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Abstract—Dynamic positron emission tomography reconstructs
the space-time dependence of radiotracer concentration in a
human or animal body. The self-motion of the examined sub-
ject often cannot be avoided. Therefore, the motion should be
measured and this information should be incorporated into the
reconstruction process. The ML-EM reconstruction procedure [1]
can be generalized to consider subject movement by concatenating
a geometric transformation to the system matrix multiplication.
However, a transformation is valid only for a single point in time,
thus time frames should be short enough to allow the assumption
that motion is constant within them. Fast movements, which occur
in the study of neurological disorders, would require a very high
number of frames, leading to unacceptable reconstruction times.
To attack this problem, we re-formulate the ML-EM scheme
to incorporate continuous motion during frames. Instead of a
geometric transformation, we apply 3D motion blur. For efficient
implementation, the paths of object-space voxels are approxi-
mated by polylines and antialiasing line drawing methods are
adapted to calculate the blurred result. Having executed motion
blur on the voxel array before forward projection and twice
during back projection, all other components of the simulation
can be reused from the dynamic reconstruction system developed
without motion compensation.

I. INTRODUCTION

IN dynamic positron emission tomography (PET), we an-
alyze the dynamic nature of biological processes [2], [3],

[4], [5]. The measurement time is divided into time frames
according to the tracer dynamics. Direct dynamic tomography
algorithms usually iterate two steps: first, an ML-EM [1]
static forward projection and back projection are executed for
each frame, then the parameters of a time function of pre-
defined algebraic form is fit in each voxel [6]. Thus, the
number of projections is proportional to the number of frames,
which should be kept under control to avoid unacceptably high
reconstruction times and memory requirements.

The self-motion of the examined patient often cannot be
avoided, for example when studying neurological disorders
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like epilepsy, thus the motion should be measured and this
information should be incorporated into the reconstruction
process [7]. Accurate reconstruction requires projections that
simulate all relevant phenomena including positron range,
gamma-photon scattering and absorption both in the measured
object and in detector crystals, which are all affected by the
motion of the body. Forward and back projections are executed
for each frame in every iteration, which can be separated from
the motion by assuming that inside a frame, subject movement
is negligible and a single geometric transformation describes its
position. However, this is usually not the case when neurologi-
cal disorders are examined, since subject motion has generally
much quicker dynamics than the tracer diffusion.

Gated approaches [8], [9] keep hits close to discrete time
samples to solve the problem of motion inside the frame, but
they ignore significant information and are thus less reliable
for low-statistics or low-dose experiments.

The other option is to re-bin the list-mode data and find
the event list that would have been measured if the subject
had not moved, then execute a conventional reconstruction
for the modified sinogram [10], [11], [12]. Such event-space
aka sinogram filtering techniques are simple to implement and
efficient, but they are also rather limited. Event-based methods
cannot be applied for effects happening in the detectors as they
either add noise or result in filtered measured data that are
not of Poission distribution. They also suffer from the missing
or lost data problem, which comes from the fact that events
are not measured outside the field of view of the scanner,
thus they cannot be transformed in to compensate for the
events that are transformed out due to subject motion, making
the reconstruction distorted. Furthermore, event-based methods
operate on LORs, so they transform lines to lines, thus they
are not applicable for non-linear deformations.

In this paper, a model-based motion compensation technique
is proposed, which incorporates motion into the forward pro-
jection and back projection steps. Unlike previous methods,
we consider continuous motion inside frames, which allows
the significant reduction of the number of frames in case of
fast motion.

The structure of this paper is the following. In Section II,
we generalize the ML-EM scheme for continuous motion. Sec-
tion III presents the results obtained first with a 2D phantom,
then during a fully 3D reconstruction. Finally, we close the
paper with conclusions.

II. RECONSTRUCTION ALGORITHM

This section revisits the ML-EM scheme and generalizes it
for continuous object motion. Movement can be arbitrary, not
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Fig. 1: Overview of the generalized ML-EM reconstruction for continuously moving or deforming objects

necessarily rigid body motion.
Radiotracer isotopes randomly decay generating events in

the detectors of the tomograph. An event consists of the
identification of the involved detectors, also called Line Of
Response or LOR, and the time of the detection. To get an
efficient numerical method, the measured volume is divided
into voxels and the measurement time is discretized by ticks
t1, t2, . . . , tNF

, then events are binned into frames (tF , tF+1).
The number of voxels and frames are critical, because the
computational complexity of the reconstruction is proportional
to their product.

Radiotracer concentration is described by a kinetic model
K(pV , t), which represents each voxel V with a parameter
vector pV = (pV,1, . . . ,pV,NP

). The expected number of
decays in voxel V in time interval [tF , tF+1] is

x̃F (pV ) =

tF+1∫
tF

K(pV , t)e−λtdt, (1)

where λ is the decay rate of the tracer. (Expectations are
generally indicated by a tilde in this paper.)

The correspondence between decays and detected events
is established by the system matrix A, which expresses the
probability of detecting an event in LOR L given that a decay
happened in voxel V . If the measured object is moving, then
the system matrix is also time-dependent, since a point of
its body will be at different places at different times. To
handle this, we introduce two voxel arrays, an object-space
array that follows the measured object, and a tomograph-space
array that is fixed to the tomograph. To make the distinction
clear, object-space voxel activities are denoted by lower case

letters and indexed with V or V ′, while tomograph-space
voxel activities with upper-case letters and indexed with W .
The system matrix describing the correspondence between
tomograph-space voxels and LORs is not time dependent, but
tomograph-space voxels have dynamic activity due to both
the dynamic radiotracer concentration and the time-dependent
transformation between object-space and tomograph-space.

Knowing the transformation between object-space and
tomograph-space, we can obtain an overlap factor OV ′,W (t)
between object-space voxel V ′ and tomograph-space voxel
W , which expresses the ratio of the volume in voxel W that
actually comes from object-space voxel V ′.

The expected number of decays in tomograph-space voxel
W in time interval [tF , tF+1] is

X̃W,F =
∑
V ′

tF+1∫
tF

K(pV ′ , t)e−λtOV ′,W (t)dt

=
∑
V ′

x̃F (pV ′)oV ′,W,F , (2)

where oV ′,W,F is the average overlap of object-space voxel V
and tomograph-space voxel W during frame F :

oV ′,W,F =

tF+1∫
tF

K(pV ′ , t)e−λtOV ′,W (t)dt

tF+1∫
tF

K(pV ′ , t)e−λtdt

. (3)

From now on, we assume that this average overlap is in-
dependent of parameter vector pV , which is the case when
either K(pV , t)e−λt or the overlap factor are constant in time.



Otherwise, it is a good approximation. Taking advantage of
this, we get

oV ′,W,F ≈
1

tF+1 − tF

tF+1∫
tF

OV ′,W (t)dt. (4)

The expected number of detection events ỹL,F in LOR L in
frame F is the sum of the contributions of all voxels:

ỹL,F =
∑
W

AL,W X̃W,F , (5)

which is a conventional forward projection.
The measured number of hits in LOR L in frame F

follows a Poisson distribution of expectation ỹL,F . Because
of the statistical independence of different LORs and different
frames, the combined probability considering all LORs and
frames is the product of the elementary probabilities. Ac-
cording to the concept of maximum-likelihood reconstruction,
unknown parameters are searched to maximize the following
log-likelihood:

logL =
∑
L

∑
F

(yL,F log ỹL,F − ỹL,F ) , (6)

where yL,F is the measured number of detector hits in LOR
L in frame F .

The likelihood has an extremum where all partial derivatives
are zero:∑

F

∑
W

∂X̃W,F

∂pV,P

∑
L

(
AL,W

yL,F
ỹL,F

−AL,W

)
= 0, (7)

for all object-space voxels V = 1, 2, . . . , NV and parameters
P = 1, . . . , NP .

Using Eq. 2 and also exploiting our simplifying assumption
that the average overlap is independent of the parameter vector,
we get

∂X̃W,F

∂pV,P
=
∑
V ′

∂x̃F (pV ′)

∂pV,P
oV ′,W,F =

∂x̃V,F
∂pV,P

oV,W,F . (8)

since the derivative at the right hand side is non-zero only if
V = V ′. Thus, Eq. 7 simplifies to∑
F

∂x̃F (pV )

∂pV,P

∑
L

∑
W

oV,W,F

(
AL,W

yL,F
ỹL,F

−AL,W

)
= 0.

(9)
The computation of the derivatives of the log-likelihood

requires a forward projection and an update operation in
each frame F . Indeed, in frame F , the expected number of
radioactive decays in voxel V is x̃F (pV ), which is forward
projected via all overlapped tomograph-space voxels to obtain
ỹL,F according to Eq. 5. The update operation is called the
back projection and obtains a new estimate of the activity as

xV,F = x̃F (pV ) ·
∑
W oV,W,F

∑
LAL,W

yL,F

ỹL,F∑
W oV,W,F

∑
LAL,W

= x̃F (pV ) ·
∑
W oV,W,FRW,F∑
W oV,W,FSW,F

= x̃F (pV ) ·
R̂V,F

ŜV,F
, (10)

where
R̂V,F =

∑
W

oV,W,FRW,F (11)

is the motion blurring of the numerator of the classical back
projection

RW,F =
∑
L

AL,W
yL,F
ỹL,F

, (12)

and
ŜV,F =

∑
W

oV,W,FSW,F (13)

is the motion blurring of the denominator of the classical back
projection

SW,F =
∑
L

AL,W . (14)

Substituting these into Eq. 7, we obtain:∑
F

SV,F
∂x̃F (pV )

∂pV,P

(
xV,F

x̃F (pV )
− 1

)
= 0. (15)

In this equation, x̃F (pV ) depends only on the unknown pa-
rameter vector pV of voxel V , whereas the calculation of xV,F
consists of a forward and a back projection, therefore its value
depends on the parameter vectors of all voxels. So if xV,F was
known, then the computation could be decoupled for different
voxels, creating a system of equations with NP unknowns. In
this way, forward/backward projection is separated from the
calculation of the parameter values, thus the complexity of the
algorithm will be the sum of the complexities of the two steps
and not their product [6]. Using a one-step-late strategy, i.e.
taking xV,F from the previous iteration, the non-linear equation
is solved, which can also be imagined as a curve-fitting process.

In summary, an iteration of the motion-compensated recon-
struction consists of the following steps (Fig. 1):

1) For each frame, we compute xV,F , which in turn includes
the following steps:

a) Evaluation of the integral of the radiotracer concen-
tration for each object-space voxel V and for this
frame to get xF (pV ) (Eq. 1).

b) Motion blur to compute the activity of tomograph-
space voxel W , i.e. x̃W,F (Eq. 2).

c) Forward projection of the tomograph-space voxels
to obtain expected LOR hits ỹL,F (Eq. 5).

d) Computation of numerator RW,F and denominator
SW,F of the classical back projection (Eq. 12 and
Eq. 14).

e) Motion blur of the tomograph-space numerator
RW,F and denominator SW,F voxel arrays into
object-space voxel arrays R̂V,F and ŜV,F , respec-
tively (Eq. 11 and Eq. 13).

f) Multiplying the object-space activity by the ratio of
R̂V,F and ŜV,F to evaluate xV,F (Eq. 10).

2) Fitting the parameters on the resulting xV,F values of
each object-space voxel V and frame F by solving
Eq. 15.

It is often advantageous to use a simplified system matrix in
back projection and simulate accurate particle transport only in
the forward projector [13], [14], [15]. For the suggested motion



Fig. 2: Two-dimensional brain phantom used in the experi-
ments.
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Fig. 3: Deforming the activity field with time dependent swirl.

compensation technique, simplification means that instead of
considering continuous motion, we take a single sample of
the movement at the middle of the frame. That is, instead of
blurring activities inside a frame, the voxel array is transformed
to the object state at the middle of the frame. Note that if
blurring is replaced by transformation in both forward and
back projection, we get the classical motion compensation
approach back. Thus, during the demonstration of the result, we
compare three methods: a) transformation in both forward and
back projection, which is the classical approach; b) blurring
in forward direction and transformation in the back projection,
which is the unmatched version of our proposed technique;
c) blurring in both forward and back projection, which is the
matched version of the proposed approach.

III. RESULTS

A. 2D brain phantom

To examine the proposed methods, we first used a 2D brain
phantom consisting of four regions: gray matter, white matter,
blood, and air (Fig. 2) [16].

The object-spare coordinates are in [−2, 2] units and the
measurement time is 10 seconds. The applied motion is a
non-linear swirl type deformation, which transforms (x, y) to
(x′, y′) based on the current time t (Fig. 3):

x′ = x cos

(
te−
√
x2+y2

2

)
+ y sin

(
te−
√
x2+y2

2

)
,

y′ = −x sin

(
te−
√
x2+y2

2

)
+ y cos

(
te−
√
x2+y2

2

)
.

(16)
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Fig. 4: L2 error curves of the 2D brain phantom as a function
of the number if ML-EM iterations, when the measurement
time is decomposed into 1, 2, and 3 frames

We executed 50 generalized ML-EM iterations setting the
number of frames to 1, 2, and 3. The compared cases were
the following. In “No motion”, the object is not moving and
therefore there is no need for motion compensation. This case
can be considered as limit that can be approached with perfect
motion compensation. The case of “Motion, no compensation”
is the other extreme. Swirling is executed during the simulation
of the measurement, but no motion compensation is used
during reconstruction. “Motion, transformation in forward and
back projection” is the classical approach for motion com-
pensation. The two versions of the new method include the
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Fig. 5: Reconstructed activity images of the 2D brain phantom

unmatched “Motion, blurring in forward and transformation
in back projection” and the matched “Motion, blurring in
both forward and back projection”. The L2 error curves as
a function of the iteration number are shown by Fig. 4 and the
reconstructed activities by Fig. 5.

Motion compensation resulted in errors between those of
the unmoving and the moving but not compensated cases.
The matched version was better than the unmatched one,
which in turn was better than the classical approach, but the
difference diminished as we took more frames. When the frame
number was low (only one in this experiment), the unmatched
back projector caused a divergence of the error after initial
convergence.

B. 3D Derenzo phantom

The suggested motion compensation techniques were ana-
lyzed in 3D using a Derenzo phantom [17] (Fig. 6) simulation
assuming the Tera-tomo nanoScan detector geometry [18],
[19]. The phantom moved 8 voxels in the positive x-axis
direction in 300 seconds at a constant speed, then moved back
to its initial position in another 300 seconds. (No rotational
motion was applied.) The measurement time was divided into
2 frames. The examined techniques were the following: a)
No compensation, b) Event-based compensation (transforming
events to a reference point in time at the beginning of the re-
construction), c) Model-based, transformation in both forward
and back projection, d) Model-based, blurring in forward and
transformation in back projection, and e) Model-based, blurring
in both forward and back projection.

Fig. 7 presents the CC error curves as a function of the
iteration number and Fig. 8 displays the reconstructed activ-
ity images. Results show that the event-based compensation
outperforms the model-based algorithms in terms of accuracy.
However, it should be noted that this comparison is not fair

(a) axial (b) sagittal (c) coronal

Fig. 6: Slices of the 3D Derenzo phantom

since event-based compensation transforms all events accord-
ing to their actual time, while other approaches should bin the
events into two frames. Moreover, event-based compensation
is limited to rigid body motion.

Among the model-based solutions, the methods proposed in
this paper resulted in lower errors than the classical approach
of transforming activities in both forward and back projection.
Although the difference was slight, the matched version per-
formed better than the unmatched one, as was the case in the
2D examinations as well.

IV. CONCLUSIONS

By adding three motion blur executions to the MLEM
reconstruction pipeline, it is possible to compensate larger and
even non-rigid-body motions without dramatically increasing
the number of frames. The blurring operation can be well
supported by the GPU and its extra time is negligible compared
to the other steps of the reconstruction. Two versions of the
proposed approach were presented in the paper, one with
a matched and one with an unmatched forward and back
projector. Simulation results show that both of them outperform
the classical motion compensation method, but the matched
version achieves slightly better accuracy.
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Fig. 8: Reconstructed activity images of the 3D Derenzo
phantom
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