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Abstract
Architectural walkthroughs require fast global illumination algorithms and also accurate results from certain
viewpoints. This paper introduces a global illumination method that combines several strategies to meet the
contradicting criteria of architectural walkthroughs. The methods include parallel and perspective ray-bundle
shooting and ray shooting. Each method is designed to randomly approximate the effect of the light transport
operator. Parallel ray-bundle tracing transfers the radiance of all points parallel to a randomly selected global
direction, with perspective ray-bundles we can shoot the radiance of a single patch in all directions, and ray
shooting transfers the radiance of a randomly selected point at a randomly selected direction. These strategies
are of complementary character since each of them is effective in different illumination conditions. The proposed
algorithm is iterative and the steps realized by different methods that randomly follow each other. In each step,
the applied strategy is selected randomly according to the properties of the current radiance distribution, thus we
can exploit that the used strategies are good in different conditions. The formal framework of their combination
is the stochastic iteration. Although the final result is the image, i.e. the algorithm is view dependent, a rough
approximation of the radiance function is stored in object space, that can allow fast movements at reasonable
storage requirements and also speed up Monte-Carlo simulations which result in the final image. The method is
also suited for interactive walkthrough animation in glossy scenes since when the viewpoint changes, the object
space radiance values remain valid and the image quickly adapts to the new situation.

Keywords: Global illumination, stochastic iteration, finite-
element techniques, Monte-Carlo methods

1. Introduction

In architectural CAD programs, the designer expects phys-
ically correct lighting when he walks through the virtual
building. The rendering algorithm should be fast enough to
allow interactive movements. Fortunately, the computed illu-
mination should not be very precise when the designer walks
quickly, but when he stops to carefully examine a certain re-
gion, the image should get more and more accurate.

Global illumination algorithms, which aim at the physi-
cally correct simulation of the light propagation, solve the

rendering equation

L = Le
+T fr L;

which expresses the radianceL(~x;ω) of point~x at direction
ω as a sum of the emissionLe and the reflection of all point
radiances that are visible from here. The reflection of the
radiance of visible points is expressed by an integral operator

T fr L(~x;ω) =

Z

Ω

L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 dω0;

which is also called as thelight transport operator. In this
equationh is the visibility function finding that point which
is visible from~x at direction�ω0, fr is the BRDF andθ0 is
the angle between the surface normal and direction�ω0.

The solution of the rendering equation and the computa-
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tion of an image from the radiance of the points visible in
different pixels are rather time consuming. The timing re-
quirements become even more prohibitive when animation
sequences are needed. The computation time can be reduced
if the similarity or coherence of the radiance function in a
single frame and even in multiple frames in the sequence are
exploited. It means that the radiance of neighboring points in
an image or in subsequent frames in the animation are quite
close thus a great portion of the illumination and visibility
information can be reused during the solution.

Global illumination algorithms can be classified as ran-
dom walk and iteration techniques.

Random walk algorithms search light paths following
a depth-first strategy9; 6; 4; 7; 17. From mathematical point of
view, they are based on the Neumann series expansion of the
rendering equation and compute the color of a pixel as

C =

1

∑
i=0

MT i
fr

Le; (1)

whereM is the measurement operator finding the average
radiance of the points visible in this pixel. The terms of this
series are ever increasing high-dimensional integrals that are
estimated by Monte-Carlo quadrature which estimate the in-
tegrals usingm random samples. Since Monte-Carlo meth-
ods haveO(m�0:5

) convergence independently of the di-
mension of the integration domain, they can avoid the expo-
nential core of classical quadrature rules13. Note also that in
equation (1) the measurement operator that depends on the
camera is included in all terms, thus this approach is strongly
view dependent. If the camera changes, the complete calcu-
lation should be started from scratch. In their original form,
random walk methods are unable to utilize any coherence
among frames thus they cannot be used in fast animation se-
quences.

Iteration techniques, on the other hand, generate light
paths according to abreadth-first search3; 1. In a single step
all paths are advanced once simultaneously. These tech-
niques are based on the fact that the solution of the rendering
equation is the fixed point of the following iteration scheme:

L(m) = Le
+T fr L(m�1):

If this scheme is convergent, then the pixel colors can be
obtained as a limiting value:

C = lim
m!1

ML(m):

Iteration converges with the speed of a geometric series, i.e.
the error from the limiting value is in the order ofO(am

)

wherea is the contraction of integral operatorTfr . The con-
traction is proportional to the average albedo of the sur-
faces and depends on how open the scene is. Note that it-
eration uses the estimate of the complete radiance function,
thus it can potentially exploit coherence and reuse previous
information, and can optimize geometric queries allowing
fast and hardware supported visibility algorithms. Since the

complete radiance function is inserted into the iteration for-
mula, parallelization is not as trivial as for random walks,
and the error introduced in each step may accumulate to a
large value15. To store the radiance estimates, finite-element
approaches should be used which represent the radiance
function in a finite function series form:

L(~x;ω) = ∑L j �b j(~x;ω)

where functionsbj(~x;ω) are pre-defined basis functions and
parametersLj are scalars. Basis functionsbj(~x;ω) are usu-
ally decomposed to a product of positional (sk(~x)) and direc-
tional basis functions (di(ω)). The positional basis functions
may be either constant or linear on a patch, while the di-
rectional basis functions can also be piece-wise constant5,
spherical harmonics10 or Haar functions12. Due to the fact
that the radiance has 4 variates and changes quickly, an ac-
curate finite-element representation requires very many ba-
sis functions, which makes these algorithms both storage and
time consuming. If the number of basis functions is less than
necessary, light-leaks may occur and shadows and highlights
may be placed incorrectly11. Unlike in random walks, the
radiance estimatesL(m) are completely view-independent,
thus when they are available, the image can be obtained from
any viewpoint. Thus iteration can potentially exploit the co-
herence of frames. However, it has a high prize in terms of
storage space.

Although a single iteration step requires much more com-
putation than a single random light-path, theO(am

) con-
vergence of iteration still seems to be far superior to the
O(m�0:5

) convergence of random walks. However, random
walk converges to the real solution while iteration to the so-
lution of the finite-element approximation of the original
problem. In our targeted application area, in architectural
walkthroughs, images should be generated usually close to
real-time and but when we stop to look at small details, we
have the time to wait for more accurate images. Considering
the better initial convergence and the view independence, it-
eration seems to be the better alternative. In order to allow
the temporary representation of the radiance function, the
surfaces are decomposed to small patches that can be as-
sumed to have homogeneous points. Thus the radiance of
each surface is described by a directional function, which
can be obtained as the average of the directional radiance of
the points of the patch. If deterministic iteration were used,
this directional radiance function should be approximated by
many directional basis functions, which could easily lead to
intorelable memory requirements. Thus we choose a differ-
ent approach istead.

In order to reduce its astronomical storage requirements
and to solve the error accumulation problem, iteration is
randomized, which leads to stochastic iteration. The formal
basis is the stochastic iteration14, which replaces the light-
transport operator by a random transport operator that gives
back the effect of the light-transport operator in the average
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case:

L(m) = Le
+T �fr

L(m�1); E[T �fr
L] = T fr L: (2)

The pixel colors are computed as an average of the esti-
mates of all iteration steps

C(m)=
1
m
�

m

∑
i=1

ML(i)=
1
m
�ML(m)+

�
1�

1
m

�
�C(m�1):

This version does not provide converged radiance values
in the object space, just in the image space. This is an ad-
vantage since we could get rid of the storage requirements
of the direction dependent radiance values on each patches.
However, it is worth separating the main part of the radiance
function that is simple to represent and store it explicitely.
This has two benefits. On the one hand, we can use it to
reduce the variance of the Monte-Carlo simulation. On the
other hand, this main part represents the radiance in a view
independent way, which can be taken advantage of in fast
interactive walkthrough.

Let us decompose the radiance functionL to an emission
Le, to a reflected componentL̃ that can be approximated
by the linear combination of the finite-elements (called
the finite-element component), and to a reflected residuum
∆L(ω) (called theMonte-Carlo component) that is estimated
by Monte-Carlo simulation16:

L = Le
+ L̃+∆L: (3)

In order keep the storage low, we allow just one direc-
tional basis function per patch to represent the final element
part (the extension to higher elements is straightforward). In
this case the finite element part can be obtained as a simple
average of the directional radiance function of the patch:

L̃ =
1
π
�

Z

Ω

L(ω) �cosθ dω:

If the patch receives illumination just from directionω0

and the irradiance isI(ω0) — this will be the usual case in
the algorithm — then the average radiance can be obtained
from the albedo:

L̃ = I(ω0) �
1
π
�

Z

Ω j

fr(ω0;~x;ω) �cosθ dω= I(ω0) �
a(~x;ω0)

π
:

The albedo can be computed in the preprocessing phase for
each possible material and stored in tables or can be esti-
mated on the fly.

Let us substitute this decomposition into the stochastic it-
eration formula (equation 2):

L(m) = Le
+T �fr

(Le
+ L̃(m�1)+∆L(m�1)):

To obtain the radiance value of patchi, the radiances of its

points are averaged:

L(m)ji =
1
Ai
�

Z

Ai

T
�

fr
L(m�1) d~x (4)

In each iteration step the radiance average is obtained an
image estimate is computed from the actual radiance. Note
that the image estimates and the finite-element components
obtained in an iteration step, as stochastic iteration in gen-
eral, will not converge, but they will fluctuate around the real
solution. Thus the final image is obtained as the average of
these image estimates, and the finite-element component as
the average of the finite-element components of different it-
eration steps. If the finite-element projection of the radiance
at stepm is L̃0(m), then the finite-element part may be de-
rived as follows:

L̃(m) =
1
m
�

m

∑
n=1

L̃0(n) =
1
m
� L̃0(m)+

�
1�

1
m

�
� L̃(m�1):

(5)

The Monte-Carlo component, which is obtained as a dif-
ference between the actual radiance estimate and its finite-
element projection, is used to correct the finite-element ap-
proximation.

The complete algorithm is:

StohasticIteration
L̃(0) = 0, ∆L(0) = 0
for m = 1 to M do

Lr
= T �fr

(Le
+ L̃(m�1)+∆L(m�1))

L̃0(m) = average ofLr

∆L(m) = Lr� L̃0(m)

L̃(m) = 1=m � L̃0(m)+ (1�1=m) � L̃(m�1)
C0(m) =M(Le

+ L̃(m)+∆L(m))

C(m) = 1=m �C0(m)+ (1�1=m) �C(m�1)
endfor
DisplayC(m) colors

end

The dataflow of the new algorithm is shown in figure 1.
Note that the new reflected radianceL̃(m)+∆L(m) is com-
puted from the radiance generated by the random trans-
port operator as first subtracting its finite-element projec-
tion then adding the average of these finite-element projec-
tions. At the beginning of the execution of the algorithm
this replaces a high-variance main part by its estimated aver-
age, which is responsible for good initial convergence. Later,
when the algorithm converges, the expected finite-element
component gets close to its average, thus subtraction and ad-
dition compensate each other and the finite-element approx-
imation does not distort final result. We could get the speed
of the iteration together with the asymptotic accuracy of ran-
dom walks.

This is a generic algorithm from which different specific
versions can be built by inserting the random transport op-
erator. The algorithm will be fast if the application of the
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Figure 1: Dataflow in the new algorithm

random transport operatorT �L results in a low variance ran-
dom variable. Note that this depends not only on the random
transport operator but also on the current radiance function.
With other words, for a different actual radiance function,
different transport operator can be the winner of this game.

Now, let us consider three candidate methods to realize a
single step of the stochastic iteration.

2. Parallel ray-bundle tracing

In this section a specific algorithm is discussed that trans-
fers the radiance of all patches to a randomly selected global
direction in each iteration cycle. Since the algorithm trans-
fers the radiance into a randomly selected directionω0, the
random transport operator is

Lr
(~x;ω) = T �fr

L = 4π�L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0~x:

Indeed, if the direction is sampled uniformly, then its
probability density isp(ω0) = 1=4π, thus the expectation of
the random transport operator gives back the effect of the
light transport operatorT fr L, as required by equation (2):

E[T �fr
L] =

Z

Ω0

4π�L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 �
dω0~x
4π

:

The radiance transfer needs the identification of those
points that are mutually visible in the global direction. In
order to solve this global visibility problem, a window is
placed perpendicular to the global direction. The window
is decomposed into a number of pixels. A pixel is capable
to store a list of patch indices and z-values. The lists are
sorted according to the z-values. The collection of these pix-
els are called thetransillumination buffer8. The patches are
rendered one after the other into the buffer using a modified
z-buffer algorithm which keeps all visible points not just the
nearest one. Traversing the generated lists the pairs of mutu-
ally visible points can be obtained. For each pair of points,

the radiance transfer is computed and the transferred radi-
ance is multiplied by the BRDF, resulting in the reflected
radianceLr.

1

2

3

window

transillumination buffer

global direction

1 2 3

1 3

3

2

Figure 2: Organization of the transillumination buffer

From the reflected radiance the patch radiance can be ob-
tained by a simple averaging operation according to equation
(4). Note that if the integral is evaluated on the window, then
the cosine factor is compensated:

L(m)ji =
1
Ai
�

Z

Ai

T �fr
L(m�1) d~x �

4π�δP
Ai

�∑
P

Lin
(P) � fr(ω0;P;ω)

whereP runs on the pixels covering the projection of patch
i, Lin

(P) is the radiance of the surface point visible in pixel
P, fr(ω0;P;ω) is the BRDF of that point which receives this
radiance coming through pixelP andδP is the area of the
pixels.

It is straightforward to extend the method to be bi-
directional, which transfers the radiance not only into direc-
tion ω0 but also to�ω0. Note that this does not even require
additional visibility computation.

2.1. Perspective ray-bundle shooting

Perspective ray-bundle shooting selects a single patch ran-
domly and sends its radiance from one of its randomly se-
lected point towards all directions. According to importance
sampling, it is worth setting the selection probabilitypi pro-
portional to the powers of the patches.

If patch i is selected with probabilitypi and point~y on
this patch with uniform 1=Aj probability, then the random
transport operator is

Lr
(~x;ω) = (T �fr

L)(~x;ω) =

A j

p j
� v(~x;~y) �L(~y;ω0~y!~x) � fr(ω0~y!~x;~x;ω) �

cosθ0~x �cosθ~y
j~x�~yj2

;

wherev(~x;~y) is the mutual visibility indicator, which is 1 if
the two points are visible from each other.
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The expected value of this random variable is:

E[T �fr
L] =

∑
i

p j

A j
�

Z

Aj

A j

p j
�v(~x;~y)�L(~y;ω0

~y!~x)� fr(ω0
~y!~x;~x;ω)�

cosθ0
~x �cosθ

~y

j~x�~yj2
d~y =

∑
i

Z

Aj

v(~x;~y) �L(~y;ω0
~y!~x) � fr(ω0

~y!~x;~x;ω) �
cosθ0

~x � cosθ
~y

j~x�~yj2
d~y:

Using the formula of solid anglesd~y �cosθ~y=j~x�~yj2 = dω~x
and assuming that illumination can only come from surfaces
— i.e. there is no external sky light illumination — the in-
tegration over all surfaces can be replaced by an integration
over all incoming solid angles:

E[T �fr
L] =

Z

Ω0

L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0~x dω0~x;

and this is exactly what we wanted to prove.

To obtain the patch radiance, the radiances of the points
are averaged:

L(m)ji =
1
Ai
�

Z

Ai

T
�

fr
L(m�1) d~x =

A j

p jAi

Z

Ai

v(~x;~y)�L(~y;ω0~y!~x)� fr(ω0~y!~x;~x;ω)�
cosθ0

~x �cosθ~y
j~x�~yj2

d~x

(6)

windows

patchj

P

θ

θ
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y

Figure 3: Perspective ray-bundle tracing with hemicubes

The integral in equation (6) can also be evaluated on the
five window surfaces (W ) that form a hemicube around the
source~y (figure 3). Note that this is similar to the famous
hemicube approach of the diffuse radiosity problem2. In
fact, radiance shooting requires the vertex-patch form fac-
tors that can be computed by the hemicube. In this section,
we re-derive the basic formulae to show that they can also
be used in cases when the reflection is non-diffuse.

To find formal expressions, let us express the solid angle
dΩp, in which a differential surface aread~x is seen through

pixel aread~p, both from the surface area and from the pixel
area:

dΩp =
d~x �cosθ0

~x

j~y�~xj2
=

d~p �cosθp

j~y�~pj2
; (7)

whereθp is the angle between direction pointing to~x from
~y and the normal of the window (figure 3). The distance
j~y�~pj between pixel point~p and the lightsource~y equals
to f=cosθp where f is the distance from~y to the window
plane, that is also called thefocal distance. Using this and
equation (7), differential aread~x can be expressed and sub-
stituted into equation (6), thus we can obtain:

L(m)ji =

Aj

p jAi f 2
�

Z

W

v(~y;~x) �L(~y;ω0
~y!~p) � fr(ω0

~y!~x;~x;ω) �cosθ
~y �cosθ3

p d~p:

Let Pi be the set of those pixels in which patchi is vis-
ible from the lightsource.Pi is computed by running a z-
buffer/constant shading rendering step for each sides of the
window surface, assuming that the color of patchi is i, then
reading back the “images”. The reflected radiance on patchi
is approximated by a discrete sum as follows:

L(m)ji �

A jδP

p jAi f 2 �∑
P

L(~y;ω0~y!~p) � fr(ω0~y!~x;~x(~p);ω) �cosθ~y �cosθ3
p;

whereδP is the area of a single pixel in the image. IfR is
the resolution of the image — i.e. the top of the hemicube
containsR�R pixels, while the side faces containR�R=2
pixels – thenδP = 4 f2=R2:

2.2. Ray shooting

In this method the random transport operator uses indepen-
dent rays having random origin~yi and directionωi generated
with a probability densityp(~y;ω) that is preferably propor-
tional to the cosine weighted radiance of this point at the
given direction. This ray transports the power

Φ(~y;ω0) =
L(~y;ω0)cosθ~y

p(~y;ω0)

to that point~x which is hit by the ray, where it is reflected,
modifying the radiance function. On a singlewavelength, the
probability of reflection is the BRDF times the cosine of the
outgoing angle, i.e.

fr(ω0;~x;ω) �cosθ~x;

but the cosine angle is compensated when the power is con-
verted to radiance. Formally, the random transport operator
is

(T �L)(~x;ω) =

L(~y;ω0)cosθ~y
p(~y;ω0)

�δ(~x�h(~y;ω0)) � fr(ω0;~x;ω); (8)
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where δ is the Dirac delta function that expresses that
now only that point can receive radiance which is hit by
the ray. Using the definition of the solid angle,dω~y =

d~x �cosθ0~x=j~y�~xj2; a symmetry relation can be established

d~y �dω~y �cosθ~y = d~y �
d~x �cosθ0

~x

j~y�~xj2
�cosθ~y =

d~x �
d~y �cosθ~y
j~y�~xj2

�cosθ0~x = d~x �dω0~x �cosθ0~x;

which allows us to easily prove that the requirement of equa-
tion (2) holds, that is, the expectation of the random transport
operator defined in equation (8) really gives back the original
light transport operator:

E[T �fr
L] =

Z

S

Z

Ω0

~y

L(~y;ω0)cosθ
~y

p(~y;ω0)
�δ(~x�h(~y;ω0)) � fr(ω0;~x;ω) � p(~y;ω0) d~ydω0 =

Z

Ω0

~x

L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) � dω0
~x:

According to importance sampling,p(~y;ω) is preferably
proportional to radiance of the point~y at directionω. This
sampling can be realized in two steps. First the patch is se-
lected with a probability proportional to its power. Then~y is
found with a uniform distribution on the selected patch.

3. Representation of the temporary radiance

All the three discussed methods sample the radiance func-
tion in each step and obtain a new function. The radiance is a
four variate function and usually has high variation, thus its
accurate finite-element representation would require many
basis functions. Fortunately, the necessary storage space can
be greatly reduced if the complete evaluation of the new radi-
ance function is postponed until the new evaluation point and
direction are already known. Note that all the three methods
require just partial information about the radiance function,
parallel ray-bundle transfer needs the radiance values just in
a single direction, perspective ray-bundle transfer requires
the radiance distribution of a single patch only, while ray
shooting uses the radiance of single point and at a single
direction. In an iteration step let us thus compute only the ir-
radiance on each patch, which is independent of the transfer
direction of the next step. With the irradiance information
we also store the incoming direction. In the next iteration
step, when the output radiance of a patch in a given direc-
tion is needed, then it is obtained on the fly, multiplying the
irradiance by the BRDF of the patch taking into account the
previous and current directions.

In order to establish importance sampling for the perspec-
tive and ray shooting transfers, the powers of the patches

should also be known. The computation of the powers from
the irradiance values is also straightforward, the irradiances
should be multiplied by the albedosai(ω) of the patches.

4. Multiple strategy algorithm

So far, we introduced three different random radiance trans-
fer methods. Each of them is good for a particular radi-
ance distribution. The parallel ray-bundles are effective if
the scene consists of patches of similar radiance, while the
perspective ray bundles and ray shooting are effective if one
or several patches are much brighter than the others. In this
case, we can prefer ray-shooting to perspective ray-bundle
transfer if the patch is highly specular.

Note that in random walk algorithms it is not a good
idea to alter the sampling according to the currently trans-
ferred radiance since that can make the method biased, but
in stochastic iteration this poses no problems. We conluded
that all three methods meet the requirement of stochastic it-
eration, i.e. the expected value of their application gives back
that of the real light transport operator. Obviously, any ran-
dom combination of the three methods, where the probabili-
ties sum up to 1, leads also a valid stochastic iteration step. In
stochastic iteration this selection might increase the correla-
tion of the radiance functions of subsequent iteration, but the
average will still converge to the expected value according to
the Bernstein theorem.

The selection probabilities are found to give higher
chances to those methods which are hopefully effective in
the current situation. Suppose that in the last iteration step
the patches gotI1(ω1); I2(ω2); : : :; In(ωn) irradiance values
(note that directionsω1; : : :;ωn are the same for the paral-
lel ray-bundle radiance transfer, but not for perspective ray-
bundles and ray shooting).

If all patches have similar powers, we should prefer par-
allel ray-bundles. The similarity of patch powers can be ex-
pressed by the radio of the maximum patch powerΦmax and
the sum of the powers of all patches totalΦtotal.

When we decide that non-parallel transfer is applied, the
next step is to determine whether not the selected patch is
strongly specular. This decision depends on the ratio of the
volumes of the diffuse and specular reflection lobes, i.e. of
the diffuse albedoadi f f use and the specular albedosaspec,
and also on how long the specular reflection lobe is. The
length of the lobe can be characterized by the shininess pa-
rameters. Let us define a glossiness functionG that maps the
used shininess parameters onto[0;1], in the way that when
G(s) is close to 0 then the specular part is highly specular,
but when it is close to 1, then it is glossy. An appropriate
glossiness function is:

G(s) =
1

1+λs

whereλ should be set to guarantee that a surface ofs = 40
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shininess parameter is considered as the borderline of glossy
and highly specular materials, i.e.G(40) = 0:5.

In fact we have three options: we consider the surface
as diffuse, as glossy or as highly specular. The respective
weights of the three options areadi f f use, G(s) �aspecular and
(1�G(s)) �aspecular. Thus the probability of ray-shooting is:

pperspective =
(1�G(s)) �aspecular

adi f f use +aspecular

The complete algorithm is:

foreach patchi do Φout
i = Ii(ωi) �ai(ωi) �Ai

Φmax
= maxfΦout

j g

Φtotal
= ∑ j Φout

j

pnonparallel = Φmax=Φtotal

Generate a random numberr in [0;1)
if r < pparallel

Selecti with probability pi = Φout
i =Φtotal

pperspective =
(1�G(s))�aspecular
adi f f use+aspecular

Generate a random numbers in [0;1)
if r < pperspective then Use perspective ray-bundle tracing
else Use ray shooting

else
Use parallel ray-bundle tracing

endif

5. Radiance updates during walk-through animation

In general animations both the objects and the camera may
move. Walk-through animations represent an important spe-
cial case when the objects are still but the camera may follow
an arbitrary path. Walk-through involves a higher level of co-
herence among frames, thus more speed-ups can be expected
from its proper utilization.

Let us now examine what happens if the eye position
changes during the walkthrough animation. After first-shot,
the decomposed radiance is

L = Le
+ L̃+∆L:

The finite-element componentL̃ is view independent thus
remains valid for the new viewpoint. The emission function
Le should be re-evaluated at each sample point. The only
term which poses difficulties is the Monte-Carlo component
∆L.

One way of handling this is to continue the stochastic it-
eration having altered the eye position. If the surfaces are
not highly specular and the change of the view direction is
small, then the sum of the emission, the direct reflection and
the finite-element approximation of the indirect reflection is
a good approximation also for the next viewpoint, thus the
iteration will converge quickly. If the sub-patch representa-
tion is used, then the Monte-Carlo component can also be
reused in the next viewpoint. This requires an additional

variable on each patch that stores the output radiance to-
wards the eye due to the average Monte-Carlo component.
When the view position changes, this value becomes an ap-
proximation, but it is usually better to start from this value
than from zero. Clearly, starting from solution in the previ-
ous frame makes the errors of subsequent frames correlated.
The progressive nature of the algorithm and the fact that the
error is correlated in different frames can be regarded as ad-
vantages in interactive applications. When the user moves
quickly in the scene, although the computed image sequence
becomes gradually inaccurate, but does not not exhibit flick-
ering. When the user slows down at more interesting places,
the algorithm has more time to refine the results, thus accu-
rate images can be computed.

6. Simulation results

The presented algorithms have been implemented in C++ in
OpenGL environment. The images have been rendered with
500�500 resolution. The transillumination buffer contained
1000�1000 pixels.

Figure 4: Animals in the Cornell box

Concerning the refinement of the finite-element frame-
work, practical experiences showed that it is usually not
worth subdividing the directional sphere in scenes where the
surfaces are not highly specular and therefore are the pri-
mary candidates for ray-bundle tracing. Thus it is enough to
decide whether or not the surface triangles should be broken
down.

7. Conclusions

In this paper we proposed a stochastic iteration algorithm
that dynamically combines three random radiance transport
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Figure 5: Snap-shots of a walk-through in a house modelled in ArchiCAD. The images are rendered with the proposed method.

methods based on the actual radiance approximation. The
method is able to render complex glossy scenes in about a
minute and is particularly effective if the surfaces are not
highly specular. When the image is ready, a rough estimate
of the radiance in object space is also available. This estima-
tion requires just one or a few radiance values per patch, thus
the storage requirements is modest. Thus when the view-
point changes, the new image can be generated from this
estimation interactively. Note that when the objects them-
selves move a bit, the radiance representation remains quite
accurate, thus this will be a good initial value for the iter-
ation. It means that the proposed method is also good for
general animation sequences.
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