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Abstract—This paper proposes regularization methods for
direct parametric dynamic PET reconstruction, when the space-
time activity function needs to be recovered from measurements.
In case of high spatial and temporal resolution, the reconstruction
is statistically poorly defined, requiring the inclusion of a priori
information in the form of a penalty term or filtering. The method
of sieves executes filtering in each iteration step, i.e. projects the
actual estimate into the subspace of acceptable solutions, and has
been successful in reconstructing static data. The objective of this
paper is to generalize the filtering scheme for spatio-temporal
reconstruction, taking into account that accurate kinetic models
describing the temporal behavior are non-linear. Fast changes
are impossible to distinguish from noise if only a small temporal
window is examined, thus the simple extension to 4D does not
provide acceptable results. We show that efficient filtering can be
obtained if voxel based model parameters are modified according
to the time activity functions of neighboring voxels belonging
to the same anatomic region. As the dependence of the time
activity function on the model parameters is non-linear for
sophisticated kinetic models, the filtering step involves a non-
linear parameter fitting, which can be solved analytically for the
two-tissue compartment model. The presented method is built
into the TeraTomoTM system.

I. INTRODUCTION

In dynamic Positron Emission Tomography (PET), we
examine the dynamic nature of biological processes, like
accumulation and emptying drugs in certain organs, using
radiotracers emitting positrons. The positron emitted at a decay
may annihilate with an electron, when two oppositely directed
gamma-photons are born, which might be detected by the
tomograph. The system collects the events of simultaneous
photon incidents in detector pairs. An event is a composition
of the identification of the detector pair, also called Line
Of Response or LOR, and its time of occurrence. The state-
of-the-art and previous work on direct estimation of kinetic
parameters for dynamic PET are surveyed in review articles
[15], [7].

II. DYNAMIC PET RECONSTRUCTION

Generally, we assume that the radiotracer concentration in
each voxel V in time t can be expressed by a common
kinetic model C(pV , t), where spatial dependent properties
of voxel V are encoded in a low dimensional vector of
kinetic parameters pV . Such models can be defined based
on the mathematical description of the biological/chemimal
processes or on compartment analysis [3], [17], [16]. In this
paper we consider the popular two-tissue compartment model
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that is defined by the following formula of parameter vector
p = (fv, a1, a2, α1, α2):

C(p, t) = (1− fv)F (a1, a2, α1, α2) ∗ Cp(t) + fvCw(t), (1)

where

F (a1, a2, α1, α2) = a1α1 exp(−α1t) + a2α2 exp(−α2t) (2)

is the impulse response of the compartment model, fv is the
fractional volume of blood, ∗ stands for convolution, Cp(t)
is the known blood activity function serving as the input
signal to the compartment system, and Cw(t) is the also
known whole blood concentration function. The objective of
the reconstruction is the determination of parameter vector p
in each voxel from the list of events.

The measurement time is decomposed into finite time
intervals, called frames, of widths ∆t1, . . . ,∆tNT

and centers
t1, . . . , tNT , and events are binned in frames. The expected
number of radioactive decays, i.e. number of positrons gener-
ated by a unit volume of voxel V in time frame T covering
[tT −∆tT /2, tT +∆tT /2) is

x̃T (pV ) =

tT+∆tT /2∫
tT−∆tT /2

C(pV , t) exp(−µt)dt. (3)

where µ is the decay of the radiotracer.
During iterative Expectation Maximization (ML-EM) recon-

struction [8], unknown coefficients are found to maximize the
probability of the actually measured data. Assuming that the
measured number of hits in LOR L in time interval ∆tT
follows a Poisson distribution and is statistically independent
of other LORs and frames, the log-likelihood of the current
measurement is

logL =
∑
L

∑
T

(yL,T log ỹL,T − ỹL,T − log(yL,T !)) (4)

where yL,T is the number of measured events in LOR L and
frame T , and ỹL,T is its expected value, which is the sum of
the contributions of all NV voxels in the volume at this time:

ỹL,T =

NV∑
V=1

AL,V x̃T (pV ) (5)

where system matrix AL,V expresses the probability that a
decay in voxel V generates an event in LOR L.

The reconstruction means the maximization of the log-
likelihood in Equation 4, which leads to the following non-
linear equation:∑

T

∂x̃T (pV )

∂pV,P

(
xV,T

x̃T (pV )
− 1

)
= 0, (6)



where xV,T is the result of a static forward projection evalu-
ating equation 5, and a back projection taking the data from
frame T

xV,T = x̃T (pV ) ·
∑

L AL,V
yL,T

ỹL,T∑
L AL,V

.

In this equation expected activity x̃V,T depends on unknown
parameter vector pV of the given voxel, while xV,T depends
on the parameter vectors of all voxels. Additionally, xV,T is
the only factor that is affected by the elements of the system
matrix. Thus, if xV,T were known, then the computation could
be decoupled for different voxels and can be made independent
of the huge system matrix.

To achieve this, a subiteration is included into the main
iteration solution of this equation. In the subiteration expensive
terms xV,T are not re-evaluated, they are updated just in
the main iteration steps. Assuming that xV,T is constant,
Equation 6 describes just a single voxel, and can thus be solved
independently for all voxels. We use the Damped Newton and
the Levenberg-Marquardt algorithms for the solution. These
algorithms compute the parameter vector determining a time
activity curve x(pV , t) that fits to xV,T .

Putting the discussed projections and curve fitting together,
we obtain the following pseudo-code of the reconstruction:

for n = 1 to nmax do
for T = 1 to NT do

foreach voxel V // evaluation
x̃T (pV ) = Compute integral of Equation 3

foreach LOR L // forward projection
ỹL,T =

∑
V ′ AL,V ′ x̃T (pV )

foreach voxel V // back projection

xV,T = x̃T (pV ) ·
∑

L
AL,V

yL,T
ỹL,T∑

L
AL,V

endfor
foreach voxel V // curve fitting

pV = Solve Equation 6
endfor

If fast dynamic changes are to be recovered, frames must
be short and consequently the number of events in a frame is
rather low. This means that reconstruction done independently
in frames is either impossible or leads to very noisy data. To
attack this problem, regularization is needed that enforces the
smoothness both in the temporal and the spatial domains.

III. PREVIOUS WORK ON REGULARIZATION

There are various options to regularize the solution, which
is essential in the case of inverse problems. Note that temporal
regularization is automatically provided by the application of
a prescribed kinetic model since we allow just this class of
functions to be solutions. For spatial regularization, one option
is the modification of the optimization target by a regulariza-
tion term that penalizes unacceptable solutions having too high
spatial or temporal variation. An appropriate penalty term is
the Total Variation (TV) of the solution [6], [5]. Total variation
regularization may create stair-like artifacts, which can be
reduced by Bregman iteration [1], [18], [12]. The inclusion
of the anatomic information into spatial regularization is
straightforward, smoothness should be imposed only inside

anatomically homogeneous regions but not on their boundaries
[2].

Another possibility for spatial regularization is the appli-
cation of the method of sieves, where the optimization target
is not modified, but the iterated approximation is filtered in
each iteration step. Several authors proposed the inclusion of
a voxel space filtering step in the reconstruction loop [9],
[4] and it turned out that it is equivalent to the method of
sieves that seeks to constrain the EM solution to a subspace
of all possible solutions [10], [11], [14]. Mathematically, this
approach projects the current estimate into the subspace of
acceptable solutions in each iteration. Filtering can also exploit
anatomic information gathered by a CT or an MR [13].

IV. SPATIAL FILTERING OF TIME ACTIVITY FUNCTIONS

Note that the reconstruction algorithm can also be imagined
as a static forward projection and back projection indepen-
dently for each frames, then parameter fitting in each voxel,
which implicitly executes temporal filtering. Iterating these
steps will establish a control loop of Fig. 1. Spatial filtering
can be included at various stages of the process. It would be
possible to filter xV,T before Curve Fitting, parameter values
pV after Curve Fitting and expected voxel intensities x̃V,T

after Evaluation and before Forward Projection. As Curve
Fitting and Evaluation are non-linear operations, order of
filtering matters, and the results of the different options will
be different. If filtering is done in the parameter space, then
the EM estimation is not modified, just its proposed result is
projected into acceptable solutions. On the other hand, as the
number of frames is significantly larger than the number of
parameters, filtering after Curve Fitting has to deal with much
smaller parameters. Because of these reasons, we proposed the
application of spatial filtering in parameter space, right after
Curve Fitting.

Fig. 1. Reconstruction as a control loop

For spatial filtering of the parameters, we wish to set the
time activity function of each voxel to the weighted average
of neighboring voxels of the same anatomic region. Weights
G(V ′, V ) can be selected as a distance dependent Gaussian
if V and V ′ belong to the same anatomic region and zero
otherwise. Thus, our target filtered time activity function in
voxel V is:

C(p̃V , t) ≈
∑

V ′ C(pV ′ , t)G(V ′, V )∑
V ′ G(V ′, V )

=
∑
V ′

C(pV ′ , t)w(V ′, V ) (7)



where w(V ′, V ) are the normalized weights that sum up to
1 when all neighboring V ′ voxels belonging to the same
anatomic region are taken into account. Note that in the
classical application of the method of sieves, this filtering is
computed on scalars, but here we need to average functions. If
the time activity curves were expressed as a linear combination
of pre-defined basis functions, then the filtering of functions
would be equivalent to the filtering of the parameters defining
the time activity functions. However, sophisticated kinetic
models, e.g. the two-tissue compartment model defined by
equation 1 are non-linear. Clearly, filtering the parameters
independently does not work necessarily for non-linear func-
tions, because there is no guarantee that the resulting function
will be “between” the filtered functions.

In our proposed filtering algorithm, fv is handled separately
and is filtered first:

f̃v,V =
∑
V ′

fv,V ′w(V ′, V ). (8)

Having fixed its value, the remaining filtered parameters
of p̃ = (f̃v, ã1, ã2, α̃1, α̃2) of voxel V must be obtained. As
the blood input function is shared, the similarity of the time
activity functions requires

g̃(t) = (1− fv,V )F (ã1,V , ã2,V , α̃1,V , α̃2,V , t) ≈∑
V ′

(1−fv,V ′)F (a1,V ′ , a2,V ′ , α1,V ′ , α2,V ′ , t)w(V ′, V ) = g(t).

(9)
Our objective is to make two functions g̃(t) and g(t) approxi-
mately equal. As we have four unknown parameters left, four
constraints are needed, that can fall into two main categories.

Collocation constraints require the values or the mth deriva-
tives be equal at fixed points of time. As F is composed of
exponentials, its behavior is well defined by the value and the
derivatives in t = 0. Thus, to find the filtered parameters, we
can also require the equality of the mth derivatives at t = 0:

dm

dtm
g̃(t)

∣∣∣∣
t=0

=
dm

dtm
g(t)

∣∣∣∣
t=0

.

Galerkin constraints, on the other hand, require the projec-
tions of the two functions into a subspace defined by basis
functions bm(t) be equal:

∞∫
0

g̃(t)bm(t)dt =

∞∫
0

g(t)bm(t)dt.

Galerkin constraint with basis function b0(t) = 1 enforces the
energy conservation of the filtering scheme, i.e. the total activ-
ity after filtering will be equal to the total unfiltered activity.
Let us choose the mth basis function as bm(t) = tm, which
means that the subspace defined by the basis functions is the
space of polynomials. Increasing m, larger t values have more
important role to define the unknown parameters. In this way,
Galerkin constraints can complement collocation constraints
focusing just on the initial behavior of the functions.

As F is a linear combination of exponentials of form
aα exp(−αt), the derivatives and the projection integrals are

also combinations of the derivatives and integrals of exponen-
tials:

dm

dtm
aα exp(−αt)

∣∣∣∣
t=0

= aαm+1,

∞∫
0

aα exp(−αt)tmdt = aα−mm!. (10)

Thus, for this exponential family, collocation constraints and
Galerkin constraints become similar and extend the domain of
m to all integers.

Imposing these requirement on equation 9 and taking the
formula of the equation 2 into account, we obtain

a1α
m
1 + a2α

m
2 = Am, (11)

where we omitted subscript V for the sake of simplicity, and
Am values are weighted averages:

Am =
∑
V ′

1− fv,V ′

1− f̃v

(
a1,V ′αm

1,V ′ + a2,V ′αm
2,V ′

)
w(V ′, V ).

Collocation and Galerkin constraints provide infinitely many
possibilities to execute the filtering on functions, from which
we should choose one based on the application dependent
concept of similarity and on the complexity of the scheme
since this operation should be executed for every voxel and
every iteration. Let us consider four constraints defined by
consecutive m values m, m+ 1, m+ 2, m+ 3.

Denoting the left side of equation 11 with a given m by lm,
it can be seen that

(lm+1 − α̃1lm) (lm+3 − α̃1lm+2) = (lm+2 − α̃1lm+1)
2
.

Thus, the same rule should also be applicable to the right sides
of these equations:

(Am+1 − α̃1Am) (Am+3 − α̃1Am+2) = (Am+2 − α̃1Am+1)
2
.

This results in the following second order equation for α̃1:

(AmAm+2 −A2
m+1)α̃

2
1 + (Am+1Am+2 −AmAm+3)α̃1+

(Am+1Am+3 −A2
m+2) = 0,

which can be solved analytically. Knowing α̃1, parameter α̃2

can be computed as

α̃2 =
Am+3 −Am+2α̃1

Am+2 −Am+1α̃1
,

or it can equivalently taken as the second root of the quadratic
equation. The remaining unknown parameters can be obtained
using the following substitutions:

ã2 =
Am+1 −Amα̃1

α̃m
2 (α̃2 − α̃1)

, ã1 =
Am − α̃m

2 ã2
α̃m
1

.

These equations work for arbitrary m, which is worth selecting
to include the zero value in m,m+1,m+2,m+3 to guarantee
energy conservation. There are four options satisfying this
requirement: m = 0, m = −1, m = −2, m = −3.

Figure 2 shows the application of the proposed non-linear
averaging scheme for two functions and compares it to
the parameter-wise linear averaging. Note that the proposed
method really puts the average in between the two functions
to be averaged, but parameter-wise averaging fails due to the
non-linearity of the problem.



V. RESULTS

To examine the proposed method, we use a 2D mathematical
tomograph model (Fig. 3) where the detector ring contains 90
detector crystals and each of them is of size 2.2 in voxel
units and participates in 47 LORs connecting this crystal
to crystals being in the opposite half circle, thus the total
number of LORs is 90 × 47/2 = 2115. The voxel array to
be reconstructed is in the middle of the ring and has 32× 32
resolution, i.e. 1024 voxels. The measured data is obtained
with Monte Carlo simulation of a brain model where there
are three homogeneous regions, including the white matter, the
gray matter, and the background. The simulation generated 16k
hits in total, distributed in 100 frames covering a 10 second
long interval. Note that this is a low statistic measurement
where the average number of hits per frame per LOR is less
than 0.08.
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Fig. 3. 2D tomograph model

The measurements are reconstructed without any spatial
regularization, with TV penalty on the activity values, and
with the proposed method. The results are shown in Figs. 4–6.
Note that TV penalty reduces both the bias and the variance of
the reconstruction, but is poorer than the result obtained with
the method of sieves. Efficient penalty based regularization
algorithms use the one-step-late option, which has negligible
computational overhead, but may prohibit convergence when
the reguralization parameter λ is too strong. Here we used
λ = 0.1, which is found to be optimal, i.e. lower values cause
higher variance reconstructions, higher values divergence and
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Fig. 4. Time activity curves reconstructed with no regularization, showing
the average and the standard deviation for the anatomic regions in t = 1,
t = 2, and t = 3

stronger chess-pattern like artifacts. Thus, using the one-step-
late option, the applicability of TV reguralization is limited.
This is not the case for the method of sieves, where the
homogeneity of anatomic regions can be enforced without
limits by increasing the standard deviation of the position
based Gaussian.

VI. CONCLUSIONS

In this paper we investigated the regularization problem of
direct parametric PET reconstruction. We proposed the ap-
plication of spatial averaging of the voxel-based time activity
functions, i.e. the method of sieves, as a way of regularization.
To implement the basic idea, we also addressed the problem
of averaging non-linear functions in parameter space. The
proposed method can use anatomic information about region
boundaries and remains stable for aggressive filtering as well.
In our fully-3D implementation all steps are implemented
on the GPU where the added computational cost of filtering
is negligible with respect to forward and back projection
calculations.
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F̃m=0 0.55 0.25 3.5 1.35 0.16
F̃m=−1 0.55 0.72 2.85 0.84 0.099
F̃m=−2 0.55 1.5 2.07 0.47 0.087
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Fig. 2. Averaging of two functions with the proposed non-linear scheme and a comparison to the direct averaging of the non-linear parameters. The upper
row shows the impulse response functions F , the lower row concentration functions C.


