �


�� �

�

� 
� � �


�� �

�

� 
�� �

��� ���� � � � � 
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��� Æ��� � � � � 
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���� (5.9)

where 
�, 
�, and 
) are chosen to interpolate the normal 
� across the triangle and 
�� 
/, and 
%
are chosen to interpolate the halfway vector 
� across the triangle.
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5.5.1 Diffuse part for directional light sources

Let us combine the two-variate linear (reflection and interpolation) equations in Equation 5.9
for diffuse reflection:
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� � (5.10)

Performing the indicated dot products and expanding the vector magnitude yields:
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where
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Applying second order Taylor’s series approximation, and shifting the triangle to the coor-
dinate origin yields to the following quadratic function:
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where

'� �
�#<� � �#��� ��<�

���
�
�

�

'� �
�#<�� �#"�� �(<�� ���

���
�
�

�

'� �
�#�� � �#��� �(��

���
�
�

�

'� �
���� #<

��
�
�

�

'� �
�(�� #�

��
�
�

�

'� �
#�
�
�

Note that for every pixel the resulting value of ��� � should be multiplied by �� � � ��.
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5.5.2 Specular part for directional light sources

Let us combine the two-variate linear (reflection and interpolation) equations in Equation 5.9
for specular reflection:
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Performing the indicated dot products and expanding the vector magnitude yields:

��� Æ �
��� � (�� � #� � � �� � "� � ��

�<�� � ��� � �� � � 	� � �� � �� � �.�� � ��� � 3� � � 7� � ;� � 2�
�

(5.14)
where

� � 
� � 
�� ( � 
� � 
/ � 
� � 
�� # � 
� � 
/� � � 
� � 
% � 
) � 
�� " � 
� � 
% � 
) � 
/�

� � 
) � 
% � < � 
� � 
�� � � �� 
� � 
��� � � 
� � 
�� 	 � �� 
� � 
)�� � � �� 
� � 
)��

� � 
) � 
)� . � 
� � 
�� � � �� 
� � 
/�� 3 � 
/ � 
/� 7 � �� 
� � 
% ��

; � �� 
/ � 
% �� 2 � 
% � 
% �

Applying second order Taylor’s series approximation, and shifting the triangle to the coor-
dinate origin yields to the following quadratic function:
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where
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Note that for every pixel the resulting value of ��� Æ should be powered by the required �
which can be realized by a memory table, then it will be multiplied by �� � � ��.



Chapter 6

Spherical interpolation

Spherical interpolation traces back the vector interpolation to the interpolation of a single angle
inside a scan-line. It interpolates linearly the angles between the start and the end of the vectors

�, normals 
� , and vectors 
� for each scan-line, resulting that no normalization is needed.

Suppose that we intend to interpolate between two unit vectors 
4� and 
4�, in a way that
the interpolant 
4��� is moving uniformly between the two vectors and its length is always one,
(Figure 6.1). An appropriate interpolation method must generate the great arc between 
4� and

4�, and as can easily be shown, this great arc has the following form:


4��� �
����
� ��9

��� 9
� 
4� � ��� �9

��� 9
� 
4�� (6.1)

where ��� 9 � 
4� � 
4� (Figure 6.1).

γ

sphere
u

u

1

2

Figure 6.1: Interpolation of vectors on a unit sphere

In order to demonstrate that this really results in a uniform interpolation, the following
equations must be proven for 
4���:

�
4����� � 
� 
4� � 
4��� � ��� �9� 
4� � 
4��� � ����
� ��9� (6.2)

That is, the interpolated vector is really on the surface of the sphere, and the angle of rotation is
a linear function of parameter �.
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Let us first prove the second assertion (the third can be proven similarly):
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(6.3)
Concerning the first assertion, i.e. the norm of the interpolated vector, we can use the definition
of the norm and the previous result, thus we obtain:
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6.1 Independent spherical interpolation of a pair of vectors

In our case the light, normal and halfway vectors should be interpolated:


����� �
����
� ���

��� �
� 
������ �

��� ��

��� �
� 
�����


����� �
����
� ���

����
� 
������ �

��� ��

����
� 
�����


����� �
����
� ���

��� �
� 
������ �

��� ��

����
� 
�������

)��� � �����
����� � 
������ 
����� � 
������� (6.5)

We will consider only diffuse reflection ��� �	
 � 
�� � 
�� for implementation:
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This formula can be evaluated by sine tables. However, there is an even more effective
approach which takes into account that we are interested in the angle of the two interpolated
vectors, thus they do not have to be independently interpolated. This approach is discussed in
the following section.
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6.2 Simultaneous spherical interpolation of a pair of vectors

Having discussed how vectors can be interpolated without modifying their length, we can start
examining how the angle between two interpolated vectors can be determined. Let us assume
that 
4��� is interpolated from 
4� to 
4� while 
1��� is interpolated from 
1� to 
1�, and we are
interested in ��� ���� � 
4��� � 
1��� (left of Figure 6.2).

One obvious possibility is to use the previous results separately for 
4��� and 
1��� and to
compute the dot product for each �. However, we can realize that a similar interpolation can
be obtained keeping one vector — say 
1� — fixed and the other is rotated by the composition
of its own transformation and the inverse of the transformation of the other vector (right of
Figure 6.2). It means that while 
1 ���� � 
1� is fixed, 
4���� is interpolated between 
4� and 
4��
which is obtained by rotating 
4� by the inverse of the rotation from 
1� to 
1�.
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Figure 6.2: Interpolation of two vectors

The new end point 
4�� can, for instance, be expressed by quaternion multiplications [SK95].
The unit quaternion that rotates 
1� to 
1� is:
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where 1 is the angle between 
1� and 
1�. Applying the inverse of this quaternion to 
4� we get:
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Vector 
4���� is obtained by spherical interpolation from 
4� to 
4��� thus the angle between this
vector and the fixed 
1� is:
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� (6.6)
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where ��� 9 � 
4� � 
4��� Note that this interpolation does not give exactly the same values as
interpolating the two vectors separately. Since the interpolation is only used for approximating
the vectors, this is as acceptable as the separate spherical interpolation.

Let us express ��� �� and ���� �� � ��� �� � ��� 9� ��� 9 by � and :, respectively, in the
following way:

� � ���: � ��� ��� � � ���: �
��� �� � ��� �� � ��� 9

��� 9
� (6.7)

Substituting these into Equation 6.6, we obtain:

��� ���� � � � ���� �9 � ���: � ��� �9 � ���:� � � � �����9 � :�� (6.8)

Let us realize that the complex sequence of operations including the spherical interpolations
of two vectors and the computation of their dot product have been traced back to the calculation
of a single cosine value. Based on this simplification, even the hardware realization of Phong
shading becomes possible, as detailed in the next section for the Blinn illumination model.
Similar hardware architectures can be developed for other BRDFs as well.

6.3 Interpolation and Blinn BRDF calculation by hardware

Substituting Equation 6.8 into the reflected radiance formula (Equation 1.8), and assuming
Blinn type BRDF and a single lightsource, we get:

���� � �� � �� � �� � � ���
�� � �� � ��� �	
 � � ���
�� � �� � ���� Æ� (6.9)

Let us consider the most difficult part, i.e. the calculation of the specular reflection:

� ���
�� � �� � ���� Æ � � ���
�� � �� � � 
� � 
��� � � ���
�� � �� � �� � ������9 � :�� (6.10)

The constant ����� ��� can be added in a trivial way, while the diffuse part � ���
��������� �	

can be computed in a similar way without the exponentiation.

Factor � ���
�� 
�� � �� ��� � ) is constant in the scan-line, thus only ������9 � :� should be
computed pixel by pixel and the result should be multiplied by this constant ).

The computation of ������9 � :� consists of three elementary operations: the calculation
of ���� � 9 � : from the actual pixel coordinate � , the application of the cosine function,
and finally exponentiation with �. These operations are too complex to allow direct hardware
implementation thus further simplifications are needed.

The ���� �9�: term is a linear function, thus it is a primary candidate for the application of
the incremental concept. The cosine and the exponentiation are a little bit more difficult. In fact,
we could use two tables of tabulated function values for this purpose. This would work well for
the cosine function since it is relatively flat, but the accurate representation of the exponentiation
would require a large table, which should be reinitialized each time when � changes (note that
the practical values of � can range from � to a few hundred). Thus a different approximation
strategy is used.
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Figure 6.3: The bell shapes of ���� � for � � 	� 
�� ��� 	�� 	�� (left) and of ���� �� for
� � 
��	� 
���� ��
� (right)

Looking at the bell shapes of the ���� � functions for different � values (Figure 6.3), we
can realize that these functions are approximately similar and can be transformed to each other
by properly scaling the abscissa. For example, we can use the horizontally scaled versions of
���� �, i.e. ���� �� to approximate ���� � for arbitrary �. The reason of using the square of the
cosine function is that � is greater than � in practical cases and the square cosine already has
the bell shape caused by the inflection point. Thus our formal approximation is:

���� � � ���� �� if � �
��

 � 
 �

��
� (6.11)

and zero otherwise. Parameter � should be found to maximize the accuracy for all possible �
values. We can, for example, require the weighted integrals of the two functions to be equal
in order to obtain the parameter �. Note that the approximation is exact for � � � regardless
of the parameter �, that is the zero point of all cosines are fixed. This consideration makes it
worth emphasizing the accuracy of larger � values when � is determined. Let us use the ����
weighting function, thus the criterion for determining � is:

� �

�

�
���� � � ���� �� �

� �

��

�
���� �� � ���� ��� (6.12)

Expressing these integrals in closed form, we get:
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This equation needs to be solved once for a set of values and the results can be stored in a table.
A few representative results are shown in Table 6.1. The quality of the approximation is quite
good as demonstrated by Figure 6.4.

� 2 5 10 20 50 100 500
� 1.0000 1.4502 1.9845 2.7582 4.3143 6.0791 13.5535

Table 6.1: Correspondence between � and �

Let us return to the computation of the reflected radiance. The

) � ��������� � 9 � :�

has been simplified to the evaluation of

) � ����������� � 9 � :�� � ) � ���� 6����

where

6��� � � � 9 � � �������

���� �������

� � � : � ! �� � (�

Since 6��� is a linear function, it can conveniently be generated by the incremental concept.
Its basic idea is that instead of computing 6 from � , it can be computed from the previous value,
i.e. from 6�� � 
�. Recall that a complete scan-line is filled, that is when pixel � is shaded,
the results of pixel � � 
 are already available. In our case:

6��� � 6�� � 
� � !�

thus the new value of 6 requires just a single addition.
Having the 6 value generated, it should be input to the ���� 6��� function that can be im-

plemented as a read only memory. The number of address and data bits of this memory, i.e. the
number and the length of the words are determined from the requirement of accurate represen-
tation. Figure 6.5 shows the original ���� � function together with its table representations for
different address and data bit numbers. Note that using six bit address and data, which means
that our memory stores �� 
 � � ��� bits, provides sufficient accuracy.
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Figure 6.5: Quantization errors of the ���� �� function for � and � address/data bits verses the origonal
���� � function

The complete hardware is shown in Figure 6.6. The hardware has two parts, one for the
diffuse and one for the specular components, and each part has two stages. In the specular part,
the first stage is a linear interpolator, which provides the ���� table with angle 6, according to
6�� �
� � 6���� !. Since it has a register at its output, this stage can operate in parallel with
the multiplier unit. Assuming white light sources and wavelength independent specular factor
��, a single linear interpolator can be used for all color channels. However, the diffuse part,
which is responsible for coloring, requires � channels. The cosine, and square cosine functions
can be implemented by ROMs. At the initial phase, for each scan line, the constant parameters
must be loaded into hardware. Then, for each step, the hardware will generate ����� values.

The VHDL specification is straightforward for the multiplicators and for the ROMs. Here,
as an example, the linear interpolator is given by the following behavioral model:

ARCHITECTURE Behavior OF Line_interpolator IS
SIGNAL add_Out, mpx_Out, reg_Out: bit_vector_12;
BEGIN
add_Out <= s + reg_Out AFTER t_add;
reg_out <= mpx_out AFTER t_reg WHEN step’EVENT AND step = ’1’;
ra <= reg_out(11 DOWNTO 6);
mpx_process:
PROCESS ( sxsb,add_out,init )
BEGIN

IF ( init = ’1’ ) THEN
mpx_out <= sxsb AFTER t_mpx;

ELSE
mpx_out <= add_out AFTER t_mpx;

END IF;
END PROCESS;

END Behavior;
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Figure 6.6: Hardware implementation of Phong shading using spherical interpolation

Figure 6.7: Timing diagram of the hardware of Phong shading using spherical interpolation
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6.4 Simulation results

The proposed algorithm has been implemented first in C++ and tested as a software. First
the difference between the simultaneous vector interpolation and the method of keeping one
vector fixed while rotating the other vector by the composition of the two rotations was investi-
gated, and we concluded that the results are visually indistinguishable. Then the quality of the
���� � � ���� �� approximation has been studied.

Figure 6.8: Evaluation of the visual accuracy approximation of the functions ���� � (left) � ���� ��
(right). The shine (�) parameters of the rendered spheres are 	, 
� and ��

Note that the halos in the left image of Figure 6.8 obtained with the ���� � function are
slightly bigger but the centers are smaller. This is also obvious looking at the bell shapes of
Figure 6.4 since the ���� �� is zero if � � = �� while ���� � only converges to zero, while
having the same integral.

Finally, the necessary precision, i.e. the number of bits, was determined. Since the ���� ��
function is implemented as a memory, it is the most sensitive to the word length. Figure 6.9
shows the results assuming � and � bit precision, respectively, where a rather coarse surface
tessellation was used to emphasize the possible interpolation errors. Note that with � bits the
quantization errors are visible in the form of concentric halo circles around the highlight spots.
However, these circles disappear when � bit precision is used. This also conforms with the
quantization error functions of Figure 6.5.

Finally, the hardware was specified in VHDL and simulated in Model-Technology envi-
ronment. The delay times are according to Xilinx Synthesis Technology real FPGA device.
The timing diagram of the operation is shown by Figure 6.7. In this figure we can follow the
overlapped operation of the two stages while the cycle time of the “step” signal is �� �!"#.
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Figure 6.9: Rendering of coarsely tessellated spheres with the proposed spherical interpolation, � bit
precision (left) and � bit precision (right)

Figure 6.10: The mesh of a chicken (left) and its image rendered by classical Phong shading (middle)
and by the proposed spherical interpolation (right)



Chapter 7

Quadratic interpolation

As mentioned in Section 1.2.1, interpolation can be used to speed up the rendering of the triangle
mesh, where the expensive computations take place just at the vertices and the data of the
internal points are interpolated.

A simple interpolation scheme (Figure 10.1) would compute the color and linearly interpo-
late it inside the triangle (Gouraud shading [Gou71]). However, the core of the problem of
Gouraud shading is that the color may be a strongly non-linear function of the pixel coordinates,
especially if specular highlights occur on the triangle, and this non-linear function can hardly be
well approximated by a linear function, thus linear interpolation may introduce severe artifacts.

The artifacts of Gouraud shading can be eliminated by a non-linear interpolation scheme
(Figure 10.2) called Phong shading[Pho75]. In Phong shading, vectors used by the BRDFs in
the rendering equation are interpolated from the real vectors at the vertices of the approximating
triangle. The interpolated vectors are normalized and the rendering equation is evaluated at
every pixel for diffuse and specular reflections and for each lightsource, which is rather time
consuming. The main problem of Phong shading is that it requires complex operations on the
pixel level, thus its hardware implementation is not suitable for real-time rendering.

Here we introduce a new approach called quadratic interpolation (Figure 10.3), which
is in between Gouraud shading and Phong shading. The rendering equation is evaluated in a
few representative points and the interpolation is done in color space as in Gouraud shading.
However, the interpolation is non-linear, but rather quadratic. Since the general two-variate
quadratic function has six degrees of freedom, thus six-knot points are needed to establish
the interpolation formula without ambiguity. The rendering equation will be evaluated at six
representative points on the triangle and the defined color at these points should be interpolated
across the triangle.

Let us approximate the color inside the triangle by the following two-variate quadratic func-
tion:

���� � � � '��
� � '��� � '��

� � '�� � '�� � '�� (7.1)

To find the unknown parameters '�� � � � � '�, the color obtained from the rendering equation
is substituted into this scheme at six points, and the six-variate linear equation is solved for
the parameters. The selection of these representative points should take into account different
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criteria. The error should be roughly uniform inside the triangle but less on the edges and on
the vertices in order to avoid Mach banding. On the other hand, the resulting linear equation
should be easy to solve in order to save computation time. An appropriate selection meeting
both requirements uses the three vertices:

����� ��� � ��� ����� ��� � ��� ����� ��� � ���

and the other three points on the edges half way between the two vertices, as follows:
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Translating the triangle to have its bottom vertex at the coordinate origin yields:
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(7.2)

This system of linear equations can be solved in a straightforward way resulting in:
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where
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)� � ���� � ��� � ���

)�� � �� � �� � �����

)� � ���� � ��� � ���

)�� � �� � �� � �����

)�� � ��� � ���� � ���� � ����� (7.4)

Having computed the '�� � � � � '� parameters, we should run a quadratic interpolation scheme
which has already been discussed in Section 2.2.3.

7.1 Error control

The method proposed above approximates a non-linear function by a quadratic formula. If the
triangles are too big and the radiance changes quickly due to a highlight, then this approximation
can still be inaccurate. In order to avoid this problem, the accuracy of the approximation is
estimated, and if it exceeds a certain threshold, then the triangle is adaptively subdivided into �
triangles by halving the edges (Figure 7.1).
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Figure 7.1: Highlight test and adaptive subdivision

Recall that the knot points of the interpolation are the vertices and the middle points of the
edges. Thus a reasonable point where the error can be measured is the center of the triangle.
This leads to the following highlight test algorithm. Having computed the '�� � � � � '� param-
eters, the function value is estimated at the center of the triangle using Equation 7.1, and the
result is compared with the real value of ���� � �. In case of big difference, adaptive subdivision
takes place. Note that the overhead of one more function evaluation is affordable and during
subdivision the already computed function values can be reused.
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7.2 Hardware implementation of quadratic interpolation

The quadratic function (Equation 7.1) in its original form is hard to be implemented directly in
hardware. Fortunately, the main advantage of a quadratic function is that it can be traced back to
simple additions using the incremental concept. It means that the color of a pixel is obtained us-
ing the color of the previous pixel and an increment is linear if the original function is quadratic.
Furthermore, the increment itself is obtained as the increment value of the previous pixel by a
simple addition. This requires altogether two fixed-point additions per pixel (Section 2.2.3).

The hardware implementation of the proposed quadratic interpolation is straightforward.
We use registers with a feedback through an adder to realize the increment operation. Two
such networks are used, one for the color and the other one for the increment of the color. An
additional counter (we call it � counter) is responsible for providing the pixels addresses inside
the scan-line. In fact, the same trick can be used on the edges of the triangle, which leads to a
hardware that automatically renders a complete half triangle, not only a triangle scan-line.

The block scheme of the hardware implementation of quadratic shading is shown in Fig-
ure 2.7, the linear interpolator of this hardware is given by the following behavioral model:

ARCHITECTURE Behavior OF Interpolator IS

SIGNAL Adder_Out, Reg_Out: bit_vector_32;

Register_Process:

PROCESS ( Clk,Load_Step )
IF ( Load_Step = ’1’ ) THEN

Reg_Out <= InitVal AFTER DelayReg;
ELSE

IF ( Clk’EVENT AND Clk = ’1’ ) THEN
Reg_Out <= Adder_Out AFTER DelayReg;

END IF;
END IF;

END PROCESS;

Adder_Process:

PROCESS ( Reg_Out,Stepval )
VARIABLE TmpVal: bit_vector_32 := (others => ’0’);

int_to_bit_vector(bit_vector_to_int(Reg_Out)
+ bit_vector_to_int(StepVal), TmpVal);

Adder_Out <= TmpVal AFTER DelayAdder;
END PROCESS;

OutVal <= Reg_Out;
END Behavior;
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7.3 Simulation results

The new interpolation scheme that uses appropriately selected quadratic functions can be im-
plemented in hardware and can be initialized without the computational burden of the Taylor’s
series approach. Unlike previous techniques the new method can simultaneously handle arbi-
trary number of light sources and arbitrary BRDF models. The proposed algorithm has been
implemented in C++ and tested as a software. In Figures 7.3, 7.4 and 7.5 spheres are tessellated
on different levels are compared. Gouraud shading evaluates the shading equation for every ver-
tex, quadratic shading for every vertex and edge centers and Phong shading for each pixel. The
difference of the algorithms is significant when the tessellation is not very high. The measured
times of drawing highly tessellated shaded sphere (690 triangles) is as follows: Gouraud shad-
ing ��� .!"#, quadratic shading �	� .!"#, and Phong shading �	� .!"#. Note that Gouraud
shading performs poorly on coarsely tessellated spheres, but the visual quality of quadratic and
Phond shadings are similar. On the other hand, concerning the speed and the suitability for
hardware implementation, quadratic shading is close to Gouraud shading. Finally, the hardware
was specified in VHDL, which is a popular hardware description language, and simulated in
Model-Technology environment. The delay times are according to Xilinx Synthesis Technol-
ogy real FPGA device. We can follow the operation of the hardware from the timing sequence
(Figure 7.2). The hardware can generate one pixel per one clock cycle. The length of clock
cycle — which is also the pixel drawing time — depends on FPGA devices and on the screen
memory access time. For the mentioned device it can be less than 	� �!"#. While the hardware
draws the actual triangle, the software can compute the initial values for the next triangle, so
initialization and triangle drawing are executed parallely. The number of triangles per second
depends only on initialization time (for small triangles, initialization time can be grater than
drawing time).

In the Appendix at the end of this thesis, we map the RGB interpolators of the quadratic
interpolation for the lower half triangle on Xilinx Spartan2e device, FPGA Family Members,
xc2s100e type. Upon the results of this mapping we can conclude that this hardware is really
suitable for real time rendering.
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Figure 7.2: Timing diagram of the hardware implementation of quadratic shading

Figure 7.3: Rendering of coarsely tessellated spheres (
�� triangles) of specular exponents � � 	 (top),
� � �� (middle) and � � 	� (bottom) with Gouraud shading (left), quadratic shading (middle) and

Phong shading (right)
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Figure 7.4: Rendering of normal tessellated spheres (�
� triangles) of specular exponents � � 	 (top),
� � �� (middle) and � � 	� (bottom) with Gouraud shading (left), quadratic shading (middle) and

Phong shading (right)

Figure 7.5: Rendering of highly tessellated spheres (��� triangles) of specular exponents � � 	 (top),
� � �� (middle) and � � 	� (bottom) with Gouraud shading (left), quadratic shading (middle) and

Phong shading (right)



Chapter 8

Texture mapping

Since linear interpolation may degrade the image quality, while the non-linear interpolation in-
volves complex operations on the pixel level, which makes its hardware realization impossible.
Texture mapping is another famous non-linear operation in incremental rendering. Our new ap-
proach called quadratic interpolation introduced in Chapter 7, which is in between these two
strategies is also implemented here to handle texture mapping, we call it quadratic texturing
(Figure 10.3).

Texture mapping is a technique for adding realism to computer-generated scene. In its
basic form, texture mapping lays an image (the texture, i.e. surface details) onto an object in a
scene [KSKS96]. Texture mapping requires the determination of the surface parameters each
time the rendering equation is evaluated for a surface point. When mapping an image onto an
object, the color of the object at each pixel is modified by a corresponding color from the image.
In general, obtaining this color from the image conceptually requires several steps. The varying
optical parameters required by the rendering equation, on the other hand, are usually defined
and stored in a separate coordinate system, called texture space. The texture information can
be represented by some data stored in an array or by a function that returns the value needed
for the points of the texture space. The image first should be filtered to remove high frequency
components causing an aliasing by one of the filtering techniques such as Mip-Map or Summed
Area Table [EWWL98]. In order to have a correspondence between texture space data and the
surface points, a transformation is associated with the texture, which maps texture space onto the
surface defined in its local coordinate system. This transformation is called parameterization.
Modeling transformation maps these local coordinate system points to the world coordinate
system where the shading is calculated. Incremental shading models, however, need another
transformation from world coordinates to screen space where the hidden surface elimination
and simplified color computation take place. This latter mapping is regarded as projection in
texture mapping (Figure 8.1).

Since the parameters of the rendering equation are required in screen space, but they are
available only in texture space, the mapping between the two spaces must be evaluated for each
pixel.

72



8.1 QUADRATIC TEXTURING 73

Texture
  space

Local modeling
      system

 Parametrization

World coordinate
        system Pixel space

Projection

Texture order mapping

Screen order mapping

u

v

x
y

z

X

Y

Figure 8.1: Survey of texture mapping

Generally, two major implementations are possible:

1. Texture order or direct mapping which scans the data in texture space and maps from
texture space to screen space.

2. Screen orderor inverse mappingwhich scans the pixels in screen space and uses the
mapping from screen space to texture space.

Screen order is more popular, because it is appropriate for image precision hidden surface re-
moval algorithms. In our approach screen order scheme is implemented.

8.1 Quadratic texturing

Since texture mapping finds a point in texture space for each pixel in screen space. Mapping
a triangle from �� screen space by the inverse camera transformation to the �� texture space
requires a homogeneous linear transformation, which becomes non-linear for Cartesian coor-
dinates. For triangles, the screen coordinates and the texture coordinates are connected by a
homogeneous linear transformation [SK95], thus for a pixel �� � the corresponding texel co-
ordinates 4� 1 can be obtained as:

4 �
��� � (�� � #�
��� � "�� � ��

� 1 �
��� � (�� � #�
��� � "�� � ��

� (8.1)

where ��� � � � � �� depend on the positions of the triangle in the texture and screen spaces. Note
that this operation also contains divisions that are quite intensive computationally and makes the
mapping non-linear. Implementing division in hardware is difficult and can be the bottleneck of
texture mapping [Ack96]. Approximating this function by a linear transformation, on the other
hand, makes the perspective distortion incorrect [GPC82, SSW86] [DG96] (Figure 8.2).
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We propose the application of the quadratic interpolation introduced in Chapter 7 also
for this problem. Since the quadratic function (Equation 7.1) has six degrees of freedom, its
parameters '�� � � � � '� should also be solved for the 4 and 1 texture coordinates at six represen-
tative points on an equivalent triangle in texture space. Again, we can select the vertices and
the middle points of the edges as representatives and check the accuracy of the approximation
at the middle of the triangle.

8.2 Simulation results

In order to compare the quality of linear and quadratic approximation of texture transformation
a tiger and a turtle texture were assigned to a rectangle divided into two triangles (Figure 8.2).
Note that linear transformation distorts the textures in an unacceptable way, while quadratic
approximation handles the perspective shrinking properly.

Figure 8.2: Texture mapping with linear (left), quadratic (right) texture transformation

In general we can conclude that, incorrect highlights and texture distortion all disappears,
so quadratic texturing can really solve the drawbacks of linear texture mapping.



Chapter 9

Shaded surface rendering using global
illumination

Global illumination algorithms aim at solving the rendering equation (Equation 1.1). This
equation expresses the radiance of a surface as a sum of its own emission � � and the reflection of
the radiances of those points that are visible from here �� ��. To find the possible visible points,
all incoming directions should be considered and the contribution of these directions should be
summed, which results in an integral operator (called light transport operator, Equation 1.2).

9.1 The global illumination problem

Since the rendering equation contains the unknown radiance function both inside and outside
the integral, in order to express the solution, this coupling should be resolved [KSKA01]. The
possible solution techniques fall into one of the following three categories: inversion, expansion
or iteration. Here only iteration is discussed in details since it is the most appropriate for fast
rendering. Iteration realizes that the solution of the rendering equation is the fixed point of the
following iteration scheme:

���� � �� � � �������

This scheme requires the temporary representation of the radiance function � until it is substi-
tuted into the iteration formula. In order to represent this function by finite number of vari-
ables, finite-element methods can be applied. Since the radiance function has four variates and
changes quickly, the finite element approximation requires very many basis functions, which
makes this approach rather time and memory consuming. Fortunately this problem can be ef-
fectively attacked by the concept of stochastic iteration[SK00] [MSKSA01].

The basic idea of stochastic iteration is that instead of approximating operator � in a deter-
ministic way, a much simpler random operator is used during the iteration which “behaves” as
the real operator just in the “average” case. Suppose that we have a random linear operator � �

so that:
/�� ��� � � �� (9.1)

for any integrable function � .
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During stochastic iteration a random sequence of operators � �

� � � �� � � � �� �

� � � � is generated,
which are instantiations of � �, and this sequence is applied to the radiance function:

���� � �� � � �

� �
������ (9.2)

Note that this scheme does not converge but the radiance estimates will fluctuate around the
real solution. The real solution can be obtained as the average of these estimates:

� � ���
���




+
�

��
���

����� (9.3)

9.2 Ray-bundle based transfer

So far we have given a complete freedom to the definition of the transport operator. Obviously
those operators should be preferred which can be evaluated quickly and for which hardware
support is feasible. Since this is true for the visibility problem assuming fixed eye position and
parallel projection, we use a random transport operator that transfers the radiance of all surface
points of the scene in a single random direction.

In order to store the temporary radiance during the iteration, finite element techniques are
used, that tessellate the surfaces into elementary planar patches and assume that a patch has
uniform radiance in a given direction (note that this does not mean that the patch has the same
radiance in every direction, thus the non-diffuse case can also be handled). According to the
concept of finite-elements, the radiance, the emission and the BRDF of patch � are assumed
to be independent of the actual point inside the patch, and are denoted by ���
� �, ��� �
� � and
����
�� 
� �, respectively. It means that the radiance function is approximated in the following
form:

��
�� 
� � ��
�

���
� � � (��
��� (9.4)

where (��
�� is 
 on patch � and � otherwise. The ���
� � patch radiance can be considered as the
average of the radiances of the points on the patch:
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Applying the random transport operation for the radiance represented in this form, we obtain:

�����
�� 
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� �
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� 
��� (9.6)

From this function, the patch radiances are generated as follows:
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Taking into account that in a given direction other patches are seen that have constant radi-
ance, this integral can also be presented in closed form:

�
���
� �
� � � ��� �
� � �

��
���

����
�� 
� � � ���� 	� 
�� � ������� �
��� (9.8)

where ���� 	� 
�� expresses the projected area of patch 	 that is visible from patch � in direction

�. In the unoccluded case this is the intersection of the projections of patch � and patch 	 onto
a plane perpendicular to 
�. If occlusion occurs, the projected areas of other patches that are in
between patch � and patch 	 should be subtracted as shown in Figure 9.1.
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Figure 9.1: Interpretation of ���� 	� 
��

The resulting algorithm is quite simple. In a step of the stochastic iteration an image estimate
is computed by reflecting the previously computed radiance estimate towards the eye, and a new
direction is found and this direction together with the previous direction are used to evaluate the
random transport operator. The complete algorithm — which requires just one variable for each
patch �, the previous radiance ���� — is summarized in the following algorithm:

Generate the first random global direction 
���
for each patch � do

���� = ��� �
����
endfor
for . � 
 to + do // iteration cycles

Calculate the image estimate reflecting ��
�� ����� � � � ���� from 
�� towards the eye;
Average the estimate with the Image;
Generate random global direction 
�����
for each patch � do

������� = ��� �
������ �= ���
���

����
��� 
����� � ���� 	� 
��� �� � ��	��
endfor

endfor
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9.3 Calculation of the radiance transport in a single
direction

To evaluate the transport operator, we need to know which patches are visible from a given
patch, and then we have to weight the radiances of visible patches by the ratio of their visible
sizes and the size of the given patch.

This requires the solution of a global visibility problem, where the eye position visits all
surface points but the viewing direction is fixed to the selected random direction. This fixed
direction is called the transillumination direction (Figure 9.2).

At a given point of all global visibility algorithms the objects visible from the points of
a patch must be known (Figure 9.3). This information is stored in a data structure called the
visibility map . The visibility map can also be regarded as an image on the plane perpendicular
to the transillumination direction. This plane is called the transillumination plane.

Transillumination direction

Transillumination
           plane

5

4

3

2

1

Figure 9.2: Global visibility algorithms

4 54 5

3

Image seen from patch 3 Image seen from patch 2

Figure 9.3: Scene as seen from two subsequent patches
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Discrete algorithms, which decompose the transillumination plane to small pixels of size
�$ , can solve the problem much faster. For discrete algorithms, the visibility map is simply a
rasterized image where each pixel can store either the index of the visible patch or the radiance
of the visible point.

Discrete algorithms determine the image of the visible patches through a discretized window
assuming the eye to be on patch �, the window to be on the transillumination plane and the color
of patch 	 to be 	 if the patch is facing to patch � and to be � otherwise.

We use an extension of the z-buffer algorithm to identify the patches that see each other
through the pixels of the transillumination plane. The main difference from the original z-buffer
algorithm is that now a pixel should be capable to store a list of patch indices and z-values, not
just the values of the closest patch (Figure 9.4). The lists are sorted according to the z-values.
The patches are rendered one after the other into the buffer using a modified z-buffer algorithm
which keeps all visible points not just the nearest one. Traversing the generated lists the pairs
of mutually visible points can be obtained. For each pair of points, the radiance transfer is
computed and the transferred radiance is multiplied by the BRDF, resulting in the reflected
radiance.

1

2

3

Window

Transillumination buffer

Global direction

1 2 3

1 3

3

2

Figure 9.4: Organization of the transillumination buffer

9.4 Hardware implementation of the proposed radiance
transfer algorithm

The hardware of the radiance transfer algorithm is composed of two dependent stages, stage
one (input interface and sorting the input data in memory) and stage two (output interface of the
sorted data in memory). The input data is produced by the software and it is composed of arrays
of patches with their related � values according to the screen position that these patches can be
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seen. When the software initiates the data for the hardware, stage one fetches it and halts stage
two until it finishes its operation of sorting the input data in memory according to the smallest �
value of the patches that can be seen from the specific screen position. When stage one finishes
its operation generates a signal to stage two to output the sorted data to the software.

The block scheme of this hardware is shown in Figure 9.5. This hardware runs according to
the data illustrated in Figure 9.4. The time sequence of stage one is shown in Figure 9.6 and its
VHDL description code is given by the following behavioral model:

ARCHITECTURE Behavior OF Control1 IS
SIGNAL FP: ADDRESS := ("00........01"); -- Pointing to SCREEN_ADDRESS 1
SIGNAL PR,PPR: ADDRESS; -- Pointer field is 24 bits wide
SIGNAL ZR: DATA; -- DATA field is 24 bits wide
SIGNAL Zero: DATA := (others => ’0’);
BEGIN

PROCESS
PROCEDURE Mem_Write (Addr: IN ADDRESS; d_w: IN DATA; Sel: in Sel_Type);
PROCEDURE Mem_Read (Addr: IN ADDRESS; d_r: OUT DATA; Sel: in Sel_Type);

BEGIN
Mem_Write(FP,Z,Sel_Z); Mem_Write(FP,I,Sel_I); Mem_Write(FP,Zero,Sel_P);
Mem_Read(SCREEN_to_ADDRESS(S), PR, Sel_S);

-- SCREEN_ADDRESS 20 bits, extended to 24 bits
IF ( IsNull(PR) ) THEN

Mem_Write(SCREEN_to_ADDRESS(S), FP, Sel_S);
ELSE -- Sel_Z selects Z_value field

PPR <= PR; -- Sel_S selects Screen field
WHILE ( TRUE ) LOOP -- Sel_P selects pointer field

Mem_Read(PR,ZR,Sel_Z); -- Read z-value addressed by PR
IF ( IsLessOrEq(Z,ZR) ) THEN -- Sel_I selects patches field
EXIT;

END IF;
PPR <= PR; Mem_Read(PR,PR,Sel_P);
IF ( IsNull(PR) ) THEN -- If true, then end of storing
EXIT;

END IF;
END LOOP;

END IF;
-- PPR is a pointer holding the previous value of a specific pointer
IF ( IsNull(PR) ) THEN

Mem_Write(PPR,FP,Sel_P); -- Store the first address
ELSEIF ( PR = PPR ) THEN

Mem_Write(SCREEN_to_ADDRESS(S),FP,Sel_S);
Mem_Write(FP,PR,Sel_P);

ELSE
Mem_Write(PPR,FP,Sel_P); Mem_Write(FP,PR,Sel_P);

END IF;
END IF;

FP <= Increment(FP); -- Free SCREEN pointer
END PROCESS;

END Behavior;



9.4 HARDWARE IMPLEMENTATION OF THE PROPOSED RADIANCE TRANSFER ALGORITHM 81

Z

Control1 Memory Conrol2

Start1

S

Ready

Din

Dout

A1
Sel0

Sel1

Rd1

Wr1

Start2

CLK

0PReg.

Rd2

SPSel

StoreP

ClearSC

StepSC
S counter

P Reg.

A2 Mpx

Stop2

Z PS I

Stage1
Stage2

PValue

I

Stop1

<

<

1
0

0
0

0
1

1
1

Figure 9.5: Hardware implementation of radiance transfer algorithm

Figure 9.6: Stage one time sequence of the hardware implementation of radiance transfer algorithm



Chapter 10

Conclusions and summary of new results

In this thesis we proposed new image synthesis algorithms. These algorithms have solved the
drawbacks of linear interpolations and are comparable in image quality with the already known,
sophisticated techniques but they have allowed simple hardware implementation. These algo-
rithms cover the incremental cone-filtering lines, an alternative Phong shading using spherical
interpolation, quadratic interpolation in Phong shading and texture mapping and ray-bundle
based global illumination. The main framework and the conclusions of these rendering algo-
rithms are discussed in the following sections. The suggestions of the future research work is
declared in Section 10.6.

10.1 General framework to compute simple functions on 2D
triangles

In incremental rendering the geometric primitives are tessellated to triangles and line segments
and are transformed and projected onto the screen coordinates. The projected triangles are
filled and the line segments are rasterized, i.e. those pixels are identified that approximate them,
and pixel colors are computed simultaneously. Realizing that the pixel color can be a non-
linear function of the pixel coordinates, a general framework and a supporting hardware were
developed to realize this filling operation together with the non-linear function computation.
The computation is based on the so-called incremental concept, which means that a pixel value
is obtained as the increment value of the previous pixel. Since if the function is an � degree
polynomial, the increment is an �� 
 degree polynomial, thus the computation of an � degree
polynomial can be traced back to an addition and to the evaluation of an ��
 degree polynomial.
Using this idea recursively � parallel and fixed-point additions can compute the new value. The
required accuracy was also investigated and we concluded that the required number of fractional
bits is proportional to the degree of the polynomial.
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10.2 Hardware implementation of incremental
cone-filtering lines

In order to reduce the jaggies of digital lines, the Gupta-Sproull algorithm applies conic filtering
that computes the conic volume above the intersection of the pixel and the base of the cone. The
resulting lines are of good quality, but the algorithm is computationally intensive. We propose
the transformation of this algorithm using the incremental concept that allows its hardware
realization. In the new algorithm the distance between the line and the pixel center is evaluated
incrementally and the volume of the conic segment is obtained through a look-up table.

10.3 Hardware implementation of Phong shading using
spherical interpolation

Classical Phong shading interpolates the normal, view and light vectors inside the triangle and
evaluates the rendering equation for each pixel in the triangle. The vector interpolation in-
volves vector normalization, while the rendering equation requires dot product computation
and exponentiation of scalar values. These operations are far too complex to be implemented in
hardware. To attack the problem of vector normalization, we proposed the spherical interpola-
tion of vectors [ASKH00], i.e. when the interpolation is done on the great arc of the surface of a
unit sphere rather than on the line. Using quaternion algebra, the dot product of two spherically
interpolated vectors has been expressed as a simple cosine. Finally, the exponentiation of the
cosine has been approximated by the �����! � � � (� function, where parameters ! and ( can
be determined from the original material parameters. We demonstrated that the approximations
needed by the algorithm simplification do not degrade the visual quality of the rendered images.

10.4 Quadratic interpolation in rendering

Since rendering involves strongly non-linear operations, classical approaches using linear in-
terpolation are inadequate for rendering high-quality images. To eliminate those artifacts we
propose a quadratic scheme [ASKHF00] for a function �:

���� � � � '��
� � '��� � '��

� � '�� � '�� � '��

In order to compute the unknown '�� � � � � '� parameters, the function to be interpolated
should be evaluated at six representative points. In order to take into account the ease of com-
putation and the elimination of visual inaccuracy called Mach banding, we propose the triangle
vertices and the half points between the vertices for such representative points. We concluded
that this selection results in simple formulae and does not necessitate the solution of linear
equations.
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10.4.1 Adaptive error control in quadratic interpolation

In order to control the error of the quadratic interpolation, the difference between the origi-
nal function value and its approximation is compared and if it exceeds a certain threshold the
triangle is subdivided into � equivalent triangles.

10.4.2 Application of quadratic rendering for Phong shading and texture
mapping

The idea of quadratic interpolation [ASKH�01a] was used to develop an alternative shading
algorithm for Phong shading. The solution of the rendering equation is evaluated at six repre-
sentative points and the color interpolation is done by the quadratic scheme in image space. We
demonstrated that the quadratic interpolation is comparable to Phong shading in image quality.

Quadratic interpolation has also been used to solve the non-linearity problem of texture
mapping [ASKH�01a] [ASKH�01b]. The texture coordinates are evaluated at six represen-
tative points and the other pixels are approximated according to the quadratic formula. We
demonstrated that the quadratic interpolation can avoid texture distortions.

Summarizing, the main problem of the original shading pipeline used by Phong shading
(Figure 10.1) is that it involves complex operations such as lighting calculations and texture
transformations, which makes its direct hardware realization impossible.
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Figure 10.1: Conventional rendering with Phong shading and texture mapping without interpolation

Traditionally, this problem is attacked by linear interpolation as shown by Figure 10.2,
but the linear interpolation of the strongly non-linear functions degrades the image quality
[SAFL99].
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Figure 10.2: Linear interpolation, i.e. Gouraud shading and linear texture mapping

In this thesis we proposed a new interpolation scheme (Figure 10.3) that uses appropriately
selected quadratic functions which can be implemented in hardware and can be initialized with-
out the computational burden of the Taylor’s series approach. Unlike previous techniques the
new method can simultaneously handle arbitrary number of light sources and arbitrary BRDF
models.
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Figure 10.3: Quadratic rendering

Figures 10.4, 10.5 and 10.6 show specular objects of more complex scenes with normal tes-
sellation levels rendered with Gouraud shading, classical Phong shading and with the proposed
quadratic rendering. Looking at these images we can conclude that the quadratic rendering is
visually superior to Gouraud shading and indistinguishable from classical Phong shading.
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Figure 10.4: A shaded pawn with Gouraud (left), Phong (middle) and Quadratic (right)

Figure 10.5: A shaded and textured apple with Gouraud (left), Phong (middle) and Quadratic (right)

Figure 10.6: Coarsely tessellated, shaded, textured and specular tiger with Gouraud (left) Phong
(middle) and quadratic (right)
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10.5 Hardware implementation of global illumination

The ray-bundle based stochastic iteration algorithm can render complex scenes according to the
global illumination principles. In this thesis we presented a global visibility algorithm and its
hardware realization, which can support its operation.

10.6 Suggestions of future research

We realized that during the last two decades there were enormous developments in the field
of computer graphics software and hardware. The main objective of computer graphics is to
generate realistically looking images on a computer screen and as fast as possible. Taking into
account the computational burden associated with this process, real-time image synthesis is
possible only with either hardware support or with high-level parallelization. Recently, paral-
lelization has become available on the low levels that are close to the hardware. The famous
pixel shaders of the latest graphics cards delivered low level firmware programming features
to the application developers. One possibility of the future research work could be the consid-
eration of pixel shaders as an implementation framework for the proposed algorithms. On the
other hand, there are many other computationally intensive methods of rendering, which can
be attacked by the simplification methods proposed in this thesis, including for example, so-
phisticated texture filtering, and bump-, environment-, reflection- and displacement-mapping,
volume visualization algorithms, etc. We believe that even these complex operations can be
executed directly by the hardware in the future.
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polation in Hardware Phong Shading and Texture Mapping. In IEEE Computer Society
Press in the Post-Proceedings of The 17th. Spring Conference on Computer Graphics,
pages 181–188, Budmerice, Slovakia, 25–28 April 2001.

[ASKHF00] A. M. Abbas, L. Szirmay-Kalos, T. Horváth, and T. Fóris. Quadratic Shading and its
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Appendix
Mapping the RGB interpolators of the quadratic interpolation for the lower half

triangle on Xilinx Spartan2e device, FPGA Family Members, xc2s100e type

library IEEE;
use IEEE.std_logic_$1164$.all;
library unisim;
use unisim.vcomponents.all;

package newpack is
subtype sbyte is STD_LOGIC_VECTOR$(11$ downto $0$);
subtype sword is STD_LOGIC_VECTOR($31$ downto $0$);
subtype slong_word is STD_LOGIC_VECTOR($47$ downto $0$);
end newpack;
package body newpack is
end newpack;

library IEEE;
use IEEE.std_logic_$1164$.all;
library unisim;
use unisim.vcomponents.all;
use work.newpack.all;
entity IXYinterface is

port(StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R:out sword;
StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B:out sword;
Sel: in std_logic_vector(4 downto 0);
iclk: in std_logic; idata: in sword);

end IXYinterface;

Architecture behaviour of IXYinterface is
begin
register_field_process:
process(iclk) -- synchronous register load at rising edge of iclk
begin
if iclk’event and iclk = ’1’ then
case Sel is
when "00000" => StepIXsYR <= idata;
when "00001" => StepIX1R <= idata;
when "00010" => StepIY1R <= idata;
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when "00011" => InitIXsYR <= idata;
when "00100" => InitIY1R <= idata;
when "00101" => InitIY2R <= idata;
when "00110" => StepIXsYG <= idata;
when "00111" => StepIX1G <= idata;
when "01000" => StepIY1G <= idata;
when "01001" => InitIXsYG <= idata;
when "01010" => InitIY1G <= idata;
when "01011" => InitIY2G <= idata;
when "01100" => StepIXsYB <= idata;
when "01101" => StepIX1B <= idata;
when "01110" => StepIY1B <= idata;
when "01111" => InitIXsYB <= idata;
when "10000" => InitIY1B <= idata;
when "10001" => InitIY2B <= idata;
when others => null;

end case;
end if;
end process;
end behaviour;

library IEEE;
use IEEE.std_logic_1164.all;
library IEEE;
use IEEE.std_logic_signed.all;
library unisim;
use unisim.vcomponents.all;
use work.newpack.all;

ENTITY Interpolator Is
PORT(clk,load_step: in STD_LOGIC; InitVal,StepVal: in sword;

OutVal: out sword);
end Interpolator;

Architecture Behaviour of Interpolator is
signal Adder_Out, Reg_Out: sword;
begin
register_process:
process(clk) -- sychronous load/step at rising edge of clk
begin

if clk’event and clk = ’1’ then
if load_step = ’1’ then

Reg_Out <= InitVal ;
else

Reg_Out <= Adder_Out ;
end if;

end if;
end process;
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adder_process:
process(Reg_Out,Stepval)
begin

Adder_Out <= Reg_out + StepVal ;
end process;

OutVal <= Reg_Out;
end Behaviour;

library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
use work.newpack.all;
entity IXYgenerator is

port(clk,startX,startY:in STD_LOGIC;
StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R:in sword;
StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B:in sword;
IXsYR,IX1R,IXYR,IXYG,IXYB:out sbyte);

end IXYgenerator;

architecture structure of IXYgenerator is
component interpolator

port(clk,load_step:in STD_LOGIC; InitVal,StepVal:in sword;
OutVal:out sword);

end component;
component Uinterpolator

port(clk,load_step:in STD_LOGIC; InitVal,StepVal:in sword;
OutVal:out sword);

end component;

signal StepIXsYRs,InitIXsYRs, IXsYoutRs : sword;
signal StepIX1Rs, IX1outRs, IX2outRs : sword;
signal StepIY1Rs, InitIY1Rs, IY1outRs : sword;
signal InitIY2Rs, IY2outRs: sword;
signal StepIXsYGs, InitIXsYGs, IXsYoutGs : sword;
signal StepIX1Gs, IX1outGs, IX2outGs : sword;
signal StepIY1Gs, InitIY1Gs, IY1outGs : sword;
signal InitIY2Gs, IY2outGs: sword;
signal StepIXsYBs, InitIXsYBs, IXsYoutBs : sword;
signal StepIX1Bs, IX1outBs, IX2outBs : sword;
signal StepIY1Bs, InitIY1Bs, IY1outBs : sword;
signal InitIY2Bs, IY2outBs: sword;
signal dIX1clk, dIY1clk,dIY2clk,dIXsYclk,dIX2clk,dclk:STD_LOGIC;

begin
dclk <= clk;
dIY2clk <= dclk and startX;
dIY1clk <= dclk and startX;
dIX2clk <= dclk ;
dIX1clk <= dclk ;
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dIXsYclk <= dclk and startX;

IXsYRI:Uinterpolator
port map (dIXsYclk,startY,InitIXsYRs,StepIXsYRs,IXsYoutRs);

IX1RI:interpolator
port map (dIX1clk,startX,IXsYoutRs,StepIX1Rs,IX1outRs);

IX2RI:interpolator
port map (dIX2clk,startX,IY2outRs,IX1outRs,IX2outRs);

IY1RI:interpolator
port map (dIY1clk,starty,InitIY1Rs,StepIY1Rs,IY1outRs);

IY2RI:interpolator
port map (dIY2clk,starty,InitIY2Rs,IY1outRs,IY2outRs);

IXsYGI:Uinterpolator
port map (dIXsYclk,starty,InitIXsYGs,StepIXsYGs,IXsYoutGs);

IX1GI:interpolator
port map (dIX1clk,startX,IXsYoutGs,StepIX1Gs,IX1outGs);

IX2GI:interpolator
port map (dIX2clk,startX,IY2outGs,IX1outGs,IX2outGs);

IY1GI:interpolator
port map (dIY1clk,starty,InitIY1Gs,StepIY1Gs,IY1outGs);

IY2GI:interpolator
port map (dIY2clk,starty,InitIY2Gs,IY1outGs,IY2outGs);

IXsYBI:Uinterpolator
port map (dIXsYclk,starty,InitIXsYBs,StepIXsYBs,IXsYoutBs);

IX1BI:interpolator
port map (dIX1clk,startX,IXsYoutBs,StepIX1Bs,IX1outBs);

IX2BI:interpolator
port map (dIX2clk,startX,IY2outBs,IX1outBs,IX2outBs);

IY1BI:interpolator
port map (dIY1clk,starty,InitIY1Bs,StepIY1Bs,IY1outBs);

IY2BI:interpolator
port map (dIY2clk,starty,InitIY2Bs,IY1outBs,IY2outBs);

StepIXsYRs <= StepIXsYR;
InitIXsYRs <= InitIXsYR;
StepIX1Rs <= StepIX1R;
StepIY1Rs <= StepIY1R;
InitIY1Rs <= InitIY1R
InitIY2Rs <= InitIY2R;
IXsYR<= IXsYoutRs(31 downto 20);
IX1R <= IX1outRs(31 downto 20);
IXYR <= IX2outRs(31 downto 20);
StepIXsYGs <= StepIXsYG;
InitIXsYGs <= InitIXsYG;
StepIX1Gs <= StepIX1G;
StepIY1Gs <= StepIY1G;
InitIY1Gs <= InitIY1G;
InitIY2Gs <= InitIY2G;
IXYG <= IX2outGs(31 downto 20);
StepIXsYBs <= StepIXsYB;
InitIXsYBs <= InitIXsYB;
StepIX1Bs <= StepIX1B;
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StepIY1Bs <= StepIY1B;
InitIY1Bs <= InitIY1B;
InitIY2Bs <= InitIY2B;
IXYB <= IX2outBs(31 downto 20);
end structure;

library IEEE;
use IEEE.std_logic_1164.all;
library IEEE;
use IEEE.std_logic_signed.all;
library unisim;
use unisim.vcomponents.all;
use work.newpack.all;

ENTITY UInterpolator Is
PORT(clk,load_step: in STD_LOGIC; InitVal,StepVal: in sword;

OutVal: out sword);
end UInterpolator;

Architecture Behaviour of UInterpolator is
signal Adder_Out, Reg_Out: sword;
begin
register_process:
process(clk,load_step, InitVal)
begin

if load_step = ’1’ then
Reg_Out <= InitVal ;
else
if clk’event and clk = ’1’ then

Reg_Out <= Adder_Out ;
end if;

end if;
end process;

adder_process:
process(Reg_Out,Stepval)
begin
Adder_Out <= Reg_Out + Stepval ;
end process;

OutVal <= Reg_Out;
end Behaviour;

library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
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use work.newpack.all;
entity conn is
port(Sel: in std_logic_vector(4 downto 0); iclk: in std_logic;

idata: in sword; clk,startX,startY:in STD_LOGIC;
IXsYRb,IX1Rb,IXYRb,IXYGb,IXYBb:out sbyte);

end conn;

architecture structure of conn is
component IXYinterface
port(StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R:out sword;

StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B:out sword;
Sel: in std_logic_vector(4 downto 0);
iclk: in std_logic; idata: in sword);

end component;

component IXYgenerator
port(clk,startX,startY:in STD_LOGIC;

StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R:in sword;
StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B:in sword;
IXsYR,IX1R,IXYR,IXYG,IXYB:out sbyte);

end component;

signal StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R,
StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B:sword;

signal IXsYR,IX1R,IXYR,IXYG,IXYB: sbyte;
begin
IXsYRb <= IXsYR;
IX1Rb <= IX1R;
IXYRb <= IXYR;
IXYGb <= IXYG;
IXYBb <= IXYB;

Generator_hw:
IXYgenerator port map (clk,startX,startY,

StepIXsYR,StepIX1R,StepIY1R,InitIXsYR,InitIY1R, InitIY2R,
StepIXsYG,StepIX1G,StepIY1G,InitIXsYG,InitIY1G, InitIY2G,
StepIXsYB,StepIX1B,StepIY1B,InitIXsYB,InitIY1B, InitIY2B,
IXsYR,IX1R,IXYR,IXYG,IXYB);

Interface_hw:
IXYinterface port map (StepIXsYR,StepIX1R,StepIY1R,
InitIXsYR,InitIY1R, InitIY2R,StepIXsYG,StepIX1G,StepIY1G,
InitIXsYG,InitIY1G, InitIY2G,StepIXsYB,StepIX1B,StepIY1B,
InitIXsYB,InitIY1B, InitIY2B, Sel, iclk, idata);

end structure;
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Design Information
------------------
Target Device : x2s100e
Target Package : ft256
Target Speed : -6

Design Summary
--------------

Number of Slices: 883 out of 1,200 73%
Number of Slices containing

unrelated logic: 0 out of 883 0%
Number of Slice Flip Flops: 1,056 out of 2,400 44%
Number of 4 input LUTs: 1,183 out of 2,400 49%
Number of bonded IOBs: 99 out of 178 55%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 2 out of 4 50%

Total equivalent gate count for design: 18,336
Additional JTAG gate count for IOBs: 4,848

---- Target Parameters
Target Device : xc2s100e-ft256-6
Target Technology : spartan2e

---- Source Options
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
FSM Flip-Flop Type : D
Mux Extraction : YES
Resource Sharing : YES
Complex Clock Enable Extraction : YES
ROM Extraction : Yes
RAM Extraction : Yes
RAM Style : Auto
Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES
Automatic Register Balancing : No

---- Target Options
Add IO Buffers : YES
Equivalent register Removal : YES
Add Generic Clock Buffer(BUFG) : 4
Global Maximum Fanout : 100
Register Duplication : YES
Move First FlipFlop Stage : YES
Move Last FlipFlop Stage : YES
Slice Packing : YES
Pack IO Registers into IOBs : auto
Speed Grade : 6
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---- General Options
Optimization Criterion : Speed
Optimization Effort : 1
Check Attribute Syntax : YES
Keep Hierarchy : No
Global Optimization : AllClockNets
Write Timing Constraints : No
========================================================
HDL Synthesis Report FPGA Macro Statistics
# Registers : 33

32-bit register : 33
# Multiplexers : 15

2-to-1 multiplexer : 15
# Adders/Subtractors : 15

32-bit adder : 15
========================================================
Design Statistics
# IOs : 101

Cell Usage :
# BELS : 2114
# BUF : 5
# GND : 1
# LUT2 : 212
# LUT2_D : 15
# LUT2_L : 450
# LUT3 : 35
# LUT3_L : 465
# LUT4 : 1
# MUXCY : 465
# XORCY : 465
# FlipFlops/Latches : 1056
# FD : 384
# FDCP : 96
# FDE : 576
# Clock Buffers : 2
# BUFGP : 2
# IO Buffers : 99
# IBUF : 39
# OBUF : 60
==========================================================
Timing Summary:
---------------

Minimum period: 7.148ns (Maximum Frequency: 139.899MHz)
Minimum input arrival time before clock: 14.470ns
Maximum output required time after clock: 6.778ns


