
GLOBAL ILLUMINATION METHODS

FOR ARCHITECTURAL SCENES

By

György Antal

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

EÖTVÖS LORÁND UNIVERSITY

BUDAPEST, HUNGARY

DECEMBER 2003

c© Copyright by György Antal, 2003

Contents

Abstract vii

Acknowledgements viii

1 Introduction 1

1.1 Computer synthesis of images . 3

1.2 Objective of the dissertation . 4

1.3 Organization . 6

2 Background 8

2.1 Nomenclature and definitions . 9

2.1.1 Rendering equation . 12

2.2 Rendering . 14

2.2.1 Geometry . 15

2.2.2 Materials . 16

2.2.3 Light sources . 18

2.2.4 Measurements . 19

2.3 Global illumination . 20

2.3.1 Inversion . 21

2.3.2 Expansion . 22

2.3.3 Iteration . 22

2.3.4 Stochastic iteration . 23

2.4 Random walk approach to the global illumination problem 23

2.4.1 Monte-Carlo methods . 24

2.4.2 Stochastic ray tracing . 26

2.4.3 Light tracing . 27

2.4.4 Bidirectional path tracing . 28

2.4.5 Metropolis Monte-Carlo method 31

2.4.6 Photon map . 32

2.4.7 Instant radiosity . 34

2.5 Iteration methods for the global illumination problem 34

2.5.1 Classical radiosity . 34

2.5.2 The form factor . 35

iv

2.5.3 Solving the system . 37

2.5.4 Extensions and notes . 37

2.6 Stochastic iteration for the global illumination problem 39

2.7 Summary . 40

3 Analysis of Russian roulette 41

3.1 Introduction . 41

3.2 Previous work . 43

3.3 Variance analysis of the gathering random walk 44

3.3.1 Variance formulae for single bounce 44

3.3.2 Variance formulae for multiple bounces 45

3.4 Results . 50

3.4.1 Constant scene . 51

3.4.2 Constant albedo . 52

3.4.3 General scene . 52

3.5 Summary . 54

4 Stochastic iteration algorithms 55

4.1 Introduction . 55

4.2 Single ray based iteration . 56

4.3 Parallel ray-bundle iteration . 59

4.3.1 Computation of the radiance transfer in a single direction . . . 60

4.4 Extended stochastic iteration with parallel ray-bundles 65

4.5 Results . 67

4.6 Summary . 69

5 Stochastic iteration with perspective ray-bundles 70

5.1 The new algorithm . 70

5.1.1 Representation of the radiance function 72

5.1.2 Computation of the radiance transfer by hemicubes 73

5.2 Randomization of the hemicube . 74

5.3 Importance sampling . 75

5.4 Variance reduction by trading bias with noise 76

5.5 Application of the constant radiance term 78

5.6 Results . 80

5.7 Summary . 81

6 The combination of ray-bundle based strategies 82

6.1 Introduction . 82

6.2 Multiple importance sampling in iteration 83

6.3 Combination of methods using ray-bundles 84

6.4 Results . 87

6.5 Summary . 87

v

7 Animation 89

7.1 Introduction . 89

7.1.1 Offline global illumination animation 90

7.1.2 Interactive global illumination animation 91

7.1.3 Discussion . 93

7.2 Random representation of the radiance 95

7.3 Radiance updates in walkthrough animation 98

7.3.1 Results . 98

7.4 Radiance updates in general animation 99

7.4.1 Results . 100

7.5 Summary . 100

8 Conclusion 103

8.1 Contribution of this thesis . 103

8.2 New research directions . 104

8.3 A final word . 105

A Framework for global illumination algorithms 107

A.1 Introduction . 107

A.2 Previous work . 108

A.3 The component architecture . 108

A.3.1 Geometry subsystem . 109

A.3.2 Shader subsystem . 109

A.3.3 View subsystem . 110

A.3.4 Scene subsystem . 111

A.3.5 Rendering algorithm subsystem 111

A.3.6 Implementation . 111

A.4 Algorithms for the RenderX architecture 112

A.4.1 Gathering algorithms . 112

A.4.2 Ray-casting . 112

A.4.3 Path tracing . 114

A.4.4 Bidirectional path tracing . 115

A.4.5 Metropolis light transport . 116

A.4.6 Photon map . 117

A.4.7 Parallel ray-bundle iteration 118

A.4.8 Perspective ray-bundle iteration 119

A.4.9 Others . 119

A.5 Summary . 120

Publications 121

Bibliography 124

vi

Abstract

Achieving realism has become one of the ultimate goals of computer graphics. The

task of photorealistic image synthesis is generating images from a given description

of the scene in such a way as to give the viewer the belief that he is looking at a real

photograph. This dissertation contains research into image synthesis for obtaining

high quality images.

Path tracing is a popular technique for solving the rendering equation. In order to

reduce the rendering time of the algorithm, the light paths are terminated randomly

using Russian roulette. We analyze aspects of the termination probability with an

aim to reduce the variance of the algorithm.

Another very efficient global illumination technique uses bundles of rays for the

light transport. It is presented that significant speed-up is achievable if – during light

transfer – we separate the finite-element part of the radiance from the Monte-Carlo

component.

Motivated by the parallel ray-bundle tracing method, a new algorithm, the pers-

pective ray-bundle tracing is introduced, which is in some aspect superior to its

predecessor.

The two algorithms complement each other, therefore we investigate the possible

combination of them and conclude that the combination results a very robust algo-

rithm.

Build upon the combined ray-bundle algorithm we propose a non-diffuse global

illumination algorithm that is fast enough to be appropriate for interactive walk-

throughs and general animations, which is the ultimate challenge of photorealistic

rendering.

vii

Acknowledgements

I would like to thank László Szirmay-Kalos, my supervisor, for his many suggestions

and constant support during this research. Without him this work would never have

come into existence. I am also thankful to Ferenc Csonka, my research fellow, for his

persistent review of my papers and for his appropriate comments and good questions

throughout the years. I would like to thank him his friendship too, which helped me

many times.

I had the pleasure of working in the Hungarian Computer Graphics Research

Group, which is a team of eager graphics enthusiasts in the Technical University of

Budapest. I mention here just those who have the same interests and work with me

on the rendering field of computer graphics: Balázs Benedek, László Szécsi and Gábor

Sźıjártó. Over the years, this group has grown up and doubled its size. The team

members are wonderful people and their support made research like this possible. I

really liked the time, when we worked together.

In the early years of this research I worked at Graphisoft R&D Rt. I am specially

thankful to László Sparing, who as the Vice President of ArchiCAD Development in

Graphisoft helped a lot with his support and care.

Of course, I am grateful to my parents for their patience and love and I also want

to thank Tündi for her love, support and tolerance that she provided over the years.

I should also mention that this research has been supported by the National

Scientific Research Fund (OTKA ref. No.: T042735), the IKTA-00101/2000 project

and by Graphisoft R&D and by Intel Inc. Most of the scenes have been modelled by

ArchiCAD or by Maya that were granted by Graphisoft and Alias.

Budapest, Hungary György Antal

November 1, 2003

viii

Chapter 1

Introduction

Computer graphics is the branch of computer science devoted to the creation and

processing of images and animations by using computers. One of its subjects is

the image synthesis, which is usually named as rendering. Since the mid-70s a vast

amount of work has been published about rendering. Over the years the motivation

has been photorealism, which has a very obscure definition. The essence of the

expression was caught very precisely by Hall and Greenberg [HG83] in 1983:

“Our goal in realistic image synthesis is to generate an image that evokes from

the visual system a response indistinguishable from that evoked by the actual environ-

ment.”

It is a very ambitious goal that probably requires virtual reality techniques and

brain-machine interfaces, which in the beginning of the XXI. century is still only a

science-fiction topic. A less ambitious simplification allows the synthesized images to

be displayed only in two dimensions, with a limited resolution and field of view and

using only discrete colors. In this approach, the widely used adjective ’photo-realistic’

means that the generated image looks – on a pixel by pixel basis – as real as a real

photograph. This level of realism is needed by the film and the game industry and it

stands high in the favour of product design (e.g. car industry).

Figure 1.1: The goal of image synthesis

1

2

On the other hand, there are application areas where perfection is not such a

mandatory requirement. For instance, a flight simulator needs a fairly believable

output, but needs not be perfect in every detail. Here the challenge is real-time

interactive control. However, these virtual reality applications always have hunger

for more believable images at less computation cost.

Another application area is concerned to architectural CAD1 programs. Architec-

ture is the art that we walk amongst and live within. It defines our living environ-

ments, the buildings and the cities. It can also define virtual environments. There is

an emerging need for interesting immersive virtual environments for visiting famous

existing or existed sites, especially ones of cultural and historic importance like Taj

Mahal in India, which is often called the most beautiful building in the world or the

Buckingham Palace in London.

On the other hand, not only the virtual tourists meet architectural scenes. They

are considered only as end users in the virtual model creation pipeline. On the other

end of the workflow the architect creates the model. Not so many years ago, all

phases of architectural design were done manually. Today, computer technology has

definitely arrived to be integrated into the architectural practice.

In the pre-computer days, the term “modeling and rendering” would be referred

to “presentation drawings and models”, and would include an artist’s rendering of

the building, and for larger projects, a detailed physical model. However, creating

a physical mock-up is a tedious work, not to mention the involved cost. Mostly,

these are created for presentation purposes that is most useful to the client, rather

than design purposes that would be useful to the architect. These days they have

been replaced with computer-generated images created using sophisticated modeling

and rendering softwares. In the meantime, animated walkthroughs are also being

developed to produce the client a more realistic sense of navigation through the

proposed building design. In the beginning of the informatics era it was accepted

to visualize architectural sites by only drawing the surfaces with a single color and

without the calculation of any illumination. More advanced applications considered

virtual light sources and calculated only the direct illumination, which is called local

rendering methods. Recently another term has appeared.

The global illumination is a computer graphics term that refers to the ability

to accurately simulate and represent the physical characteristics of light within a

digital model. The goal is not only to produce better quality renderings but also

allow designers to better study the effects of real-world lighting and materials in their

designs. Today, architects want to simply work with lighting as it would be in the

real world, which is achievable only by the usage of global illumination techniques.

The designer wants to place not virtual “never existed” point light sources but real

light source fixtures, which has physical interpretations. They prefer to use more

meaningful photometric units, for example lumens and candelas or they want to put

1Computer Aided Design

1.1. COMPUTER SYNTHESIS OF IMAGES 3

for example a 60 watt light bulb in the room, not a point light source which has some

kind of unexplainable intensity value 70%. Only by using physical lights can lighting

analysis and lighting design make sense.

Architectural scenes usually have the following properties:

• Architectural environments are rendered as interior images. If the building is

rendered outdoor, usually it is in the focus, so there are no other buildings on

the site.

• They can be quite complex models comparing with mechanical CAD data, where

usually only the manufactured item is on the focus. Therefore robust methods

are needed for rendering these scenes.

• The scenes consist of physical based light sources and in contrast to other app-

lications not just artificial, but natural lights (e.g. Sun).

• The architect focuses mainly on the 2D section drawings, which is needed for

the plan. The creation of the 3D model and the rendering is not crucial for him.

Therefore the 3D models may contain errors on the edges or near the junctions,

and they are not tesselated properly.

This dissertation was seriously motivated by the successful architectural CAD

system called ArchiCAD, which is developed by the multinational Hungarian based

software firm Graphisoft where the author of this dissertation worked. At first, the

study was aimed to reveal the possibilities of applying a global illumination ren-

derer for architectural scenes, especially for ArchiCAD and if possible, implementing

a promising algorithm. In some measure, the title of this dissertation is also origi-

nated from this motivation that our algorithm is always targeted towards rendering

architectural scenes.

However, modeling, rendering, and animation functionalities extend far beyond

the realm of architectural design to be used in many other fields, most notably, in

movies and in computer games.

1.1 Computer synthesis of images

The foundation of photo-realism is the calculation of light-object interaction. It

proceeds by considering an existing physical model and simulating the behavior with

a computer graphics algorithm. Since the computational power of the computers is

limited, the original mathematical model for the physical process must be simplified

for practical reasons.

Local models considers only the first reflection of light, so the generated photograph

misses important light contributions. Most serious problems that arise are the inter-

reflection and the soft shadows, which are not calculated by this model.

1.2. OBJECTIVE OF THE DISSERTATION 4

On the other hand, global methods handle the interaction of light between objects.

They can produce phenomena as:

• diffuse interaction, which is often named as color bleeding (e.g. the diffuse

red wall paints the nearby white ceiling to a light pink color)

• specular interaction, which can be differentiated into two categories. One

type is the mirror-like interaction (e.g. a chrome spoon blur and distort the

image of its surrounding). The ideal specular case is the perfect mirror. The

other type of specular interaction is caustics (when the light is focused, e.g. the

shimmering waves at the bottom of a swimming pool).

• soft shadows, which are displayed without hard edges.

The so-called global illumination algorithms attempt to solve the famous render-

ing equation. Two workable approaches are used in order to solve this equation:

finite-element methods and random walk methods. Both kind of methods have some

advantages and suffer from some disadvantages. Finite-element methods are good for

sparse scenes, where the number of objects (therefore the number of finite-elements)

is low. However, this method does not converge to the real solution, only to the solu-

tion, which is described by the finite-element tesselation. On the other hand, random

walk methods are more robust and are not so sensitive to the complexity of the scene.

Because of the different characteristic of the approaches, it is worth combining them.

This consideration leads to many hybrid algorithms, which try to keep the advantages

of the underlying applied algorithms.

1.2 Objective of the dissertation

This work aims at further improvement of the global illumination algorithms. The

improvement means to research completely new algorithms or modify existing ones to

gain speed, accuracy or reliability. Most of all, this dissertation is targeted towards

the stochastic iteration solution of the rendering problem. The study investigates

methods that transfer the light energy by the so called ’bundles’ of rays, as it have

been proven to be one of the most efficient global illumination algorithm. More

specifically the contributions of this work are:

• Analysis of Russian roulette variance

We study the survival probability of the followed ray in random walk global

illumination algorithms. When the ray hits a surface, the survival probability

is responsible for finishing the walk. We examine the variance of the Russian

roulette random walk estimator of gathering type, give an explanation of the

formula and show visually the behavior of the term. Based on variance analysis a

1.2. OBJECTIVE OF THE DISSERTATION 5

criterion for choosing the optimal survival probability is given, which is justified

by empirical tests.

• Extending the parallel ray-bundle iteration

We combine continuous and finite-element approaches, preserving the speed of

finite-element based iteration and the accuracy of continuous random walks.

The basic idea is to decompose the radiance function to a finite-element compo-

nent that is only a rough estimate and to a difference component that is obtained

by Monte-Carlo techniques. Iteration and random walk are handled uniformly

in the framework of stochastic iteration. This uniform treatment allows the

finite-element component to be built up adaptively aiming at minimizing the

Monte-Carlo component. We develop a general technique and we apply it for

the parallel ray-bundle iteration.

• The perspective ray-bundle iteration

We generalize the hemicube approach of the diffuse radiosity to handle non-

diffuse cases. This generalization is performed by applying stochastic iteration

instead of the deterministic iteration used by the radiosity algorithm. Since our

new algorithm uses ray-bundles originated from a specific point, we named the

new method perspective ray-bundle iteration or stochastic hemicube shooting.

We also propose extensions to the basic ray-bundle iteration, which eliminate

the annoying artifacts produced by the brute-force implementation or assures

better convergence of the method. These extensions are importance sampling,

hemicube randomization, trading bias with noise and the constant radiance

term.

• Combination of parallel and perspective ray-bundles

We apply multiple importance sampling for combining different ray-bundle

strategies into a new algorithm. At first we propose a modification of the mul-

tiple importance sampling scheme for being applicable to iteration algorithms.

We develop a new balance heuristics, which is then applied for combining 3

stochastic iteration algorithms. They are the parallel ray-bundles with software

z-buffer, the parallel ray-bundles with hardware z-buffer, and the perspective

ray-bundles.

• Animation with ray-bundles

We use our combined ray-bundle algorithm developed in the previous chapter for

walkthrough and for general animation also. Our global illumination can achieve

interactive frame rates even on a single computer, which was an unimaginable

idea some years ago. To achieve this, we modify the radiance representation

in the combined algorithm. Other novel idea concerns the radiance updates

1.3. ORGANIZATION 6

in general animation, which is performed in a separate iteration phase of the

algorithm.

1.3 Organization

This dissertation is organized as follow:

• Chapter 2:

The used notation of optics and the used definitions are given. Then the global

illumination problem is presented and an overview of useful methods can be

found.

• Chapter 3:

This section begins with the concept of Russian roulette, which is a widely used

technique in random walk methods. This is followed by the analysis of the

variance of the Russian roulette estimator. The analysis is separated into two

cases, for both of them the results are then presented. Finally, the conclusion

– as a proposal for the application of Russian roulette – is given.

• Chapter 4:

The stochastic iteration is detailed in this section. Two types of random ope-

rator is presented which leads to the single ray based iteration and the parallel

ray-bundle iteration. The later is then made more efficient by separating the

finite-element main part and the Monte-Carlo part of the radiance.

• Chapter 5:

This section introduces a new stochastic iteration approach based on hemicube

shooting. This is followed by several improvements for the basic algorithm. The

algorithm was implemented and the results are also presented here.

• Chapter 6:

This section begins with the discussion of combining global illumination algo-

rithms. Then the most efficient combination strategy, the multiple importance

sampling is reviewed and extended for iteration algorithms. Then a combina-

tion of three ray-bundle methods is presented, which is followed by the results

and the error analysis of the combined method.

• Chapter 7:

This section is started by studying the recent developments and trends in global

illumination animation. The algorithms are separated into offline animation

and interactive animation. Then we study the possibility of interactive global

1.3. ORGANIZATION 7

illumination. The combined ray-bundle strategy is then extended to achieve this

task. After discussing the walkthrough animation, the modifications needed for

the general animation is presented. Later, the implementation details are given

and the results with the achievable frame rates are presented.

• Chapter 8:

Conclusion of the dissertation is presented here, along with some recommenda-

tion for future research.

• Appendix:

This section describes a general global illumination framework. It is not a

scientific breakthrough in its own, however, it sketches the general architecture

that every rendering systems (especially ones with global illumination support)

must follow. It was developed in the context of this dissertation; therefore all of

our algorithms in this thesis are implemented within. Other global illumination

methods (not covered by this dissertation) are also developed and listed in the

last part of this section.

Chapter 2

Background

This chapter introduces some important background material which underpins much

of the work in this dissertation. We assume that energy is quantized into small,

discrete pockets, which we often call particles, and describe the flow of energy by

keeping track of the number of particles (photons). The technique for analyzing

the flow of moving particles is known as transport theory. It was first developed by

simulating the activity of neutrons in atomic reactors, but it is also used for gas and

plasma dynamic and last but not least for simulating light.

A particle is a concentration of energy in space and time, whereas a wave is

spread out over a larger region of space and time. Since 1925 we know, thanks to

Louis de Broglie [dB25], that any moving particle (electron, mater) has wavelength

associated with it, therefore light also has a dual nature, depending on the processes

it is subjected to. It is both corpuscular (small discrete particle) and wave-like.

The wave model is described by Maxwell’s equations and captures effects such as

diffraction, interference, polarization and dispersion. Interference makes the brilliant

colors that can be seen e.g. on soap bubbles, and diffraction occurs for some soft

shadows (not all) and some light bleeding around the edges of objects. The dispersion

is the phenomenon that in dielectric medium whose refractive index varies with wave-

length each component of the non-monochromatic incident wave is refracted through

a different angle. This effect can be seen with a glass prism that is placed in a beam

of white light. In this dissertation we consider light as photon particles and drop

modeling those phenomena that are not specified by the particle model.

The field of radiometry defines a vocabulary of quantified light energy. This gives

us the tools for specifying the rendering equation. There is another concept called

photometry, which is the study of how human observer responds to light. Since it is

a nonlinear response, we prefer to use the radiometric definitions.

The mathematical model for the interaction of the light with the scene is the

geometrical optics, or ray optics. It uses the concept of rays, which have position

and direction but no phase information, to model the way electromagnetic radiation

travels. Optics approximates how the electromagnetic radiation behaves. It is a very

8

2.1. NOMENCLATURE AND DEFINITIONS 9

convenient model to use when the smallest dimension of the optical system is much

larger than the wavelength of the incident radiation. But if the dimension of the

optical components is about the size of a wavelength or smaller, a different model

(either the electromagnetic wave optics model or the quantum optics model1) must

be used. The geometrical optics model captures effects such as emission, reflection,

refraction.

2.1 Nomenclature and definitions

Directional notation

We usually refer to a given direction relative to a point ~x on a surface. We use the

local spherical coordinate system at the referred point, and parameterize the direction

using ~ω = (θ, φ), where θ is the angle of ~ω and the surface normal, and φ is the angle

of the projection of ~ω and a reference axis defined on the tangent plane. By definition,

|~ω| = 1, so we think of direction vectors as identifying points on a unit-radius sphere

around the origin.

f

q w

x

n

Figure 2.1: Direction parameterization

Solid angle

The solid angle is used to measure the portion of the space occupied by an object as

seen from a point ~x. According to the definition it is the area of the projection of the

object onto the unit sphere around ~x. It is measured in steradians [sr]. Note that

the shape of the area does not matter at all. Any shape on the surface of the sphere

that holds the same area will define a solid angle of the same size. The corollary of

the definition is that a whole sphere consists of 4π sr, a half sphere 2π sr.

1It captures effects such as fluorescence and phosphorescence. Since this model is too detailed,
it is generally not considered in computer graphics. Exception is given in the PhD dissertation of
Alexander Wilkie [Wil01].

2.1. NOMENCLATURE AND DEFINITIONS 10

x

n

Figure 2.2: Solid angle of the surface point ~x

The most important radiometric terms are:

Radiant energy

In the particle model of light, each photon has some energy, which depends on the

wavelength of the matter. This quantum energy is defined by E = ~f , where f is the

frequency of the incident energy of the particle (interpreted as a wave) and ~ denotes

the Planck’s constant. The radiant energy is measured in joules (J).

Radiant flux

The energy flowing through a surface per unit time is called radiant power or radiant

flux at that surface:

Φ =
dQ

dt
. (2.1)

The radiant flux is measured in watts (W). In computer graphics, we often use the

word energy, flux and power interchangeably. This is validated by the fact that we

work with a steady-state scene with no time-dependent variables.

Radiant flux area density

It is the density of radiant energy flowing through a unit area per unit time:

u =
dΦ

dA
=

dQ

dtdA
. (2.2)

It is measured in watts per square meter (Wm−2). Since this value is scalar, we do

not know if the energy arrives to the surface or departs from it. To make a clear

distinction, if the energy is arriving at the surface, we call it irradiance (denoted by

E), and if the flux is leaving a surface, it is called radiosity (denoted by B).

2.1. NOMENCLATURE AND DEFINITIONS 11

Radiant intensity

The radiant flux area density requires that the source of energy has some (finite or

differential) area. For point sources another quantities must be introduced. The

measure of the radiant energy leaving a point in the direction ~ω, per unit solid angle

is called radiant intensity:

I =
dΦ

d~ω
. (2.3)

It is measured in watts per steradian (Wsr−1).

Radiance

It might be the most important quantity in radiometry. Radiance is flux per unit

projected area per unit solid angle:

L =
d2Φ

cos θdAd~ω
. (2.4)

It is measured in watts per steradian per square meter (Wsr−1m−2). Intuitively,

radiance expresses how much power arrives at (or leaves from) a certain point on a

surface, per unit solid angle, and per unit area. Note that this definition does not

consider the regular surface area, but it considers the area projected perpendicular

to the incoming direction. The verification is presented in Figure 2.3.

n

w

n

w

effective collecting area

sensor surface area

dA cos q.
dA

q

dA dA

Figure 2.3: The origin of the cosine term

The effective collecting area of the sensor changes with the angle. If the incoming

direction equals with the surface normal (left image), the sensor’s effective collecting

area is the same as its surface area. However, as the angle between ~ω and ~n increases

(right image), its effective collecting area decreases. The effective collecting area is

also called the projected area, and it equals to the surface area times the cosine of the

angle between the incoming direction ~ω and the surface normal ~n.

2.1. NOMENCLATURE AND DEFINITIONS 12

The radiance is the most useful quantity for most light detectors (e.g. cameras),

since it is independent of the size of the surfaces or the aperture of a given solid

angle. Therefore, to construct the image, it is enough to know the radiance leaving

all surfaces in all directions.

Radiance function

The function which gives the radiance at any point on a surface is called radiance

function. It is a high variate function, since it is (as other radiometric terms also) a

function of position, direction, wavelength, time, and polarization:

L(~x, ~ω, λ, t, p).

We usually cannot consider all parameters, so some simplifications need to be

introduced. The polarization is only considered in the wave model of light. Since

computer graphics usually works with scenes in equilibrium, the time dependency can

be also eliminated. Unfortunately, the wavelength dependency cannot be dropped

so easily. The simplest solution is to evaluate the radiance function for at least

three representative wavelengths (this can be the most common red, green, blue

component). It reduces the dimensionality of the radiance function to a 5 (in the

absence of participating media it is only 4). Computing the approximation to the

radiance function (L(~x, ~ω)) is the main goal in global illumination algorithms.

An important property of the radiance is that if participating media is not present,

it is invariant along straight lines.

2.1.1 Rendering equation

The formal definition of the most popular mathematical model for light transport

was presented in 1986 by Kajiya [Kaj86]. It describes what happens on a surface

at a point ~x. It is a very general mathematical statement, and global illumination

algorithms can be categorized by the approach for solving this formalized problem.

The rendering equation is a Fredholm type integral equation of the second kind:

L(~x, ~ω) = Le(~x, ~ω) +

∫

Ω4π

Li(~x, ~ω′) · fs(~ω
′, ~x, ~ω) · cos θ′dω′ (2.5)

where Le is the emitted radiance, Ω4π is the bounding sphere at surface point ~x,

fs is the Bidirectional Scattering Distribution Function (BSDF), and θ′ is the angle

between the incoming direction ω′ and the surface normal at point ~x.

The unknown incoming radiance Li can be calculated using the outgoing radiance

values. We have to trace back the path they arrive from. This means tracing a ray

from ~x in the direction of the incoming radiance. This results in some surface point

~y, which is given by the ray casting operator ~y = rc(~x,−~ω). The incoming radiance is

2.1. NOMENCLATURE AND DEFINITIONS 13

w

x

n L

w

x

n

Le q'
w

x

n

w'
Lr

Li

Figure 2.4: The outgoing radiance is the function of the emitted radiance and the
reflected radiance, which is an integral over all incoming directions

then calculated from the outgoing radiance: Li(~x, ω′) = L(~y, ~ω). The problem is then

stated recursively, since this new outgoing radiance value is also described exactly by

another rendering equation.

The BSDF is usually simplified by not taking into account the refractivity. In this

case the Bidirectional Reflection Distribution Function (BRDF) can be used, and the

integration domain can be also reduced to the hemisphere (Ω2π). Then the rendering

equation can be written in the following form:

L(~x, ~ω) = Le(~x, ~ω) +

∫

Ω2π

L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′dω′. (2.6)

Defining the following notation for the integral operator

(T L)(~x, ~ω) =

∫

Ω2π

L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′dω′

we get the sort form of the rendering equation:

L = Le + T L. (2.7)

The simplest solution of the rendering equation considers only the direct illumi-

nation of the surfaces by the light sources. This eliminates the recursive nature of

the rendering equation. It is called local illumination. Global illumination methods

consider all light/surface interactions and solve a more general problem.

There is another very elegant mathematical model for simulating the light trans-

port, the path integral formulation introduced by Veach [Vea97]. Given a path

z̄ = (~z1, . . . , ~zn) with length n, the radiance function can be calculated:

l(z̄) = l(~z1, . . . , ~zn) =

Le(~z1, ~ω1) G(~z1, ~z2) fs(~ω1, ~z2, ~ω2) G(~z2, ~z3) . . . fs(~ωn−2, ~zn−1, ~ωn−1) G(~zn−1, ~zn), (2.8)

2.2. RENDERING 14

where ωi is the direction from point ~zi to point ~zi+1 and G is the geometry term:

G(~x, ~y) = V (~x, ~y) · cos θi cos θo

|~x− ~y|2 (2.9)

where V (~x, ~y) is the visibility function (it is 1 if the two point can see each other,

and 0 otherwise), and the θi and θo are the angles between the ~x → ~y line and the

surface normals at ~x and at ~y respectively. The geometry factor appears, because

the integration over the projected solid angle is replaced by integration over surfaces.

Note that the paths which have different length have different radiance function (the

number of variables in the radiance function changes).

If Ω̄n denotes the domain of paths of length n, the domain of path space can be

given by:

Ω̄ =
∞⋃

n=1

Ω̄n.

If dµ(z̄) = dA1 × . . . × dAn is the area product measure, then the integration of

radiance over the domain of paths can be written as:

I =

∫

Ω̄

l(z̄)dµ(z̄) =
∞∑

n=0

∫

Ω̄n

l(z̄)dµ(z̄) (2.10)

2.2 Rendering

The original definition of the word rendering in the architecture literature says: ren-

dering (noun) is an architects representation of the inside and outside of a finished

building, drawn in perspective. Notice that this definition does not say anything

about photo-realism or about the nowadays widely needed requirement that the ren-

dered image must be as similar to the real world as possible. In these modern days

men and machines developed some kind of symbiosis, and the rendering is not per-

formed any more by human manual work (paint, brush, lead pencil), but via extensive

usage of the computer. The first idea was to use the computers to replace the brush

and the pencil. The advantage from using computers is the digital storagebility, the

modifiability and reusability of the resulted image. The animators at Disney’s studio

used this type of rendering for long. Another technological leap was forcing the com-

puters to automatically generate the corresponding snapshot of a three-dimensional

world from the given viewpoint. Since this is the current conventional meaning, in

this dissertation, the expression “rendering” corresponds to computer generated 3D-

rendering.

When one imitates to photograph the real world, in the first place the precise 3D

description of the scene is needed. The world representation must be stored in the

memory of the computer. First of all, the scene around us consists of 3D objects which

2.2. RENDERING 15

have shapes of they own. Another input for the rendering process is the materials in

the scene. For the physical simulation of the light, we also need the sources of light

power. And finally the picture is taken from a specific viewpoint.

The rendering problem can be expressed as a quadruple [Kel97]:

〈S, fr(~ω
′, ~x, ~ω), Le(~x, ~ω), W e(~x, ~ω)〉, (2.11)

where S denotes the geometry of surfaces, fr concerns the material properties of the

surfaces, Le is the emitted radiance and W e is the measuring function. We present

brief descriptions for these components in the consecutive sections.

2.2.1 Geometry

Over the years many approaches have been developed, which can describe the geo-

metry of the object. One of the first, and still the most popular one is the boundary

representation. Other possible descriptions are the solid representation and the point

set representation.

Boundary representation

The B-rep model – also called surface model – defines the boundary of the bodies.

The surface is divided into basic elements (polygons, patches, spline surfaces) and

the verge of the polygons is usually coincides with the discontinuity of the boundary.

For algorithmical reasons the complex smooth surfaces is sometimes also divided into

a more detailed representation.

An implicit surface is given by an implicit function:

f(~x) = 0.

The most popular types for this approach is the quadratic surfaces and the height

fields.

The polygon surface is far the most widely used B-rep model. The patches are

bounded by edges, and the edges attach each other in vertices. The most primitive

polygon has just 3 vertices. The simplicity of the triangle validates the application of

it on the graphics hardware. The term mesh is usually associated with a connected

set of polygons (most of the time triangles). Notice that a mesh may not define a

close body. Throughout this dissertation it is assumed that the scene is represented

by polygons. Without loss of generality the triangle patches are assumed.

The parametric surface representation is defined by a two dimensional function:

~r(u, v), u, v ∈ [0, 1].

The most famous is the Non-Uniform Rational B-Spline (NURBS), which is the ge-

neralization of non-rational B-splines and non-rational and rational Bezier surfaces

2.2. RENDERING 16

[Far97]. However, since the graphics hardware cannot handle this surface type, it is

usually approximated by polygon mesh.

The polygon models are quite faceted. Parametric surfaces are smooth and the

derivative is also continuous. The subdivision surface stands between the two models.

It is defined by a coarse mesh and a subdivision rule. The smooth surface is generated

as a limit of a sequence of refinements.

For further discussion on surface definitions for forward and reverse engineering

refer to [VMC97, RVW98, RV00], for transformations refer to [SKe95, Kra89, Her91,

Lan91]. Beside the B-rep model, there are other techniques for storing the geometry of

the scene such as solid modeling, voxel representation [PS85, Vid93, CSK98, CMSK97,

PRE95] or the point set data [MA01, CS02].

2.2.2 Materials

The material gives the definition of how the surfaces reflect, refract or emit light.

“Reflection is the process by which electromagnetic flux, incident on a stationary

surface or medium, leaves that surface or medium from the incident side without

change in frequency. The reflectance (albedo) is the fraction of the incident flux that

is reflected.” (Nicodemus et al. [JJHL77])

The mathematical model for the light-surface interaction at point ~x is character-

ized by the Bidirectional Reflectance Distribution Function abbreviated as BRDF:

fr(~ω
′, ~x, ~ω) =

dL(~x, ~ω)

Li(~x, ~ω′)cosθ′d~ω′
, (2.12)

where ~ω′ and ~ω is the incoming and the outgoing direction respectively, L is the

outgoing, Li is the incoming radiance and θ′ is the angle between the surface normal

and the incoming direction ~ω′ (see figure 2.5).

q' w

x

n

w'

Figure 2.5: Interpretation of the BRDF

2.2. RENDERING 17

Helmholtz reciprocity

One reason for using the cosine factor in equation (2.12) is that for physically plau-

sible materials the BRDF is symmetric. This property is referred as the Helmholtz

reciprocity principle, which allows exchanging the incoming and outgoing directions:

fr(~ω
′, ~x, ~ω) = fr(~ω, ~x, ~ω′).

The reciprocity is an important constraint, especially for those algorithms that com-

pute the distribution of light by starting paths from the light sources and starting

paths from the camera simultaneously. These algorithms assume that light paths can

be reversed, and the BRDF holds the reciprocity principle. Denote that the BRDF

is not bounded, and cannot be negative: 0 ≤ fr(~ω
′, ~x, ~ω) ≤ ∞.

The definition of the BRDF can be easily generalized for refraction also. For

transmissive surfaces, the Bidirectional Transmission Distribution Function (BTDF)

is the appropriate measure, which contains only the hemisphere on the back side2 of

the surface as a domain for the outgoing direction ~ω. For general surfaces the BRDF

and BTDF can be combined into the Bidirectional Scattering Distribution Function

(BSDF) with the difference that the BSDF is defined over the full hemisphere for

both incoming and outgoing directions3.

Conservation of energy

Beside the BRDF, another useful measure is the fraction of the incoming radiance

(from a single direction ~ω′) that is reflected back over the hemisphere. This is called

the reflectance or the albedo and can be expressed as:

ar(~x, ~ω′) =

∫

Ω2π

fr(~ω
′, ~x, ~ω) · cos θdω (2.13)

Due to the law of energy conservation the ar must be smaller than 1. If the

transmittance is not neglected, the total scattering albedo a = ar + at should be less

than 1. A noticeable corollary of the definition 2.13 that the albedo depends on the

incoming direction ~ω′.
Most reflection models separates the materials into a small number of categories

(see figure 2.6). In the context of computer graphics the following classes are typically

considered:

Specular

Also called mirror reflection. Materials of this type reflect light only in one

specific direction. The BRDF value of a perfectly specular surface is 0 every-

where except in one direction, hence the value for that direction is infinite. This

BRDF is usually defined by a Dirac-delta (δ) function.

2in the direction of the inverted surface normal
3it can be considered as a combination of 2 BRDF and 2 BTDF, one for each side of the surface

2.2. RENDERING 18

Diffuse

These materials reflect the light in all directions with equal probability. The

value of the BRDF is constant (independent of the incoming and the outgoing

directions), and the relation of the BRDF and the albedo is given by:

ar(~x, ~ω′) = fr(~x) ·
∫

Ω2π

cos θdω = fr(~x) · π.

Glossy

Most materials are neither diffuse nor perfectly specular, but they are some-

where between them. They are responsible for the hazy mirror like appea-

rance of the surfaces. It is difficult to model them with mathematical formulae.

[Neu01, NN89, NNSK98, NNSK99]

Mixed reflections can be defined as a combination of the previous 3 BRDF types.

The same kind of categories can be defined for materials given by BTDF, since the

transmissive function can also behave as a diffuse, specular or glossy surface.

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

a
aaaaaaaaa

Figure 2.6: Different reflection types: specular, diffuse and glossy

2.2.3 Light sources

Light can be emitted in different ways: by thermal sources such as the sun, or by

quantum effects such as fluorescence where materials absorb energy at some wave-

length and emit it at some other wavelength. Since we use the optic model of light, we

consider light sources as surfaces which produce a specific amount of flux. Manufac-

turers of lamps and lamp fittings issue diagrams that show the spectral distribution

of the light and the distribution of the intensity in all directions4. These general light

distribution functions are not favoured by all in graphics algorithms. They usually

consider only diffuse emitters, which produce light width equal radiance everywhere.

The constant radiance implies that the power of this surfaces can be calculated as:

Φ =

∫

Area

∫

Ω2π

L(~x, ~ω)cosθd~ωdA = L ·
∫

Area

dA

∫

Ω2π

cosθd~ω = L · Area · π

2.2. RENDERING 19

Figure 2.7: Most area light sources are modelled as diffuse emitters

For example the Sun generates 3.91 · 1026 watt energy and has a surface area

of 6.07 · 1018m2. This implies that the radiance L of the Sun is 2.05 · 107 watt

(Φ = L · Area · π). Considering the solid angle of the Sun, the power reaching earth

on 1 m2 square is 1373.5 watt.

The realistic model of light uses only area sources. However, for speed reasons,

computer graphics algorithm uses abstract light sources without physical plausibility.

The most common types are:

Point light: It has a well defined position in the 3D world and has no extent. The

light intensity is attenuated proportional to the square of the distance of the

illuminated object.

Directional light: The direction and the intensity of the light is the same every-

where. Light is considered to originate from the point of a surface that is placed

infinitely far away.

Spot light: It has a cone of effect, e.g. a desk lamp or an electric torch that emits

light from a specific point along a specific direction vector and constrained

within a solid angle.

Sky light: It is modelled as a suitably large dome (hemisphere) above the scene. In

ray tracers, the outdoor conditions are usually described by the combination of

a sky light and a directional light imitating the sun.

Ambient light: The intensity of the light is the same in all points and in all direc-

tions. It is used as a rough estimate for multiple interreflections.

2.2.4 Measurements

After solving the rendering equation, the radiance of the surface points in any di-

rection can be determined. A measurement is the response of a certain hypothetical

4IES, CIBSE, EULUMDAT

2.3. GLOBAL ILLUMINATION 20

(radiance) sensor placed in the object space, which is defined by the response function

We(~x, ~ω). The measurement C is the total response of the sensor, which is given by

the measurement equation:

C =

∫

A

∫

Ω

We(~x, ~ω)Li(~x, ~ω)cosθd~ωdA = ML, (2.14)

where A is the total surface of the scene. For the sake of abbreviating the equation,

the M operator is introduced, which is called radiance measurement operator.

To obtain the image, we must compute the specific measurement for each pixel.

In computer graphics usually the simplest perspective camera model is used. It is

the pinhole camera, which assumes that the aperture of the camera has a negligible

size. In this context, the center of the perspective projection is referred as the eye

point or the viewpoint or the position of the camera. The projection of a scene point

~x is then obtained as the intersection of a line – that is passing through this point

and the center of projection – with the retinal plane. However in computer graphics,

instead of the retinal plane, we use the image plane, which is placed not behind, but

in front of the camera (see figure 2.8).

pinhole

photography

pinhole
retinal plane image plane

computer graphics

Figure 2.8: Projection of an object in photography and in computer graphics with
the pinhole camera model

For the pinhole camera model the response function of a pixel is

W pix
e (~x, ~ω) =

{
1 · δ(~x− ~eye), if ~ω goes through pixel

0, otherwise

2.3 Global illumination

Global illumination algorithms are intended to solve the rendering equation (2.6)

without ignoring the recursive nature of the model. They aimed to simulate all types

of light paths. Unfortunately, the computational power of the computers cannot

2.3. GLOBAL ILLUMINATION 21

afford to solve the general problem. For this reason over the years different methods

have been developed, which simulate only a specific subset of the light paths domain.

To be able to differentiate between them, we use a slightly extended form [Suy02]

of the notation that was developed by Heckbert [Hec91]. This notation is originated

from the formal languages theory and is based on regular expressions:

• E : eye point

• L : light source

• Dr, Dt : diffuse (incoherent) reflection and transmission

• Gr, Gt : glossy reflection and transmission

• Sr, St : specular reflection and transmission

• | : ’or’ operator

• X∗ : iteration, zero or more occurrences of X

• X+ : iteration, one or more occurrences of X

• Xk : iteration, exactly k occurrences of X

To simplify the notation, the reflection and transmission can be grouped together:

• D = Dr | Dt

• G = Gr | Gt

• S = Sr | St

• X = D | G | S

We group the global illumination methods by the underlying mathematical model

that they used for solving the rendering equation (2.7).

2.3.1 Inversion

A trivial solution is the inversion:

L = Le + T L ⇒ L = (1− T)−1Le.

Since T cannot be inverted in a closed form, the solution is approximated by

finite-element methods [Pop87]. The resulted system of linear equations is solved by

the Gaussian method, which has cubic time complexity (according to the number

of the finite-elements). The large number of surface elements made this approach

unacceptable for real scenes but it was used in early radiosity algorithms. Therefore,

this dissertation does not cover this approach.

2.3. GLOBAL ILLUMINATION 22

2.3.2 Expansion

From mathematical point of view, these methods are based on the Neumann series

expansion of the rendering equation, which is obtained by substituting L on the

right side of the rendering equation (2.7) by the complete right side L = Le + T L.

Considering that T is a contraction we repeat this process and get the Neumann

series form of the rendering equation:

L =
∞∑
i=0

T iLe. (2.15)

The measured power of the pixels are obtained as

C = ML =
∞∑
i=0

MT iLe.

The terms of this series are ever increasing high-dimensional integrals that are

estimated by Monte-Carlo quadrature taking m random samples. Since Monte-Carlo

methods haveO(m−0.5) convergence independently of the dimension of the integration

domain, they can avoid the exponential core of classical quadrature rules [SK99a].

Equation (2.15) creates the problem of calculating an infinite dimensional integral.

Practical implementations usually truncate the infinite Neumann series, which intro-

duces some bias, or stop the walks randomly, which reduces the samples of higher

order inter-reflections.

These approaches are strongly view dependent. Since the radiance is estimated

by random paths originated from the camera, if the camera changes, the complete

calculation should be started from scratch.

However, expansion methods like path tracing have an important advantage.

Namely, they do not require finite-element representations of the complete radiance

function. Consequently, this approach can work with the original geometry without

tessellating the surfaces to planar polygons.

2.3.3 Iteration

Iteration algorithms are based on the fact that the solution of the rendering equation

is the fixed point of the following iteration scheme:

L(m) = Le + T L(m− 1). (2.16)

If this scheme is convergent, then the pixel colors can be obtained as a limiting

value:

C = ML = lim
m→∞

ML(m).

Iteration converges with the speed of a geometric series, i.e. the error from the limiting

value is in the order of O(am) where a is the contraction of integral operator T . The

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 23

contraction is proportional to the average albedo of the surfaces and depends on how

open the scene is. Note that iteration uses the estimate of the complete radiance func-

tion, thus it can potentially exploit coherence and reuse previous information. Since

the complete radiance function is inserted into the iteration formula, parallelization

is not as trivial as for random walks, and the error introduced in each step may

accumulate to a large value [SK00]. To store the radiance estimates, finite-element

approaches should be used.

2.3.4 Stochastic iteration

Stochastic iteration [SK99b] replaces the light-transport operator T by a random

transport operator T ∗ that gives back the effect of the light-transport operator in the

average case:

L(m) = Le + T ∗L(m− 1)

E[T ∗L] = T L. (2.17)

The pixel color is obtained as the average of the previous steps:

C = ML = lim
n→∞

1

n

n∑
i=1

ML(i).

This method has a detailed description in section 2.6.

2.4 Random walk approach to the global illumina-

tion problem

Random walk approaches are based on random sampling to numerically estimate

integrals. Since the expansion solution of the rendering equation requires the evalu-

ation of very high dimensional integrals, and because the Monte-Carlo integration is

very suitable for solving high dimensional problems, the Neumann series form (equa-

tion (2.15)) of the rendering equation can be successfully treated by random walk

algorithms. This section presents a brief overview on Monte-Carlo methods and in-

troduces the global illumination algorithms based on Monte-Carlo integration. The

first Monte-Carlo random walk algorithm, the distributed ray-tracing was proposed

by Cook et al. [CPC84]. The mathematical formulation of the rendering equation

was published in 1986 by Kajiya [Kaj86]. Based on this formulation, he presented

path-tracing, which is a variation of the more general stochastic ray-tracing. Ray-

tracing techniques generate paths from the eye point. Light tracing [DLW93] follows

light particle paths from the light sources. Bi-directional path-tracing [LW93] [VG95]

generates an eye path and a light path and connects them to get the pixel estimate.

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 24

The weakness of the methods is that, in spite of many advancements, building a

single path is computationally expensive.

2.4.1 Monte-Carlo methods

From the development of the nuclear bomb during World War II, the Monte-Carlo

methods are used to solve wide variety of problems by simulating a suitable random

process. They are based on probability theory.

Basic Monte-Carlo integration

The most common usage of Monte-Carlo methods is the computation of an integral

I =

∫

Ω

f(x)dx,

where Ω is a possibly multi-dimensional domain. If p(x) is a possible pdf (probability

density function) on the domain Ω, and if we generate a sample x0 according to this

pdf, the primary estimator for integral I is given by

〈I〉primary =
f(x0)

p(x0)
.

In practice we usually take N independent samples to give the so-called secondary

estimator

〈I〉secondary = 〈I〉N =
1

N

N∑
i=1

f(xi)

p(xi)
. (2.18)

Beside estimator 2.18 other estimators 〈I〉N can be also defined for which the following

estimator properties can be defined:

• Error : the error is given by Error(〈I〉N) = I − 〈I〉N .

• Unbiasedness : the estimator 〈I〉N is unbiased if ∀N : E[〈I〉N] = I.

• Bias : bias is given by [〈I〉N] = I − E[〈I〉N].

• Consistency : the estimator is consistent, if its bias vanishes in the limiting case

lim
N→∞

[〈I〉N] = 0.

It is straightforward that unbiasedness implies consistency. The secondary esti-

mator 2.18 is an unbiased estimator. Unbiased (and also consistent) Monte-Carlo

methods are useful, since they are provably converging to the good solution and for

the unbiased estimators the variance can be estimated on the fly from the samples.

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 25

Analyzing the secondary estimator 2.18, it is quite straightforward to show that

D2
secondary =

D2
primary

N
,

where D is the standard deviation (also called RMS 5 error). This equation is very

important in Monte-Carlo methods. It shows that the RMS error (standard deviation)

is inversely proportional to the square root of the number of samples of the secondary

estimator. In practice it means – for example – that to halve the (RMS) error we

must quadruple the number of samples. This is an unwanted property of the Monte-

Carlo methods, therefore variance reduction strategies have utmost importance. The

most common strategies for sample selection are stratified sampling and importance

sampling.

Stratified sampling

Stratified sampling divides the integration domain Ω into M non-overlapping strata

Ωi and estimates each partial integral by Ni random samples:

I =

∫

Ω

f(x)dx =
M∑
i=1

∫

Ωi

f(x)dx =
M∑
i=1

1

Ni

Ni∑
j=1

f(ξij)

p(ξij)
. (2.19)

The following properties of the stratified sampling can be proven:

• The variance of the estimate 2.19 is guaranteed to be lower than obtaining by

distribution of random samples over the whole integration domain.

• Using one sample per strata has the most advantage, since it is easy to prove

that it is always better to increase the number of strata than the number of

samples per strata.

Figure 2.9: Regular and stratified pixel sampling

5Root Mean Square

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 26

The most frequently used example of stratified sampling is applied for pixel samp-

ling. If the required number of samples is in the form of N = k2, then the separation

of the strata is straightforward (see figure 2.9).

In general, it is sometimes quite difficult divide the domain into N equal strata.

The Quasi-Monte Carlo methods [Kel97b] provide an elegant solution for this prob-

lem. They do not produce samples randomly, but deterministically. They try to

generate the samples as evenly and as distributed as possible.

Importance sampling

Importance sampling tries to select more samples in important region of the integrand.

It needs prior knowledge of the function that we are going to estimate. We would

choose samples where it is likely to return a high value. The best pdf is proportional

to the integrand. Since any pdf must be non-negative and integrate to 1 over its

domain, the optimal pdf is given by

p(x) =
|f(x)|∫

Ω

|f(x)|dx
.

For positive integrands this pdf results in a zero variance estimator, but unfortunately

it is impossible to generate samples with this distribution, since the scaling factor

contains the integral, which is not known.

In the rendering equation (2.6) the integrand is the product of two functions, one

of which (the BRDF) is know a priori and can be used for importance sampling.

Different material models use different BRDF sampling [Gla95] schemes. There are

cases when sample generation according to the BRDF is not effective. E.g. when the

light sources are very small, light source sampling [DW91] results a more advantageous

algorithm.

2.4.2 Stochastic ray tracing

Stochastic ray tracing is based on the Neumann series 2.15 solution of the rendering

equation. Theoretically, it can handle all the possible (LX∗E) paths, but unfortu-

nately some types of light paths are sampled quite weakly. It is an image based

algorithm, which recursively samples random directions ~ω′p, ~ω
′
1, ~ω

′
2, . . . , ~ω

′
n to follow

the light paths backward and the emission of all visited points are gathered and

transferred to the eye. Note that a single walk can be used to estimate the 1-bounce,

the 2-bounce, etc. n-bounce transfer simultaneously.

If the light sources are small, then it is very unlikely to generate a direction that

arrives at a light source and can contribute a non-zero value to the pixel estimate.

To overcome the problem, next event estimation is applied, which samples the light

sources and estimate the direct illumination of the visited point on each path vertex.

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 27

2w'

w'1

wp

1x

p

2x

Figure 2.10: Path tracing

In the general case, stochastic ray tracing traces N scattered rays at each vertex

to estimate the incoming radiance. A very important special case does not allow

scattering, and uses only 1 ray sample for each vertex. This algorithm is called path

tracing and it was presented by Kayija [Kaj86] as a generalization of distributed ray

tracing. In his original paper he uses 40 ray samples per pixel to generate images.

Practical implementations usually truncate the infinite Neumann series, which

introduces some bias, or stop the walks randomly, which reduces the samples of

higher order inter-reflections. This method called Russian roulette [AK90] gives a

still unbiased estimation. Russian roulette decides randomly (at hit point ~xi with a

probability si) whether or not the integrand is really evaluated for a domain point.

If it is not evaluated, the integrand is assumed to be zero. If it is evaluated, the

value is divided by the probability of this decision to compensate the cases when the

integrand is not computed. It is straightforward that this random decision increases

the variance of the estimator.

Since it starts from the eye and since it generates directions according to surface

BRDF, the path tracing treats the specular or glossy effects quite efficiently. However,

it is poor generating caustics.

2.4.3 Light tracing

Light tracing [DLW93] [DW94] [DW96] [Dut96] is a particle tracing technique (see

figure 2.11). It is usually called the adjoint method of path tracing, since instead

of generating rays from the eye through the pixel and progressing towards the light

source, this technique generates rays from the light sources and proceeds towards the

pixel.

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 28

2w'
w'1

wp

1x

p

2x

0x

Figure 2.11: Light tracing

When the next direction is going to be generated, BRDF based importance samp-

ling can be applied. This new direction determines (via ray casting) the intersection

point on another surface. Then a ray is traced from the intersection point to the

eye and light contribution is added to the affected pixel. If the camera is hidden

from the intersection point or if the intersection with the rendering plane is outside

of the rendering window, the contribution is zero which results high variance of the

image estimate. Since light tracing (as any other shooting type global illumination

algorithm) does not use BRDF sampling for the last step (which connects the path

to the eye), it is very ineffective for generating mirror-like effects. However, caustics

are handled very easily by light tracing.

2.4.4 Bidirectional path tracing

Since stochastic ray tracing is good for pinhole camera and mirror-like surfaces and

light tracing is good for small light sources and caustics effects it would be a nice

goal to combine them in a way that the advantages of the underlying algorithms are

preserved.

Bidirectional ray tracing was proposed by Lafortune [LW93] and at the same time

independently by Veach [VG94]. The bidirectional path z̄3,2 = ~x0~x1~x2~y1~y0 is formed

by connecting an eye and a light path. The notation of z̄st means the eye sub-path

contains s and the light sub-path contains t vertices. Using the path integral form

of the rendering equation (2.10), the radiance contribution function l(z̄) (equation

(2.8)) and the pdf p(z̄) of the bidirectional path must be determined. Since the direct

connection of the sub-path is deterministic, it does not influence the pdf. The pdf of

the path z̄ that is presented in figure 2.12 is given by

p(z̄) = p(~y0)p(~y1|~y0) · p(~x0)p(~x1|~x0)p(~x1|~x1~x0),

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 29

1x

2x

xx

0x

0y

1y

Figure 2.12: Bidirectional path is generated by connecting the eye and light sub-paths

where ~yi is the i-th vertices of the light sub-path and ~xi is the i-th vertices of the eye

sub-path.

Note that the same path z̄ can be generated by placing the deterministic connec-

tion in different edges of the path. In figure 2.13 the bidirectional paths z3,0, z2,1, z1,2,

z0,1 define the same path and therefore have the same radiance contribution. Since

a path of length n can be sampled n + 1 different ways, care must be taken to avoid

counting the same paths more than once [CW93]. Since all of them contribute to

the final image, the contribution of them must be weighted. One possible solution

corresponds to multiple importance sampling, as it was presented by Veach [Vea97].

1x

2x

0x

1x

0y

0x

0x

0y

1y

0y

1y

2y

Figure 2.13: The same bidirectional path can be constructed in different ways

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 30

Observe the most important special cases for a bidirectional path z̄s,t:

• s = 0 : The eye sub-path has no vertices at all. The light sub-path ended by

chance on the aperture of the camera. For pinhole cameras this cannot happen.

• s = 1 : The eye path has 1 vertex and the light path is connected determinis-

tically to the camera. This case corresponds to light tracing.

• t = 0 : The light path has no vertices at all. The eye path accidentally hits a

light source surface.

• t = 1 : The light path has 1 vertex, which was sampled by light source sampling.

This case corresponds to path tracing with next event estimation.

Since bidirectional path tracing is a generalization of them, it is straightforward

that the method is superior to both path tracing and light tracing.

1x

2x

0x

0y

1y

Figure 2.14: Bidirectional paths are generated by connecting the eye and light sub-
paths in every possible way

Bidirectional path sampling generates one eye and one light sub-path randomly

and connects them. The naive implementation of the sampler would generate the

next bidirectional path by generating the sub-paths from the scratch. However, if a

light sub-path and an eye sub-path is generated once, it is more effective to connect

every vertex of the light sub-path to every vertex of the eye sub-path by shadow rays,

and create all the possible bidirectional path. This construction is shown in figure

2.14. This efficient sampling was used both in Lafortune’s and in Veach’s methods.

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 31

2.4.5 Metropolis Monte-Carlo method

The Metropolis method was imported from physics [MRR+53] to computer graphics

by Eric Veach in his SIGGRAPH’97 paper [VG97]. It is based on the path integral

formulation of the rendering equation (see. equation (2.10)). This method generates

stochastic samples which are distributed according to the desired distribution. In the

global illumination case, the required probability is the importance function of the

light intensities over the pixels:

p(z̄) =
I(z̄)

b
,

where b is the normalizing constant.

1x

2x

0x

3x

2y

1y

3y

y0,

,

perturbation

Figure 2.15: The mutation of path x̄ to ȳ

However, instead of sampling light paths independently Metropolis method per-

turbs the previous light path z̄, and creates a Markovian chain, in which each sample

depends only on the previous one. It uses an almost arbitrary tentative transition

function T (z̄i → z̄t) to generate a tentative sample z̄t which is then accepted or

rejected according to the acceptance probability a(z̄i → z̄t).

The generation of the Metropolis samples z̄1, z̄2, . . . , z̄n, is given by

Find an initial sample z̄1

for (i = 1; i < n; i++) {
Based on z̄i, sample a tentative point z̄t using T (z̄i → z̄t)
Generate random number rand ∈ [0, 1]
if rand < a(z̄i → z̄t) // accept with probability a(z̄i → z̄t)

z̄i+1 = z̄t

else
z̄i+1 = z̄i

}

Theoretically, the Metropolis method achieves perfect importance sampling. How-

ever, some problems emerge which need to be treated carefully:

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 32

• The starting point of the Markovian chain must be selected with care.

• The generated samples are not independent, but correlated. If the correlation

is too large, it produces annoying visible artifacts.

• If the mutation strategy makes too small perturbation, the method may violates

the ergodicity condition, since it is possible that the it sticks some part of the

domain and can never reach other important sub-set of the path domain.

• The mutation strategies are usually costly and difficult to implement.

Recently, Kelemen et al. [P14] proposed a solution for solving most of these

problems based on mutation the samples not in the path space, but in the primary

sample space.

2.4.6 Photon map

One of the most successful approach for solving the rendering equation is the photon

map algorithm. Most of the commercial software packages, which support global illu-

mination, are based on this method. Examples are Lightflow, LightWave, Luminaire,

Maya, Twister and Mental Ray. The first paper on photon map was proposed in

1995 by Henrik Jensen [Jen95]. The idea behind this approach is that – unlike in

bidirectional path tracing – light paths are not dropped when sampling a new eye

path, but the light information is stored in a special data structure.

The photon map is the set of “virtual” photons6 that are characterized by the

energy on different wavelength, the position and the incoming direction of the photon.

For calculating the outgoing direction faster, usually the surface normal at the hit-

point is also stored. The photon hits are then stored in a kd-tree, which is balanced

before using it for image rendering. The algorithm can be separated in three phases:

1. Photon shooting

2. Kd-tree balancing

3. Final gathering

The final gathering uses the following estimate of the rendering equation:

L(~x, ~ω) =

∫

Ω

L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′ d~ω′ =

∫

Ω

dΦ(~ω′)
dA cos θ′dω′

· fr(~ω
′, ~x, ~ω) · cos θ′ dω′ ≈

n∑
i=1

∆Φ(~ω′i)
∆A

· fr(~ω
′
i, ~x, ~ω), (2.20)

6real photons convey energy only on a single wavelength

2.4. RANDOM WALK APPROACH TO THE GLOBAL ILLUMINATION PROBLEM 33

photon shooting final gathering

Figure 2.16: The first and the third steps of the photon map method

where ∆Φ(~ω′i) is the energy of the photon arriving to surface ∆A from incoming

direction ~ω′i. Value n is the parameter of the algorithm, which is set a–priori. Estimate

2.20 uses the contribution of n photons around the point ~x. Practical implementations

use 30–200 photons. The selection of the photons can be carried out by placing a

sphere around the point ~x and enlarging the sphere until it contains exactly the

required number of photons. If r denotes the radius of this sphere, then the ∆A is

given by πr2, since it is projected area of the sphere (a circle) to the surface. The

previously presented basic algorithm can be extended and fine tuned further. Without

the aim of completeness, we list some of the most important ideas:

1. The bounding sphere can be replaced by the bounding disc. The sphere is good

basic candidate since the projected area is easy to calculate. However, since

photon hits are not bind to surfaces, it occurs often (at the edges or in corners)

that the estimate consists photons, which are placed on another surface. (e.g.

the color of the wall leaks dawn to the floor). If we compress the sphere in the

direction of the surface normal, we would use less “false” photons.

2. The caustics usually need more dense distribution of photons then it is presented

in the global photon map. The caustics can be handled with a separate caustics

photon map, which contains photons hits that hit at least one specular surface

before hitting a diffuse surface. Using Heckbert notation these are LS+D paths.

Note that the photon shooting for caustics maps can be made faster, since we

need to shoot photons only in the direction of specular surfaces.

3. By introducing the volume photon map, the method is capable to handle par-

ticipating media [JC98].

2.5. ITERATION METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 34

2.4.7 Instant radiosity

Instant radiosity [Kel97b] is also a photon shooting technique, which is quite similar

to photon map method. The shot photons considered as virtual point light sources.

The contribution of point light sources then can be calculated by fast and hardware

supported visibility and shadow algorithms.

Instant radiosity uses just small number of photons in the final gathering step.

Usually about 40 point lights can be accounted for, which is rendered in e.g. 5 passes

(if the maximal 8 light sources per pass of the OpenGL API are used). The used

point light sources are selected from the virtual light sources by quasi-Monte Carlo

technique. However, the dominant light sources must be selected with care, since if

they are too close to a visible object (e.g. to a wall), the neighbor areas receive too

much illumination, which causes highlighting artifacts.

The rendered images contribute to the accumulation buffer of the graphics hard-

ware, which – at the end of the passes – contains the final image. Recently this

method was combined with a fast, coherent ray tracer [IWS02], with which the aut-

hors report interactive global illumination rendering on the local area network of 20

computers.

2.5 Iteration methods for the global illumination

problem

This section surveys the different radiosity algorithms, which originally was leaked

to computer graphics from the field of heat transfer. They were the first solutions to

the global illumination problem. These algorithms are all finite-element methods and

based on deterministic iteration.

2.5.1 Classical radiosity

The classical radiosity was introduced by Goral et al. [GTG84] in 1984. The method

subdivides the surfaces to small elemental patches and supposes that the patches are

small enough that the light intensity into a specific direction can be approximated

by a constant value (the positional dependence of the radiance is eliminated). If only

diffuse surfaces are allowed, the direction dependence can be also eliminated, since

diffuse surfaces generate the same radiance in all direction. The corollary is that the

method can handle only LD∗E type of light paths. The closed environment is also

an assumption, in which the global illumination is simulated by the energy exchange

of the patches.

The name of the algorithm refers to the radiometric quantity radiosity, which is

the density of radiant energy flowing through a unit area per unit time (equation

(2.2)). It includes the emitted energy and the energy reflected from other surfaces.

2.5. ITERATION METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 35

Using this measure, the rendering equation for a point ~x (equation (2.5)) takes the

following form:

B(~x) = E(~x) + ar(~x)

∫

S

B(~y)
cos θ~x cos θ~y

πr2
V (~x, ~y)dy, (2.21)

where B(~x) is the radiosity and E(~x) is the emission at point ~x, ar is the diffuse

albedo (or reflectance) of the surface, θ~x is the angle between the surface normal at

point ~x and the line that connects point ~x and ~y, r is the length of the connecting

line and V (~x, ~y) is the visibility function (it is 1 if the two points see each other, and

0 otherwise).

In general, the finite-element method approximates the radiosity and the emit-

tance functions in a function series form

B(~x) ≈ B̄(~x) =
n∑

i=1

Bi · bi(~x), (2.22)

E(~x) ≈ Ē(~x) =
n∑

i=1

Ei · bi(~x),

where functions bi(~x) are pre-defined basis functions and parameters Bi and Ei are

scalar values. The classical radiosity uses only constant functions for the bases.

bi(~x) =

{
1, if point ~x is placed on surface i

0, otherwise

Using the function series approximation, the radiosity equation (2.21) for points

can be simplified for patches. This results a set of linear equations:

Bi = Ei + ari

n∑
j=1

BjFij, 1 ≤ i ≤ n (2.23)

where Fij is the geometric factor called form factor (see section 2.5.2) between patch

i and patch j.

2.5.2 The form factor

The form factor Fij describes the fraction of energy which leaves surface patch i and

arrives at a surface patch j. It is a purely geometric relationship, independent of the

viewpoint or the material properties of the surface. The form factor (see in figure

2.17) between differential areas dx and dy is given by:

Fdxdy =
cos θ~x cos θ~y

πr2
dy.

2.5. ITERATION METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 36

The point-to-patch form is generated by integrating over surface area Aj:

Fdxj =

∫

Aj

cos θ~x cos θ~y

πr2
dy.

If patch Aj covers the whole hemisphere around point ~x, the point-to-patch form

factor is 1. This is what we expect, since the whole energy leaving dx arrives to

surface Aj.

dx

qx

yq

patch i patch j

r

dy

Figure 2.17: Form factor calculation

The patch-to-patch form factor that is the fraction of energy which leaves the

whole surface patch i and arrives at a surface patch j is calculated by

Fij =

∫
Ai

Fdxjdx

∫
Ai

dx
=

1

Ai

∫

Ai

∫

Aj

cos θ~x cos θ~y

πr2
dydx. (2.24)

Instead of this estimate, the point-to-patch form factor can be used (Fij ≈ Fdxj) if

the assumption is made that the single point ~x is a representative of all of the points

on the surface.

Since the number of form factors is large (n2, where n is the number of patches

in the scene), the calculation of them is crucial in every radiosity algorithm. Over

the years many techniques were developed to compute the form factor integral. The

analytical solution in case of no occlusion is possible by applying Stokes theorem, but

it is very inefficient. Other techniques uses hemisphere or hemicube projections or

ray tracing approaches. Note that although the radiosity algorithm is a deterministic

finite-element method, it can use Monte-Carlo methods to obtain the form factors

[Bek99]. An elegant way uses integral geometry for casting a set of random global

lines and estimating the form factor between two patches by the number of common

line intersections as in [Sbe96]. A good overview of the form factor computation can

be found in [CW93].

2.5. ITERATION METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 37

2.5.3 Solving the system

Two types of radiosity algorithms are exist.

The full matrix radiosity algorithms require the whole form factor matrix in

each iteration step. It solves the following series of simultaneous linear equations:



1− ar1F11 −ar1F12 · · · −ar1F1n

−ar2F21 1− ar2F22 · · · −ar2F2n

...
...

. . .
...

−arnFn1 −arnFn2 · · · 1− arnFnn







B1

B2

...

Bn




=




E1

E2

...

En




.

The system of linear equations is solved by Jacobi or Gauss-Seidel [GTGB84]

iteration . This approach requires storing the whole form factor matrix. In case of a

moderately complex scene which contains for example one hundred thousand patches,

the number of form factors reaches 1010, which roughly needs 37 terabyte memory

capacity7. Therefore this approach is suitable only for simple scenes.

In progressive radiosity (or Southwell iteration) each iteration requires the

calculation of form factors between a point on a single surface and all other surfaces.

Therefore just a row of form factor matrix needs to be stored in each step. Other

advantage of this method that, without the costly form factor matrix computation, it

will produce intermediate results, each of them is more accurate than the last. This

intermediate result can be presented to the user and the algorithm can be halted if

the desired approximation is reached. The overview of the algorithm is given by:

do (iteration) {
Select a surface i according to the emitted radiosity
Calculate Fij for all surfaces j
for (each surface j) {

Shoot energy of surface i
Update radiosity Bj

Update emission of surface j
}

}

2.5.4 Extensions and notes

The hierarchical radiosity [CCWG88] [HSA91] [CSSD96] [BNN+98] is one of the

most efficient approach for radiosity calculations especially if it is combined with

clustering [SDS95] [CLSS97]. The method tries to further decrease the number of

form factor calculations by creating a multilevel hierarchy of surface patches. The

fundamental idea is that the many interaction between a single patch and a set of

7if 4 byte float is used for each form factor

2.5. ITERATION METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 38

patches can be simulated by one interaction between a single patch and a large patch

which averages the radiosity of the patches in the set. It can be carried out if a single

patch is far away from a set of patches (e.g. it has small form factors with the patches

in the set).

If a radiosity system uses other than the constant basis functions (see equa-

tion (2.22)) used by the classical radiosity algorithm, we refer it as higher-order

radiosity. It is also often named as Galerkin radiosity [Hec91] [TM93] [Zat93]. The

advantage of higher-order basis is that it allows using much coarser meshes compared

to classical radiosity, while still maintaining the same error bound. In classical radi-

osity, the surfaces must be subdivided small enough to represent the same variation.

One problem with higher-order methods is that they do not easily support discontinu-

ities like sharp shadows, since the basis functions are usually continuous. In radiosity

algorithm the basis functions bi(x) usually depend only on the position. However,

the method can be extended if positional and directional basis functions are also

considered which eliminates the restriction of diffuse surfaces, and the algorithm can

handle specular effects. The positional basis functions may be either constant (as

it is the case in classical radiosity) or linear on a patch, while the directional basis

functions can also be piece-wise constant [ICG86], spherical harmonics [SAWG91] or

Haar functions [SSG+99].

Wavelet radiosity was introduced by Gotler et al. [Gor93] and Schroder et

al. [SGCH93], which combines the advantages of Galerkin radiosity and hierarchical

radiosity.

Other types of radiosity extensions [Sil95] handles participating media – such

as smoke, fog, or water vapor in the air – by considering the energy exchange between

volumes, and defining a spatial hierarchy in 3D space.

The advantage of radiosity algorithms is that the radiosity estimates are com-

pletely view-independent, thus when the radiosity approximation is available, the

image can be obtained from any viewpoint.

One disadvantage of radiosity methods is that it needs to divide the polygonal

environments into small patches. The meshing is crucial in places where disconti-

nuities of the light distribution occur. Such places are, for example the edges of

shadows. Soft shadows can only be generated by radiosity algorithm if some kind of

discontinuity meshing [Hec92] or adaptive subdivision is also used before or during

the radiosity calculation. Other disadvantages are the large computational and stor-

age cost, and the lack of simulating the non-diffuse component of light distribution.

If the number of basis functions is less than necessary, light-leaks may occur and

shadows and highlights may be placed incorrectly [Slu97]. Although, hierarchical or

multiresolution methods and clustering can help, the memory requirements are still

prohibitive for complex scenes. We will give partial solutions for these problems in

the following section.

2.6. STOCHASTIC ITERATION FOR THE GLOBAL ILLUMINATION PROBLEM 39

2.6 Stochastic iteration for the global illumination

problem

Until now, we have surveyed the random walk and the iteration solutions for the

global illumination problem. Note that a single iteration step requires much more

computation than a single random light-path, but the O(am) convergence of iteration

still seems to be far superior to the O(m−0.5) convergence of random walks. However,

random walk converges to the real solution while iteration to the solution of the

finite-element approximation of the original problem. In this section we present a

third alternative for solving the global illumination equation.

Suppose that we stick to the finite-element approach. Since we are interested also

in directional light distribution – unlike in classical radiosity algorithm – we must

calculate the radiance – and not the radiosity – for each point and for each direction.

Due to the fact that the radiance is a four variate function and it changes quickly,

an accurate finite-element representation requires very many basis functions, which

makes these algorithms both storage and time consuming.

Thus the radiance of each surface patch is described by a directional function,

which can be obtained as the average of the directional radiance. If deterministic

iteration was used, this directional radiance function should be approximated by many

directional basis functions, (with constant, wavelet or spherical harmonics bases)

which could easily lead to huge memory requirements.

In order to reduce the astronomical storage requirements of the directional radio-

sity, the iteration is randomized, which leads to stochastic iteration [SK99b]. Unlike

classical iteration where all patches should be selected to gather the radiosity or to

shoot their unshot radiosity, stochastic iteration can exploit that a randomly selected

patch may represent its neighbours as well, thus accurate results can be obtained even

if just a fraction of patches are selected at all. Since stochastic iteration requires just

a random approximation of the patch radiance, it can use just a single variable per

patch even if the general, non-diffuse problem is attacked.

Suppose that we have a random linear operator T ∗ (see equation (2.7)) so that

E[T ∗L] = T L (2.25)

for any integrable function L. During stochastic iteration a random sequence of

operators T ∗
1 , T ∗

2 , . . . T ∗
i . . . is generated, which are instantiations of T ∗, and this

sequence is used in the iteration:

L(m) = Le + T ∗
mL(m− 1). (2.26)

Suppose that at a given point of the iteration, an image estimate is computed from

the actual radiance, that is, the measured value (see equation (2.14)) in each pixel is

C(m) = ML(m). (2.27)

2.7. SUMMARY 40

This measured value will also be a random variable which does not converge but

fluctuates around the real solution. However, this does not pose problem, since if

the image estimates are computed after each iteration step, the final result can be

obtained as an average of these estimates. Averaging the first m steps, we obtain:

Ĉ(m) =
1

m
·

m∑
i=1

ML(i) =
1

m
· ML(m) +

(
1− 1

m

)
· Ĉ(m− 1).

If T ∗ is properly constructed, then it does not need the radiance function everywhere

on its domain (just e.g. in a specific direction), which helps reducing the astronomical

storage requirements of directional dependent finite-elements.

The conclusion is that stochastic iteration is theoretically an effective tool that

can reduce the complexity of global illumination algorithms and can result in non-

diffuse global illumination methods that require just a single variable per patch, that

is, their memory requirement is the same as that of the diffuse radiosity case. The

critical part of the construction of such an algorithm is to find an appropriate random

transport operator, that can be efficiently computed, thus the computation time of a

single step is small. On the other hand, the variance introduced by the randomization

should be also small, to keep the number of required iteration steps acceptable.

There are two useful stochastic iteration algorithm published so far. Parallel

ray-bundle tracing [SK00] transfers the radiance of all points parallel to a randomly

selected global direction, while single ray based shooting [SK99b] – which is a contin-

uous approach – transfers the radiance of a randomly selected point at a randomly

selected direction. Both algorithms will be described in detail in chapter 4.

2.7 Summary

In this chapter we have introduced the most important radiometric definitions. Based

on this notation the rendering equation – as a Fredholm type integral equation of

the second kind – was developed. Later, the rendering problem was expressed as

a quadruple, and its components (geometry, materials, light sources, measurement

devices) were detailed. That was followed by a study considering the possible solution

strategies for the global illumination equation. Many global illumination algorithms

were also described. They can be differentiated into one of following three categories:

random walk methods, iteration methods and stochastic iteration methods. Each

approach has its advantages and disadvantages, which was also pointed out in this

section.

Chapter 3

Analysis of Russian roulette

Russian roulette is a popular technique that ensures the unbiasedness of the Monte-

Carlo integration in case of infinite dimensional integrals. This chapter examines

the optimal selection of the termination probability in problems where the allowable

computational time, i.e. the number of rays to be traced, is constant. The results of

this chapter is the own work of the author and summarized as thesis 1 (see chapter 8).

3.1 Introduction

Random-walk algorithms (see section 2.4) evaluate the integrals in the rendering

equation by Monte-Carlo quadrature. Monte-Carlo integration is justified by the fact

that its complexity does not grow with the dimension of the domain, thus it can avoid

the dimensional core of the classical quadrature rules. These algorithms are based on

the Neumann series form of the rendering equation:

L =
∞∑
i=0

T iLe = Le + T (Le + T (Le + . . .) . . .) = Le + T Lin = Le + T (Le + Lind),

where Lin is the incoming radiance that can be separated to Le emittance and to Lind

radiance due to the indirect illumination. By restructuring the rendering equation

(equation (2.6)), the integral that needs to be calculated is given by

T Lin =

∫

Ω

Lin(~x, ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′dω′. (3.1)

For the sake of clarity, from now on we drop the notation of the function parameters

(e.g. ~ω, ~ω′ and ~x) in cases where it is straightforward. If the integral 3.1 is evaluated by

Monte-Carlo quadrature, then it is converted to an expected value, which is estimated

by an average:
∫

Ω

Lin(~ω′) · fr · cos θ′ dω′ =
∫

Ω

Lin(~ω′) · fr · cos θ′

p(~ω′)
·p(~ω′) dω′ = E

[
Lin(~ω′) · fr · cos θ′

p(~ω′)

]
,

41

3.1. INTRODUCTION 42

where random direction ~ω′ is sampled from a probability density p(~ω′).
Equation (3.1) requires the evaluation of infinite-dimensional integrals. One way

of attacking the problem is truncating the Neumann series, but this introduces

some bias. Note that

T Le(~x, ~ω) ≤ Le
max · T 1 = Le

max · a(~x, ~ω), (3.2)

where a(~x, ~ω) is the albedo of the surface. Note also that

T a ≤ amaxT 1 ≤ a2
max

and similarly

T 2a ≤ T a2
max ≤ a2

maxT 1 ≤ a3
max. (3.3)

It is straightforward to continue this process to estimate the upper bound for every

T ia, where i > 2. If the truncation happens at step m (m ≥ 2), then the truncation

error can be upper bounded (by using inequality 3.2 and 3.3 and the sum of the

geometric series) as follows:

∞∑
i=m

T iLe ≤ Le
max ·

∞∑
i=m

T i−1a(~x, ~ω) ≤

Le
max ·

∞∑
i=m

ai
max = Le

max · am
max ·

∞∑
i=0

ai
max =

Le
max · am

max

1− amax

. (3.4)

Therefore if the truncation depth m increases, the error can decrease with the

factor am
max. At first sight this looks promising, since for physically plausible materials

the albedo is less than 1, and therefore increasing the truncation depth the error

vanishes quickly. However, there exist physically valid scenes, where amax is very

close to 1 (trivial example is a room with 6 perfect mirror sides). In this case the

truncation results in a significant error.

Fortunately, there is another approach that solves the infinite-dimensional integ-

ration problem through randomization. In the context of Monte-Carlo integration,

this approach is called the Russian roulette [AK90]. Russian roulette decides ran-

domly whether or not the integrand is really evaluated for a domain point. If it is not

evaluated, then the integrand is assumed to be zero. If it is evaluated, the value is

divided by the probability of this decision to compensate the cases when the integrand

is not evaluated. Since this random decision is made for each integral in a recursive

manner, the probability of really computing a sample of a higher order bounce goes

to zero. This is good, because this reduces the computational efforts. On the other

hand, this is bad, since the random decision increases the variance of the estimator.

3.2. PREVIOUS WORK 43

3.2 Previous work

The continuation or the survival probability of the random walk is the probability

that the walk is followed after bouncing at a surface. The termination probability

is the likeliness of stopping the walk. A possible value for the survival probability

of the Russian roulette is the local albedo. This is usually justified by the following

way. Suppose that the probability density p(~ω′) is proportional to the cosine weighted

BRDF fr · cos θ′, which is called BRDF sampling. Since it must be guaranteed that

p(~ω′) integrates to 1, the proportionality ratio leads the probability density as the

function of the albedo:

p(~ω′) =
fr · cos θ′∫

Ω

fr · cos θ′ dω′
=

fr · cos θ′

a
.

In this case the expected value of equation (3.1) is computed for the following random

variable
Lin(~ω′) · fr · cos θ′

p(~ω′)
= Lin(~ω′) · a.

If Russian roulette is applied, then the estimate is divided by the continuation pro-

bability s, thus the new random variable is

Lin(~ω′) · a

s
.

Setting s to the albedo, only the incoming illumination remains in the formula, thus

all transported rays have the same weight. This seems reasonable according to im-

portance sampling. However, this is not exactly true. On the one hand, Russian

roulette also inserts 0 values in the quadrature when it decides not to compute the

integrand. Thus if the original integrand is large, this adds a lot of noise. On the other

hand, this approach uses just the local albedo and ignores both the albedo at other

points and the incoming illumination. Consider, for example, the following case: the

scene has a single, planar light source surface that has high albedo, while all other

surfaces are black. When the ray hits a light source during a gathering walk, the

walk is continued almost surely according to the local albedo. However, the expected

incoming illumination is zero since all other surfaces have 0 albedo, thus the optimal

continuation probability would be zero.

The special case of the Russian roulette is when the survival probability equals

to 1. This case is often called the infinite path length estimator. Assuring the termi-

nation of the algorithm, a particular depth is chosen which bounds the length of the

walk. However, this introduces some bias in the estimator. In [SA97] it was proven

that the best finite path length estimator was better than the biased infinite path

length one.

Optimal absorption probabilities have been examined also in [Sbe00] where a

condition for the existence of the variance was given. Another result of paper [Sbe00]

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 44

is that it examined the shooting type radiosity and optimal probabilities were found

for the case when the random walk proceeds according to the discrete Form Factor

probability transitions.

In this chapter we focus only on the gathering type random walk. As stated, the

survival (or not absorption) probability of the ray on a surface is usually set equal

to the albedo of the surface. Exceptions to this were given in [NNB+96] where the

received importance was used instead of the albedo, and in [SK99b] where the survival

probability is some kind of average of the albedo.

3.3 Variance analysis of the gathering random walk

This section focuses on giving an exact formula for the variance of the Russian roulette

random walk estimator. In the first step, the estimates of the integral representing a

single bounce are examined, and then the results are extended for multiple bounces.

3.3.1 Variance formulae for single bounce

Let us consider the case when the ray is followed until a single bounce:

L(1) =

∫

Ω

Linfr cos θ′dω′ =
∫

Ω

Linw1dω′, (3.5)

where w1 = fr cos θ′.
This integral is approximated usually by a Monte-Carlo expansion with Russian

roulette: ∫
Linw1dω′ = E

[
Lin w1

p1

]
= E

[
Lin w1

p1

Θ1

s1

]
, (3.6)

where Θ1 is a random variable which takes 1 value with probability s1 (we continue

the walk) and takes 0 with probability 1− s1 (we stop the walk).

Denote the random variable, which appears in (3.6) without Russian roulette by

α and with Russian roulette by α′, namely α = Lin w1

p1
, α′ = Lin w1

p1

Θ1

s1
.

The expected value of α′ is equal to the expected value of α:

E[α′] = E[α′|continue] · P (continue) + E[α′|stop] · P (stop)

=
1

s1

E[α] · s1 + 0 · (1− s1) = E[α]. (3.7)

The variance of α′ is:

D2[α′] = E[(α′ − E[α′])2] = E[α′2]− E2[α′] =

E[α′2|continue] · s1 + E[α′2|stop] · (1− s1)− E2[α] =

(
1

s1

− 1

)
E[α2] + D2[α].

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 45

This validates that the application of Russian roulette always increases the variance

of the estimator by (1/s1−1)E[α2]. If the survival probability s1 is equal to 1, i.e. we

always continue the walk, we get back the variance of the random variable without

the Russian roulette. If it is not equal to 1, then the variance always increases.

If we restrict ourselves for maximum 2 bounces, the formulae can be calculated

similarly:

L(2) =

∫

Ω

∫

Ω

Linw1w2dω′1dω′2. (3.8)

L(2) can be approximated by Monte-Carlo and by Russian roulette method:
∫

Ω

∫

Ω

Linw1w2dω′1dω′2 = E

[
Lin w1

p1

w2

p2

]
= E

[
Lin w1

p1

Θ1

s1

w2

p2

Θ2

s2

]
, (3.9)

where Θ2 is 1 if we continue the walk at step 2 and 0 otherwise. Denote the ran-

dom variable which appears in (3.9) without Russian roulette by α and with Russian

roulette by α′, namely α = Lin w1

p1

w2

p2
, and α′ = Lin w1

p1

Θ1

s1

w2

p2

Θ2

s2
. The equality of the

expected values of α and α′ comes directly from the recursive application of equa-

tion (3.7).

The variance of (3.9) can be expressed in the following way:

D2[α′] =

(
1

s1s2

− 1

)
E[α2] + D2[α].

Similarly for n bounces:

D2[α′] =

(
1

s1 · . . . · sn

− 1

)
E[α2] + D2[α].

It holds that if all survival probabilities si are equal to 1, which means that the walk

is always continued, we get back the variance of α which is the original estimator

without Russian roulette. If they are not equal to 1, the variance increases.

3.3.2 Variance formulae for multiple bounces

Assume that we make a lot of walks. The total number of steps — i.e. the rays to be

traced — denoted by N . In our first case, when we permit maximum two steps, N

breaks down to N1 and N2 where N1 is the number of the steps in the first bounce,

N2 in the second bounce. The running cost of the rendering algorithm is proportional

to the number of rays, i.e. N . If we are restricted to a given computation time, that

is, we can do only a limited number of steps, we want to find out the best value of

the Russian roulette probability s where the variance gets to its minimum. More

formally, if the walk is terminated after the first step by probability s, then:

N1 + N2 = N , N2 = N1s

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 46

Thus N1 and N2 are:

N1 =
N

1 + s
, N2 =

sN

1 + s
. (3.10)

In gathering type random walk algorithms, allowing maximum two bounces, the ra-

diance can be calculated by:

Lr =

∫
w1L

edω′1 +

∫ ∫
w1w2L

edω′1dω′2. (3.11)

In the first term we do not use Russian roulette, just in the second integral. Let us

denote w1/p1 by a. Calculating the variance of (3.11), we assume that the two parts

are independent random variables. It must be stated that it is just for the sake of

simplicity, and it is not definitely true for the random walk. It helps us to express the

variance of (3.11) by the variances of the parts. Thus the variance after performing

N overall steps can be written in the following way:

D2
s =

D2[α]

N1

+
a2((1

s
− 1)(E[α2] + D2[α])

N1

(3.12)

Here, we search for the appropriate s, for which D2
s (as a function of s) is minimal.

Substituting equation (3.10) into (3.12) we obtain:

D2
s =

(1 + s)D2[α]

N
+

(1 + s)a2(1
s
− 1)(E[α2] + D2[α])

N

The optimum of the formula is the point where the first order derivative vanishes:

dD2
s

ds
= 0 =⇒ s2 =

a2E[α2]

D2[α] + a2D2[α]− a2E[α2]
.

To generalize this, we first examine the 2-bounce case. The appropriate numbers

of steps N1, N2 and N3 are

N1 =
N

1 + s1 + s1s2

, N2 =
s1N

1 + s1 + s1s2

, N3 =
s1s2N

1 + s1 + s1s2

. (3.13)

For the sake of simplicity, all si probabilities and all ai albedos are assumed to be

same. Thus the variance can be written as:

N ·D2
s = s2(D2[α](1 + a2 + a4)− E[α2](a2 + a4))

+ s(D2[α](1 + a2 + a4)− E[α2](a4))

+ D2[α](1 + a2 + a4)

+
1

s
(E[α2](a2 + a4))

+
1

s2
E[α2](a4). (3.14)

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 47

This formula can be generalized for arbitrary natural number n. We calculate the
reflected radiance of a patch until n bounces. Thus we use the biased form of the
rendering equation. As in equation (3.11) the reflected radiance is calculated by:

Lr =
∫

w1L
e +

∫ ∫
w1w2L

e + . . . +
∫

. . .

∫
w1 . . . wnLe (3.15)

Calculating this by Russian roulette and expressing the appropriate N1 term similarly
as in equation (3.13), the variance of the formula can be obtained as a generalization
of (3.14). After performing simplifications in notation, we get:

N ·D2
s = D2[α]

1− a2n

1− a2
+

n−1∑

i=1

si

(
1− a2n

1− a2
D2[α]− a2(n−i) − a2n

1− a2
E[α2]

)

+
n−1∑

i=1

1
sn−i

a2(n−i) − a2n

1− a2
E[α2]. (3.16)

Formula (3.16) breaks down into three parts: a constant, a hyperbolic (determined

by 1/si) and a parabolic part (determined by sn−i). Considering this decomposition,

two cases can be separated. In the first case the coefficients of the si are positive. In

this case the hyperbolic curve is accelerated and the sum of the constant, hyperbolic

and parabolic parts may have a valley shape. On the other hand, when the coefficients

of si are negative (i.e. decreasing), the hyperbolic shape is warped to decrease faster.

Figure 3.1: Behavior of the variance functions for the positive coefficients case

To show this, we plot these functions for the n = 2, 3, 4, 5, 6. In the first case when

we want to achieve positive coefficients, we have chosen E[α2] = 0.29, D2[α] = 0.137,

a = 0.15π ≈ 0.471, N = 1500000/(181 · 181), which are approximately the values

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 48

with which the measurements took place (see section 3.4). The plots of the functions

can be seen in figure 3.1.

On the other hand, as the coefficients of si go to negative, the functions undergo

a dramatic change. To pose this, we have chosen E[α2] = 0.29, D2[α] = 0.02,

a = 0.15π ≈ 0.471, N = 1500000/(181 · 181). Note that compared to the previous

case we have not changed anything but the value of the variance. The graphs of the

variances for n = 2, 3, 4, 5, 6 are shown in figure 3.2.

Figure 3.2: Behavior of the variance functions for the negative coefficients case

Supposing that the number of steps is limited to N , we want to find the optimal

solution of the survival probability of the gathering random walk. The optimal value

s can be determined by finding where the variance of the Russian roulette estimation

is minimal. We have a constraint for choosing s, since it must fall into the interval

[0, 1].

Looking at equation (3.16) and at the figures 3.1 and 3.2, we find that if the

coefficients are negative, then the best value of s equals to 1. If they are all positive,

the optimal s is somewhere below 1. Let us consider for example the coefficient of

the n− 1 order term:

D2[α]
1− a2n

1− a2
− E[α2]

a2 − a2n

1− a2
. (3.17)

Equation (3.17) could be negative if the variance of the original estimator is less

than a specific value (which comes true in the case of a flat, homogeneous scene).

If the coefficients of the polinom are negative, the optimal survival probability is 1.

Considering the first order coefficient (i = 1)

D2[α]
1− a2n

1− a2
− E[α2](a2(n−1)),

we can note that if this value is negative, all higher order coefficients get negative

values, resulting the optimal s to be 1. This comes from the monotone increasing

property of (a2(n−i) − a2n)/(1− a2) as a function of i (a ≤ 1).

3.3. VARIANCE ANALYSIS OF THE GATHERING RANDOM WALK 49

Note that expression (3.17) can also be made negative by increasing the albedo a

to a specific level.

In contrast to the previous case, the coefficients can be positive, which induces

that the optimal value for the survival probability s could be less than 1. Looking

at equation (3.16) and especially at (3.17), we can state that if expression (3.17) is

positive, which means that

D2[α] > E[α2]
a2 − a2n

1− a2n
,

then all positive order coefficients in formula (3.16) are positive. If the integrand of

the rendering equation is very heterogeneous, the variance is large enough to fulfill

this requirement.

If we consider the positivity of the coefficients, another property of equation (3.16)

can be found. As the albedo increases, the location of the minimum point of the

variance increases. This justifies the correctness of the widely used algorithms which

choose the survival probability equal to the local albedo.

The relationship of the albedo and the optimal survival probability is also an

important question. To see their correspondence, the

dD2
s,a

ds
= 0

implicit functions (for n = 2, 3, 4, 5, 6, 7) were plotted for various D2[α] and E[α2]. In

figure 3.3 D2[α] was chosen to be 0.2 and E[α2] to be 0.29. In this high variance case

the optimal survival probability was found to be equal to the albedo. As n increases,

the curve gets closer to a linear function.

Figure 3.3: The optimal survival probability s for the case of D2[α] = 0.2 and E[α2] =
0.29

3.4. RESULTS 50

However, as the variance decreases, the optimal probability will be greater than

the albedo, and will be 1 for higher albedo values, as can be seen in figure 3.4 (e.g. if

a > 0.4, then the optimal s is 1), where D2[α] is 0.02 and E[α2] is 0.29.

The conclusion of examining figures 3.3 and 3.4 is that the optimal survival pro-

bability is greater or equal to the albedo. The smaller the variance, the greater the

optimal value of s.

Figure 3.4: The optimal survival probability s for the case of D2[α] = 0.02 and
E[α2] = 0.29. If a > 0.4, then the optimal s is 1

A particular case is when a = 0 for the whole scene, which means that we are

about to render a black room, for which equation (3.16) gets the following form:

N ·D2
s =

n−1∑
i=0

siD2[α]

Since s must be in interval [0, 1], thus the minimum of this formula is at s = 0. It

means that in a completely black room the best survival probability of the walk is

zero, as we expected.

3.4 Results

We have made some experiments to demonstrate the theoretical results with a Monte-

Carlo global illumination renderer proposed in [SK99a]. The survival probability of

the random walk was set to 0.1, 0.2, ..., 0.9. For each of these values, rendering was

performed with 1 500 000 rays, and the variance was calculated.

First we measured the variance in a scene with constant radiance. The internal

sphere surface was chosen as it was proposed in [HMF98], since for this scenes ana-

lytical solutions are available that can be used as a reference. Then a not constant

3.4. RESULTS 51

radiance function was taken, where the albedo was chosen constant, and the measure-

ment was performed with two different values of the albedo. Finally, a usual scene

with no special constraints was examined. To obtain a reference for variance analysis,

the reference image was rendered with 150 000 000 rays.

3.4.1 Constant scene

The internal surface of a sphere is used as a test scene. Three images are presented

here as can be seen in figure 3.5.

Figure 3.5: Internal surface of a sphere, the images were taken by setting the survival
probability to 0.1, 0.2, 0.9 respectively

Figure 3.6: The measured variance of the rendering in an internal sphere surface scene

The albedo is chosen to 0.1π ≈ 0.314. The total internal sphere surface is a light

source. It is known that this rendering should result in a constant image [HMF98].

This is a flat integrand, so the variance is small. Because of this flatness of the

integrand, we expect to find that the optimal survival probability of this scene is 1

3.4. RESULTS 52

(as shown by figure 3.2). The empirical variance of the estimation after 1 500 000

steps can be seen in figure 3.6.

3.4.2 Constant albedo

To demonstrate empirically that increasing the albedo, the optimal survival proba-

bility goes to 1, we created a heterogeneous scene. An area light source with high

emittance value was placed in a sphere, which was chosen as a bounding geometry.

The closed space was necessary to forbid rays to escape to outer space, thus assuring

that the termination of the walk can be caused only by the Russian roulette. We

have placed 3 spheres in the scene, that are different in size and emittance power. At

first we set all albedos to 0.1π ≈ 0.314, then to 0.15π ≈ 0.471. Looking at figures

3.7, we can notice the shift of the curve to the right, indicating the optimal s getting

closer to 1. This meets exactly our expectations that the optimal survival probability

is proportional to the average albedo.

Figure 3.7: The measured variance of the rendering by choosing the albedo to 0.1π ≈
0.314 and 0.15π ≈ 0.471 respectively

3.4.3 General scene

This scene has neither homogeneous illumination, nor constant BRDF. The results

of rendering with 1 500 000 rays have been compared to a reference image computed

with 9 · 108 number of rays. The minimum of the variance curve is about at s = 0.5.

Looking at figure 3.8, it can be noticed that the second (s = 0.5) image approximates

the end result better than the first (s = 0.1) or third (s = 0.9) images.

3.4. RESULTS 53

Figure 3.8: Rendered images by setting the survival probability to 0.1 (top left), 0.5
(top right), 0.9 (bottom left) and the reference image (bottom right)

3.5. SUMMARY 54

3.5 Summary

In this chapter it was theoretically and empirically shown that the survival probability

of the Russian roulette random walk algorithms should be selected carefully. In

addition to the local albedo, which is used in the majority of random walk algorithms,

we must also consider the variance (as a measure of flatness) of the scene radiance.

The flatter the scene radiance, the most probably the optimal s is close to 1, and

the optimal survival probability increases with the average albedo. This means that

in homogeneous environments it is not suggested to use Russian roulette, or if it is

applied, the survival probability should be set to a value that is greater than the

albedo.

Chapter 4

Stochastic iteration algorithms

The concept of stochastic iteration has been proposed and applied for the diffuse

radiosity problem in [Neu95, NFKP94, NPT+95, SKFNC97], that is for the solution

of finite-dimensional linear equations. In this chapter we generalize the fundamental

concepts to solve integral equations [SK98, SK99b], then the generalized method

will be used for attacking non-diffuse global illumination problems. The extended

stochastic iteration presented in section 4.4 is the own work of the author and concerns

to thesis 2 (see chapter 8).

4.1 Introduction

Suppose that we have a random linear transport operator T ∗ so that

E[T ∗L] = T L, (4.1)

that is, this random transport operator gives back the effect of the real light trans-

port operator in the average case. During stochastic iteration a random sequence of

operators T ∗
1 , T ∗

2 , . . . , T ∗
i , . . . is generated, which are instantiations of T ∗, and this

sequence is used in the iteration:

L(m) = Le + T ∗
mL(m− 1). (4.2)

In order to apply stochastic iteration in practice, the key problem is the definition

of the random transport operator. This operator should meet the requirement of

equation (4.1) and should be easy to compute. For the continuous case, a single

application of the transport operator contains a directional integral. For the finite-

element case, the transport operator also includes the projection to the adjoint base

which requires additional integration in the domain of basis functions.

When moving towards the non-diffuse case, another requirement must be imposed

upon the random transport operator. It must not only meet the requirement of equa-

tion (4.1) and be easy to compute, but it must also allow the compact representation

55

4.2. SINGLE RAY BASED ITERATION 56

of the T ∗
i L functions. This extra requirement is evident if we take into account that

unlike in the diffuse case, the domain of L is a 4-dimensional continuous space, so is

the domain of T ∗
i L. From the point of view of compactness, we have to avoid the

representation of these functions over the complete domain.

Thus those transport operators are preferred, which require the value of L just in

a few “domain points” (e.g. in a single “domain point”). As we shall see, this means

that we need just one variable per patch even for the non-diffuse case.

4.2 Single ray based iteration

In this section we present a random transport operator that uses a single ray having

random origin ~yi and direction ~ωi generated with a probability that is proportional to

the cosine weighted radiance of this point at the given direction. This ray transports

the whole power of the scene

Φ =

∫

S

∫

Ω

L(~y, ~ω′) cos θ~y dω′ dy

to that point ~x which is hit by the ray. Formally, the random transport operator is

(T ∗L)(~x, ~ω) = Φ · δ(~x− rc(~y, ~ωi)) · fr(~ωi, ~x, ~ω), (4.3)

where rc is the ray-casting operator and δ is the Dirac-delta function.

dx

dy
y

x

y

x

ω

θ

θ

d

ωd y

x

Figure 4.1: Symmetry of solid angles of shooting and gathering

We prove that this random operator complies with equation (4.1). The probability

density of selecting surface point ~y and direction ~ω′ is

d Pr{~y, ~ω′}
dy dω~y

=
L(~y, ~ω′) · cos θ~y

Φ
. (4.4)

4.2. SINGLE RAY BASED ITERATION 57

Since the definition of the solid angle is

dω~y =
dx · cos θ′~x
|~y − ~x|2 ,

we can write a symmetry relation (figure 4.1) for the shooting and gathering solid

angles:

dy · dω~y · cos θ~y = dy · dx · cos θ′~x
|~y − ~x|2 · cos θ~y =

dx · dy · cos θ~y

|~y − ~x|2 · cos θ′~x = dx · dω′~x · cos θ′~x. (4.5)

Thus the probability of selecting ~y, ~ω′ can also be expressed by:

d Pr{~y, ~ω′} =
L(~y, ~ω′) · cos θ~y

Φ
· dy dω~y =

L(rc(~x,−~ω′), ~ω′) · cos θ~x

Φ
· dx dω′~x.

After that it is easy to prove that the random transport operator meets the re-

quirement of equation (4.1) since

E[(T ∗L)(~x, ~ω)] =

∫

S

∫

Ω

Φ · δ(~x− rc(~y, ~ω′)) · fr(~ω
′, ~x, ~ω) d Pr{~y, ~ω′} =

∫

Ω

L(rc(~x,−~ω′), ~ω′) · cos θ′~x · fr(~ω
′, ~x, ~ω) dω′~x = (T L)(~x, ~ω).

There can be two possible outcome when applying the random operator. On the one

hand the result can be a single point that receives all the power and reflects some

part of it back to the scene. On the other hand it is possible that the ray casting

operator find no point at all in which case the ray leaves the scene.

Suppose that the first random operator T ∗
1 is applied to Le which may transfer

all power

Φ1 =

∫

S

∫

Ω

Le(~y1, ~ω1) cos θ~y1 dω1 dy1,

to a single point ~x1 = rc(~y1, ~ω1) using probability density

dPr1{~y1, ~ω1}
dy1dω1

=
Le(~y1, ~ω1) · cos θ~y1

Φ
.

Before continuing with the second step of the iteration, the radiance should be

measured, that is, an image estimate should be computed from Le + T ∗
1 Le. We can

separately calculate the effect of the light sources on the image and then add the

effect of T ∗
1 Le. Note that T ∗

1 Le is concentrated in a single point, thus its contribution

can be computed by tracing a ray from the eye to this point, and if this point is not

occluded, then evaluating the fr(~ω1, ~x, ~ωeye) · Φ expression.

4.2. SINGLE RAY BASED ITERATION 58

The second operator T ∗
2 should be applied to

L1 = Le + T ∗
1 Le,

thus both the total power Φ and the probability density have been modified:

Φ2 =

∫

S

∫

Ω

L1(~y2, ~ω2) cos θ~y2 dω2 dy2 = Φ1 · (1 + a~x1(~ω1))

where a~x1 is the albedo at point ~x1 defined by

a~x(~ω) =

∫

Ω

fr(~ω, ~x, ~ω′) cos θ′~x dω′,

and the new probability density is

dPr2{~y2, ~ω2}
dy2dω2

=
L1(~y2, ~ω2) · cos θ~y2

Φ
=

Le(~y2, ~ω2) · cos θ~y2 + fr(~ω1, ~y2, ~ω2) · cos θ~y2 · δ(~y2 − ~x1)

Φ1(1 + a~x1(~ω1))
.

Sampling according to this mixed, discrete-continuous probability density can be

realized in the following way. First it is decided randomly whether we sample Le or

the newly generated point using probabilities 1/(1+a~x1(~ω1)) and a~x1(~ω1)/(1+a~x1(~ω1)),

respectively. If Le is selected, then the sampling process is the same as before, i.e. a

random point and a random direction are found with probability density

Le(~y2, ~ω2) cos θ~y2

Φ1

.

However, if the new point is chosen, then the direction ~ω2 of the next transfer is

found with probability density

fr(~ω1, ~y2, ~ω2) cos θ~y2

a~x1(~ω1)
.

In either case, a ray defined by the selected point and direction is traced, and the

complete power Φ2 = Φ1 · (1 + a~x1(~ω
′
1)) is transferred to that point which is hit by

the ray. The subsequent steps of the iteration are similar.

This iteration can be also considered as a sequence of variable length random

walks, since at each step the point that is last hit by the ray is only selected with

a given probability as the starting point of the next ray. The algorithm initiates a

random walk by selecting a point from a light source. After each step the walk can be

finished with probability 1/(1+a~xi
(~ωi)) and also when the ray hits no object. In case

of finishing, another walk is started from the light source. In case of continuation, the

transferred power is weighted by (1 + a~xi
(~ωi)). This is exactly the so called Russian

roulette [AK90, SP94b] technique.

4.3. PARALLEL RAY-BUNDLE ITERATION 59

4.3 Parallel ray-bundle iteration

In this section a specific algorithm is discussed that transfers the radiance of all

patches to a randomly selected global direction in each iteration cycle. If the algorithm

transfers the radiance into a randomly selected direction ~ω′, the random transport

operator is

Lr(~x, ~ω) = T ∗L = 4π · L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′.

Indeed, if the direction is sampled uniformly, then its probability density is 1/4π,

thus the expectation of the random transport operator gives back the effect of the

light transport operator T L, as required by equation (4.1):

E[T ∗L] =

∫

Ω′

4π · L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′ · dω′

4π
= T L.

x A

L

 A

transillumination
plane

transillumination
direction

δP

i

i

pixelP

in

’

p

ω

Figure 4.2: Integration on the transillumination plane

From the reflected radiance the average radiance of a patch can be obtained by a

simple averaging operation:

L̃(m)|i =
1

Ai

·
∫

Ai

T L(m− 1) dx.

The direction ~ω′ defines the flow of the radiance, thus it is also called the transil-

lumination direction (figure 4.2). Let us place a plane that is perpendicular to this

direction and define a window on it, which can include the projections of all objects.

The window is decomposed into pixels. The window is also called the transillumi-

nation window and its plane is the transillumination plane. Note that integral of

the average radiance can also be evaluated on the window, when the cosine factor is

compensated:

L̃(m)|i =
1

Ai

·
∫

Ai

T ∗L(m− 1) dx ≈ 4π · δP
Ai

·
∑

P

Lin(P) · fr(~ω
′, P, ~ω),

4.3. PARALLEL RAY-BUNDLE ITERATION 60

where P runs on the pixels covering the projection of patch i, Lin(P) is the radiance

of the surface point visible in pixel P , fr(~ω
′, P, ~ω) is the BRDF of that point which

receives this radiance coming through pixel P and δP is the area of the pixels.

In order to avoid the complete representation of the radiance function during

iteration, we store the irradiance

I(m)|i =
4π · δP

Ai

·
∑

P

Lin(P)

on each patch. Note that this is independent of the direction ~ω in the next iteration.

Thus when carrying out the next step and ~ω is known, the irradiance is multiplied by

fr(~ω
′, P, ~ω) to obtain the patch radiance L̃(m)|i from I(m)|i. In this way, it is enough

to store just one variable in each patch to hold the irradiance.

It is straightforward to extend the method to be bi-directional, which transfers

the radiance not only into direction ~ω′ but also to −~ω′. Note that this does not even

require additional visibility computation. If the global directions are sampled from

a uniform distribution and the radiance is transferred into two opposite directions,

then the directional density is:

p(~ω′) =
1

2π
.

Thus the random transport operator changes to

Lr(~x, ~ω) = T ∗L = 2π · L(rc(~x,−~ω′), ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′.

Let us suppose that the initial finite-element structure is a family of triangles obtained

from a tessellation process and a single radiance value is used for all directions.

4.3.1 Computation of the radiance transfer in a single direc-
tion

The radiance transfer needs the identification of those points that are mutually visible

in the global direction. In order to solve this global visibility problem, three methods

are presented.

1. Radiance transfer with the painter’s algorithm

If the patches are sorted in the transillumination direction and processed in this order,

the computation of the radiance transfer requires the determination of the pixel values

inside the projection of patch i. Then, to proceed with the next patch in the given

order, the pixels covered by patch i are filled with i if patch i is not front facing and 0

otherwise. The two steps can be done simultaneously by a modified scan-conversion

algorithm that reads the value of the image buffer before modifying it.

This is summarized in the following algorithm [SKF97]:

4.3. PARALLEL RAY-BUNDLE ITERATION 61

visibility map 1

1

2

3

4

visibility map 2visibility map 3visibility map 4

4

0

0

transillumination direction

4
4
4
4

4

0

0

4
4
4
4

3
3
3
3
3
3
3
3
3
3
0

00

2

0

2

4
4
4
4

2
2
2
2
3
3
3
3
3
3
0

0

2

0

2

4
4
4
4

2
2
1
1
1
1
1
1
3
3
0

0

Figure 4.3: Application of painter’s algorithm

Sort patches in direction ~ω′ (painter’s algorithm)
Clear image
for each patch i in the sorted order {

if (patch i is front facing)
for each pixel of patch i {

j = Read pixel
Transfer radiance between patches i and j
Write 0 to the pixel

}
else

Render patch i with color i
}

Sorting a data set is known to have (n log n) time complexity (quick sort is used),

so does the painter’s algorithm in the average case. A single cycle of the second for

loop contains only instructions that work with a single patch and an “image”, thus

the time required for a single cycle is independent of the number of patches. Since

the for loop executed n number of times, the time complexity of the for loop is (n).

Consequently the algorithm requires (n log n) time.

However, using the painter’s algorithm can result difficulties. The most straight-

forward is that sometimes it is not possible to unambiguously decide which patch lays

before the other in the sorting order. The classical examples are when patch A hides

partially patch B and patch B hides partially patch A. But there are cases when there

can be difficulties due to limited floating point precision also. Usually the quick sort

algorithm sort patches according to the coordinates of the center of the patch (or the

4.3. PARALLEL RAY-BUNDLE ITERATION 62

minimum coordinate of the patch in the transillumination direction, or whatever).

This can result in an error in the final image. Imagine an architectural model with a

very thin wall (see figure 4.4), where one side of the wall (surface A) is illuminated

by a bright light source and the other side of the wall (surface B) stays in shadow.

Their normal vectors are opposite to each other.

patch A

patch B

transDir

surface B

surface A i

j

Figure 4.4: The problem with the painter’s algorithm in parallel ray-bundle iteration

The two sides of the wall are so close together that it is possible that the quick sort

algorithm arranges them in a wrong order (since it considers only the minimum Z, the

maximum Z or the Z of the center for the patch). If it happens that patch Ai is the

first in the order, then it radiates light energy to patch Bj (since the normal vector of

patch Ai and patch Bj are opposite). This is of course an error, and this extra light

can increase the total light power in the scene. Since it is an iteration algorithm, if

this extra light cannot be compensated by the absorption of the materials, the scene

has more and more flux in each iteration, the scene is overlit and finally this algorithm

fails to render the correct image.

Radiance transfer with a software z-buffer algorithm

global direction
window

1

2

3
3

1

1

2

2

2

3

3

3

transillumination buffer

Figure 4.5: Organization of the transillumination buffer with software z-buffer

4.3. PARALLEL RAY-BUNDLE ITERATION 63

The second method is an extension of the z-buffer algorithm. The main difference

is that now a pixel is capable to store a list of patch indices and z-values. The lists are

sorted according to the z-values. The patches are rendered one after the other into

the buffer using a modified z-buffer algorithm which keeps all visible points not just

the nearest one. Traversing the generated lists the pairs of mutually visible points

can be obtained. For each pair of points, the radiance transfer is computed and the

transferred radiance is multiplied by the BRDF, resulting in the reflected radiance Lr.

Radiance transfer with the hardware z-buffer

The drawback of the previous algorithm is that it cannot exploit the hardware z-buffer

that can store only a single value per pixel, because the algorithm requires all patches

that are projected onto this pixel. Fortunately, this requirement can be eliminated,

thus the algorithm can be executed on the hardware, if the visibility algorithm is

further randomized in the following way.

global direction

window

1

2

3

1

2

2

3

3

3

left image right image

Figure 4.6: Transferring the radiance through a single plane with hardware z-buffer

Let us find randomly a point on the line of the transillumination direction and

place the transillumination window at this point. The scene is rendered from the

two sides of the window supposing that the color of patch i is i. Having read the

two images from the frame buffer, the patches that see each other from the opposite

sides of the window can be identified, and the radiance can be transferred. Of course,

this method finds two points that see each other in the transillumination direction

only with some probability. This probability is proportional to the distance between

the two points. If the distance of the front and back clipping planes is R, then

the probability is |~x − ~y|/R. When the scene is rendered, the z coordinates are

transformed in a way that they fit in the [0,1] range for the whole scene. It means

that this probability equals to the sum of the z values of the two visible points, as

read out from the z-buffer. In order to compensate those cases when the two points

4.3. PARALLEL RAY-BUNDLE ITERATION 64

are not on the opposite sides of the transillumination window, when the radiance is

transferred, it is divided by the selection probability, i.e. by the normalized distance

of the two points. Formally, the random transport operator is:

T ∗
2 L = 2π · L(~y, ω′) · fr(ω

′, ~x, ω) · cos θ′~x · ξ(~x, ~y) · R

|~x− ~y| ,

where ξ(~x, ~y) is the indicator function, which is 1 if and only if the transillumination

plane is between ~x and ~y.

When a single plane is set for each direction, this method introduces too much

additional noise. The noise can be reduced if not only a single plane, but a few (for

example 4) of them are used.

Incoming first-shot

The proposed method selects bundles of parallel lines to transfer the radiance blindly

without considering where the important sources are. On the one hand, this is good,

since very many rays can be traced simultaneously in a single step (note that if

the resolution of the transillumination buffer is 1000 × 1000, then a single transfer

corresponds to tracing a million bi-directional global lines where all intersections are

used, i.e. at least to 2 million rays). On the other hand, this becomes ineffective if

the initial radiance is very heterogeneous due to the small bright light sources. These

small light sources need special treatment that is generally called as the first-shot or

direct light source computation.

First-shot can be formulated as decomposing the radiance into emission Le and

reflection Lr and deriving an appropriate form of the rendering equation for the

reflection term. Substituting the L = Le + Lr decomposition into the rendering

equation, we can obtain the following formulae:

Le + Lr = Le + T (Le + Lr) =⇒ Lr = (T Le) + T Lr = Ld + T Lr.

This equation is similar to the original rendering equation. The only difference is that

the original emission function Le is replaced by its single reflection Ld = T Le.

In order to compute and store the first reflection of the emission function, point

samples are defined on the small light sources and hemicubes are placed above these

point samples [SKSMT00]. Running z-buffer/constant shading visibility algorithms

for the sides of the hemicubes, the visible triangles and their visible portions can be

identified. When the radiances of the points of a triangle are computed, first it is

determined whether or not the triangle is seen through some hemicube face from the

light source. Then those light vectors [ZBP99] are calculated on each patch, which

can represent the illumination coming from the light sources. Note that unlike in

other first-shot algorithms developed for diffuse radiosity, here the incoming radiance

is stored, from which the outgoing radiance can be obtained by multiplying it with

the BRDF taking into account the incoming and outgoing directions.

4.4. EXTENDED STOCHASTIC ITERATION WITH PARALLEL RAY-BUNDLES 65

Note that the area lightsources is decomposed into a finite number of point light-

sources. However, due to the fact that the first-shot of l point lightsources requires l

additional variables per patch, this approach becomes very memory demanding.

4.4 Extended stochastic iteration with parallel ray-

bundles

The stochastic iteration method proposed so far computes a single color value for

each patch. In the final rendering these colors are smoothed according to Gouraud

shading. However, Gouraud shading is not very nice if the surfaces are specular,

thus it is worth replacing this operation by Phong shading. On the other hand,

Phong shading is much more time consuming, thus we apply Phong shading only

for the direct reflection components, the indirect reflection is still visualized with

Gouraud shading. The other possibility of improvement is to apply the concept of

the separation of the main part introduced in the theory of Monte-Carlo methods. It

means that a rough approximation is also represented in object space. This speeds

up the convergence and can be very useful when animations are rendered.

Let us decompose the radiance function L to emission Le and to reflected compo-

nent Lr:

L = Le + Lr.

The reflected component is further subdivided into direct reflection Ld for which

efficient and hardware supported algorithms are available, and to an indirect reflection

Lid, which consists of its main part L̃id (called the finite-element component), and an

indirect residuum ∆Lid(~ω) (called the Monte-Carlo component) that is estimated by

Monte-Carlo simulation:

Lr = Ld + Lid = Ld + L̃id + ∆Lid. (4.6)

In order to keep the storage requirements low, the finite-element part will be

constant on each patch and will represent the average radiance. The directional

average is obtained as:

L̃id =
1

π
·
∫

Ω

Lid(~ω) · cos θ dω.

If the patch receives illumination just from direction ~ω′ and the irradiance is I(~ω′)
— this will be the usual case in the proposed algorithm — then the average radiance

can be obtained from the albedo a(~x, ~ω′):

L̃id = I(~ω′) · 1

π
·
∫

Ω

fr(~ω
′, ~x, ~ω) · cos θ dω = I(~ω′) · a(~x, ~ω′)

π
.

4.4. EXTENDED STOCHASTIC ITERATION WITH PARALLEL RAY-BUNDLES 66

The albedo can be computed in the preprocessing phase for each possible material

and stored in tables or can be estimated on the fly.

Let us substitute this decomposition into the stochastic iteration formula (equa-

tion (4.2)). Subtracting Le from both sides and using Ld = T Le, we can obtain:

Lr(m) = Ld + Lid(m) = Ld + T ∗(Ld + L̃id(m− 1) + ∆Lid(m− 1)).

To obtain the radiance value of patch i, the radiances of its points are averaged:

Lid(m)|i =
1

Ai

·
∫

Ai

T ∗Lr(m− 1) dx. (4.7)

Figure 4.7: Dataflow in the new algorithm

In each iteration step the radiance average is obtained, and an image estimate is

computed from the actual radiance. Note that the image estimates and the finite-

element components obtained in an iteration step — as stochastic iteration in general

— will not converge, but they will fluctuate around the real solution. Thus the

final image is obtained as the average of these image estimates, and the finite-element

component as the average of the finite-element components of different iteration steps.

If the finite-element projection of the indirect reflection at step m is L̃′(m), then the

finite-element part may be derived as follows:

L̃id(m) =
1

m
·

m∑
n=1

L̃′(n) =
1

m
· L̃′(m) +

(
1− 1

m

)
· L̃id(m− 1). (4.8)

The Monte-Carlo component, which is obtained as a difference between the ac-

tual radiance estimate and its finite-element projection, is used to correct the finite-

element approximation.

4.5. RESULTS 67

The complete algorithm is:

StohasticIterationExtended
L̃id(0) = 0, ∆Lid(0) = 0
Ld = T Le

for (m = 1; m ≤ M ; m++) {
Lid(m) = T ∗(Ld + L̃id(m− 1) + ∆Lid(m− 1))
L̃′(m) = average of Lid(m)
∆Lid(m) = Lid − L̃′(m)
L̃id(m) = 1/m · L̃′(m) + (1− 1/m) · L̃id(m− 1)
C ′(m) = M(L̃id(m) + ∆Lid(m))
Cid(m) = 1/m · C ′(m) + (1− 1/m) · Cid(m− 1)

}
C(M) = M(Le + Ld) + Cid(M)
Display C(M) colors

}

The dataflow of the algorithm is shown in figure 4.7. Note that the new reflected

radiance L̃id(m) + ∆Lid(m) is computed from the radiance generated by the random

transport operator as first subtracting its finite-element projection then adding the

average of these finite-element projections. At the beginning of the execution of the

algorithm, this replaces the high-variance main part by its estimated average, which

is responsible for good initial convergence. Later, when the algorithm converges,

the expected finite-element component gets close to its average, thus subtraction and

addition compensate each other and the finite-element approximation does not distort

the final result. We could have the speed of the iteration together with the asymptotic

accuracy of random walks.

This is a generic algorithm from which different specific versions can be built by

inserting the random transport operator. The algorithm will be fast if the application

of the random transport operator T ∗L results in a low variance random variable.

Note that this depends not only on the random transport operator but also on the

current radiance function. With other words, for a different actual radiance function,

a different transport operator can be the winner of this game.

4.5 Results

We have implemented the proposed method. The rendered architectural scenes are

presented in figure 4.9. The images have been rendered with 500×500 resolution. The

transillumination buffer contained 1000×1000 pixels. The running times given in the

following sections are measured on a laptop with 500 MHz PentiumrIII processor

and with no graphics accelerator.

Figure 4.8 shows a scene of a 3D Sierpinsky set, that has 4479 patches. The diffuse

albedo of the patches in this set is (0.09, 0.03, 0.06) on the wavelengths 400 nm, 552

4.5. RESULTS 68

L global illumination solution L̃r finite-element component Ldirect direct illumination

Figure 4.8: Sierpinsky set rendered with the extended ray bundle algorithm

nm and on 700 nm, respectively. The specular albedo is wavelength independent and

is between 0.8 and 0.4 depending on the viewing angle. The “shine” parameter of

the max-Phong reflection model is 3. The walls are diffuse. The area light source is

sampled at 18 discrete points. The image was rendered with the proposed method in

6 minutes. In addition to the rendered scene, the finite-element reflected component

L̃r visualized by Gouraud shading and the direct illumination Ldirect are also shown.

Note that these two components really represent the major part of the radiance. On

the other hand, the incorrect shadow smearing of the finite-element component in the

ceiling is completely removed by the Monte-Carlo component in the final image.

Figure 4.9: House modelled in ArchiCAD. The images are rendered with parallel
ray-bundles.

4.6. SUMMARY 69

Figure 4.9 contains snap-shots of a virtual house. The walls have 0.22 diffuse

and 0.36 specular albedo, the shine parameter is 3. The frame of the doors and the

windows have 0.4 diffuse albedo and 0.58 specular albedo with a shine parameter of

35. The model consists of 31.000 polygons that are tessellated to 241.000 patches. A

single iteration requires about 1.5 second.

4.6 Summary

In this chapter we have described two stochastic iteration algorithms: the single ray

shooting and the parallel ray-bundle iteration. After the mathematical background

we presented three approaches for implementing parallel ray-bundle iteration. The

most straightforward is based on the painter’s algorithm. More advanced methods are

based on software z-buffer and the hardware z-buffer. Then the parallel ray-bundle

iteration was extended. The basic idea is to decompose the radiance function to a

finite-element component that is only a rough estimate and to a difference component

that is obtained by Monte-Carlo techniques. The classical iteration using finite-

elements and random walks are handled uniformly in the framework of stochastic

iteration. This uniform treatment allows the finite-element component to be built up

adaptively aiming at minimizing the Monte-Carlo component.

Chapter 5

Stochastic iteration with
perspective ray-bundles

The hemicube is a classical tool to transfer the light power in diffuse radiosity algo-

rithms. The main advantage of the hemicube based light transfer is that the visible

patches can easily be identified by the graphics hardware. This chapter extends the

hemicube approach to solve the non-diffuse global illumination problem. In order

to get rid of the quadratic complexity of classical radiosity algorithms and to allow

using specular surfaces without storing directional finite-elements, the original radi-

osity iteration is replaced by stochastic iteration. Random selection, however, may

introduce noise that is particularly significant where the source and receiver patches

are close. We also propose a solution strategy to eliminate these artifacts. The chap-

ter also discusses further improvements by applying constant radiance step and by

the randomization of the hemicube. The perspective ray-bundles with all of its im-

provements is the own work of the author and summarized in thesis 3 (see chapter

8).

5.1 The new algorithm

Parallel ray-bundles (see section 4.3) transferred the radiance of all points in a single

random direction. An orthogonal approach would select a single random point and

transfer its radiance into all possible direction. This approach is called perspective

ray-bundle algorithm.

Suppose that patch j is selected with probability pj and point ~y on this patch

with uniform 1/Aj probability density. According to importance sampling, it is worth

setting the selection probability pi proportional to the powers of the patches.

Let us define the random transport operator as transferring the radiance L(~y, ~ω′~y→~x)

of this point, divided by its selection probability pj/Aj, to all other visible points ~x.

When the radiance arrives at point ~x, it is reflected according to the BRDF of the ma-

terial here, and thus results in a new radiance value. Formally, the random transport

70

5.1. THE NEW ALGORITHM 71

operator is

(T ∗L)(~x, ω) =
Aj

pj

· V (~x, ~y) · L(~y, ω′~y→~x) · fr(ω
′
~y→~x, ~x, ω) · cos θ′~x · cos θ~y

|~x− ~y|2 , (5.1)

where V (~x, ~y) is the mutual visibility indicator, which is 1 if the two points are visible

from each other.

In order to show that this random transport operator is appropriate, we have to

prove that the expected value of its effect gives back the application of the original

light transport operator. The expected value of the random radiance after the transfer

is:

E[T ∗L] =
∑

j

pj ·
∫

Aj

(T ∗L)(~x, ω)
dy

Aj

=

∑

j

∫

Aj

V (~x, ~y) · L(~y, ω′~y→~x) · fr(ω′~y→~x, ~x, ω) · cos θ′~x · cos θ~y

|~x− ~y|2 dy.

Using the formula of solid angles dy · cos θ~y/|~x− ~y|2 = dω~x and assuming that illumi-

nation can only come from surfaces — i.e. there is no external sky light illumination

— the integration over all surfaces can be replaced by an integration over all incoming

solid angles:

E[T ∗L] =

∫

Ω′

L(rc(~x,−ω′), ω′) · fr(ω
′, ~x, ω) · cos θ′~x dω′~x.

Thus we could prove that the expectation of the application of the random operator

really gives back the effect of the real transport operator, thus the requirement of

equation (4.1) is met.

To obtain the radiance on the receiver patch, the radiances of its points, which

have been computed according to equation (5.1), are averaged:

L(m)|i =
1

Ai

·
∫

Ai

T ∗L(m− 1) dx =

Aj

pjAi

∫

Ai

V (~x, ~y) · L(~y, ω′~y→~x) · fr(ω′~y→~x, ~x, ω) · cos θ′~x · cos θ~y

|~x− ~y|2 dx. (5.2)

Let us interpret equation (5.2). The new radiance of patch i depends on the proba-

bility pj of selecting the shooting patch, the radiance of the shooting point towards

the receiver points L(~y, ω′~y→~x), on a geometric factor

G~y→Ai
=

Aj

Ai

∫

Ai

V (~x, ~y) · cos θ′~x · cos θ~y

π|~x− ~y|2 dx,

5.1. THE NEW ALGORITHM 72

and on the BRDF at the receiving point from the direction of the shooting point

ρ(~y → ~x) = fr(ω
′
~y→~x, ~x, ω) · π.

Conceptually, this is very similar to the diffuse case except for the facts that we used

the direction dependent radiance and the BRDF instead of the direction independent

radiosity and diffuse albedo. Note that the formula has been divided by π in the

geometric factor and multiplied by π in the BRDF, in order to give back the classical

radiosity interpretation in the special case. The geometric factor can also be given

a classical interpretation. Note that the integral in the geometric term is the point-

to-patch form factor F~y→Ai
. If patch j is small, then this point-to-patch form factor

approximates well the patch-to-patch form factor FAj→Ai
, thus

G~y→Ai
=

Aj

Ai

· F~y→Ai
≈ Aj

Ai

· FAj→Ai
= FAi→Aj

according to the symmetry relation of the form factors. Despite to the conceptual

similarities, the formulation of equation (5.2) is more complicated formally, since these

factors cannot be decomposed and the radiance cannot be obtained as their simple

product. The reason of this notational complexity is that now the radiance and the

BRDFs depend on the direction as well. In fact, the product form is valid only for

differential surface elements on patch i. However, if patch i is small compared with

its distance to point ~y, we can still use the following approximation:

L(m)|i ≈
L(~y, ω′~y→~x) · FAi→Aj

· ρ(~y → ~x)

pj

, (5.3)

where ~x is the center of patch Ai. We should emphasize that the implementation of

the algorithm does not use this approximation. This formula, however, will be useful

to understand the heuristic variance reduction technique, which is presented later in

subsection 5.4.

5.1.1 Representation of the radiance function

The radiance function now depends on both the surface point and the direction, thus

its accurate finite-element representation would be too expensive. Fortunately, the

radiance is needed only for computing the random transfer from a single patch and

its image contribution. Note that these tasks require the radiance function just in a

small subdomain compared to the set of all points and directions.

In order to compute the radiance transfers and the image contribution without

explicitly storing the direction dependent radiance function itself, instead of the out-

going radiance L, the incoming radiance I is associated with each patch. If the sender

and receiver patches are small compared to their distances, then we can assume that

a patch may receive radiance only from a single direction, thus I is non-zero only

5.1. THE NEW ALGORITHM 73

for the direction pointing from the previously selected patch to the currently selected

patch. Thus the incoming radiance is represented by two variables per patch, the

intensity I and the direction of the last transfer ω′. From the incoming radiance, the

outgoing radiance can be obtained by a multiplication with the local BRDF:

L(~x, ω) = I(ω′) · fr(ω
′, ~x, ω) · cos θ′~x.

5.1.2 Computation of the radiance transfer by hemicubes

windows

patch i

P

θ

θ

’

p
f

i

x

ω’

ω

W

y

p

Figure 5.1: Hemicube shooting

In order to efficiently determine those ~x points that are visible from ~y, the classical

hemicube method can be used [CG85]. We can note that the integral in equation (5.2)

can be evaluated on the five window surfaces (W) that form a hemicube around the

source ~y (figure 5.1). In the remaining part of this section, we re-derive the basic

formulae to show that the hemicubes can also be used in cases when the reflection is

non-diffuse.

To find formal expressions, let us express the solid angle dΩp, in which a differential

surface area dx is seen through pixel area dp, both from the surface area and from

the pixel area:

dΩp =
dx · cos θ′~x
|~y − ~x|2 =

dp · cos θp

|~y − ~p|2 , (5.4)

where θp is the angle between the direction pointing to ~x from ~y and the normal of

the window (figure 5.1). The distance |~y − ~p| between pixel point ~p and the radiance

source ~y equals to f/ cos θp where f is the distance from ~y to the window plane, that

is also called the focal distance. Using this and equation (5.4), differential area dx

can be expressed and substituted into equation (5.2), thus we can obtain:

L(m)|i =
Aj

pjAif 2
·
∫

W

V (~y, ~x) · L(~y, ω′~y→~p) · fr(ω
′
~y→~x, ~x, ω) · cos θ~y · cos θ3

p dp.

5.2. RANDOMIZATION OF THE HEMICUBE 74

Let Pi be the set of those pixels in which patch i is visible from ~y. Pi is computed

by running a z-buffer/constant shading rendering step for each sides of the window

surface, assuming that the color of patch i is i, then reading back the “images”. The

reflected radiance on patch i is approximated by a discrete sum as follows:

L(m)|i ≈ AjδP

pjAif 2
·
∑
Pi

L(~y, ω′~y→~p) · fr(ω
′
~y→~x, ~x(~p), ω) · cos θ~y · cos θ3

p, (5.5)

where δP is the area of a single pixel in the image. If R is the resolution of the image

— i.e. the top of the hemicube contains R × R pixels, while the side faces contain

R×R/2 pixels – then δP = 4f 2/R2.

5.2 Randomization of the hemicube

It is easy to see that when computing the point-to-patch form factors by hemicubes,

sometimes it is not efficient to render the scene across all sides of the hemicube. This

is the situation when the power distributed through a specific side of the hemicube is

negligible. This can be caused by the low incoming radiance or by the anti-symmetry

of the outgoing radiance. The main cause of this anti-symmetry is the specular

characteristic of the surface, which transfers most of the radiance towards the ideal

reflection direction. If the ratio of specular albedo and diffuse albedo and the shine

parameter of the Phong illumination formula is large, most of the light power is

transferred through that specific side of the hemicube, which lies in the direction of

the ideal reflection. In these cases it is useless to use the other sides of the hemicube.

patch j

incoming radiance outgoing radiance

Figure 5.2: On specular surfaces most of the illumination goes through just 1 side of
the hemicube.

5.3. IMPORTANCE SAMPLING 75

Since we do not want to loose the unbiasedness characteristics of the method, but

we want to save computation time when it is possible, we introduce randomization

into the process. When the selected surface has quite strong specular characteristics,

we randomly select one side of the hemicube and propagate the radiance through

just the selected side. In that cases, according to Russian roulette, the transported

radiance is divided by the selection probability.

5.3 Importance sampling

The stochastic iteration will converge quickly if the random noise added by a single

iteration step is small. This means that the randomization of the light transfer should

not be too strong (the optimal level is determined by the efficiency of transferring the

radiance by the random operator and the variance caused by the randomization).

The variance of the random transfer can be decreased by the variance reduction

techniques of the Monte-Carlo literature, and particularly by importance sampling.

According to importance sampling, the selection probability is good if it mimics the

original integrand, thus the total transferred power, which is computed as the real

power divided by the selection probability, should be roughly constant. This means

that the patches are worth selecting with a probability that is proportional to their

output power, and the sides of the hemicube according to the power transferred

through them.

Recall that before a given iteration step, we store the emission and the incoming

radiance of each patch. If a patch is selected, then it will shoot the following power:

Φj = Φe
j + Aj · cos θ′ · I(ω′m−1) · a(ω′m−1),

where Φe
j is the emission power and a(ω′m−1) is the local albedo. Thus in each iteration

step, power Φj is computed for each patch, and the patch selection is realized with

Φj/
∑

k Φk probability.

The second level of randomization controls the identification of those hemicube

sides through which the transfer is computed. This should be proportional to the

represented solid angle and the average radiance in the directions of the solid angle.

We used a very simple heuristic scheme. If the surface is highly specular, the algorithm

selects that side which is intersected by the ideal reflection direction by 0.6 probability

and all the other sides by 0.1 probability. If the ratio of the specular and diffuse

albedos is smaller then 1, more than half of the power is distributed by diffuse light

transfer. Since there is a cosine term in the transferred radiance formula, in these

cases most of the radiance goes through the top of the hemicube. Thus it is worth

selecting the top deterministically and using one from the four sides randomly.

5.4. VARIANCE REDUCTION BY TRADING BIAS WITH NOISE 76

5.4 Variance reduction by trading bias with noise

If we implement and run the algorithm described so far, we can realize that the general

convergence of the image will be very fast, but embarrassing noise occurs at corners

and at object boundaries (figure 5.3). This problem is mentioned by the Monte-Carlo

radiosity literature, but so far it has not been solved.

Figure 5.3: An office scene rendered without the biased variance reduction.

The explanation of these irritating artifacts is the following. Darker patches are

very seldomly selected by the algorithm. However, when they are selected, the trans-

ferred power is divided by the small probability, thus even dark patches can result in

large power transfers. When the receiver patches are very close to the shooting patch,

then the point-to-patch form factor is large, thus the receiving patch gets too much

power and tends to be too bright in the image. As stochastic iteration proceeds this

annoying artifact slowly disappears. Theoretically there is nothing bad or unusual

with these too bright patches, this behavior is caused by the random noise, which is

inherent in all Monte-Carlo methods. As the iteration number goes to infinity, the

radiance values will converge to the mean of these random variables.

However, when we want to have accurate and nice images quickly, i.e. after just a

few hundred iterations, the fact that the irritating bright patches would disappear if

we were running the algorithm for much longer time, is not acceptable. Fortunately a

solution exists that can successfully attack this problem, which trades bias for noise in

a way that for a given iteration number the result will not be unbiased, but the total

5.4. VARIANCE REDUCTION BY TRADING BIAS WITH NOISE 77

error of the bias and the Monte-Carlo noise will be still smaller than the Monte-Carlo

noise of the original algorithm.

Let us return to the approximation of the radiance of patch i after an iteration

step (equation (5.3)):

L(m)|i ≈
L(~y, ω′~y→~x) · FAi→Aj

· ρ(~y → ~x)

pj

.

The expected value of this random variable is

E[L(m)|i] ≈ E[L(~y, ω′~y→xj
)] · FAi→Aj

· ρ(~y → ~x).

If M iteration steps are computed altogether, then the probability of selecting

patch j for shooting at least once is 1 − (1 − pj)
M . If pj is really small, because

patch j is not a light source, its size is also small and it does not receive significant

illumination, then the selection probability is reasonably smaller than one and can be

approximated as

1− (1− pj)
M ≈ pjM.

The fact that these patches are not selected at all is not a problem in itself since

according to the fundamental assumption of hierarchical and Monte-Carlo methods,

patches form homogeneous groups and using one patch in these groups can also

simulate the radiance transfer of other elements of the group. Suppose that the

selected patch is a member of such a homogeneous group consisting of k similar

patches. Then the probability of selecting at least one member of this group is

1− (1−kpj)
M . The real problem happens when even this group selection probability

is much smaller than one. In this case, this probability is roughly kpjM . Statistically,

such a group should not be used for radiance transfer in the M step long iteration,

but the random selection might find elements also in this group. If this patch group

is selected n > 0 times, the random estimator is:

L̂(m)|i = L̃(~y, ω′~y→Aj
) · F~y→Ai

· ρ(~y → ~x) · n

kpjM
,

where L̃ is the average of the radiances in these transfers. The distance of this esti-

mator from the expected value can be bigger than the distance between the expected

value and zero, when it is worth replacing the transferred radiance by zero. If we

assume that the average radiance L̃ is approximately equal to its expected value,

then the criterion of replacing the transfer by zero is:

L̂(m)|i − E[L(m)|i] > E[L(m)|i]− 0 =⇒ pj <
1

2kM
.

In order to find an upper-bound for k, notice that the geometric parameters of the

transfer are characterized by form factor F~y→Ai
. Different patches behave similarly in

5.5. APPLICATION OF THE CONSTANT RADIANCE TERM 78

this transfer if their respective form factors are also similar. The sum of form factors

is at most one (exactly 1 in closed and less than 1 in open scenes), that is

∑
j

FAi→Aj
≤ 1.

It means that the number of patches that have roughly this form factor with patch i

is bounded by the inverse of the form factor, thus for k we obtain:

k ≤ 1

FAi→Aj

.

This allows to establish the limit of probability where the radiosity transfer is not

worth executing:

pj <
FAi→Aj

2M
. (5.6)

The modified algorithm works similarly as the previous one, it selects patches ran-

domly and computes the radiance transfer from the selected patch towards those

patches that are visible from here. In order to compute the new radiance value of the

receivers, the form-factor is also computed. However, when it turns out that selection

probability of the shooting patch is smaller as the limit of inequality 5.6, then this

particular receiving patch is assumed to get zero radiance in this iteration step.

Note that this trick steals energy from the system, thus for a fixed iteration number

M the result will be biased. However, the error is still less than in the unbiased

estimate. On the other hand, the bias disappears as M goes to infinity, thus the

method is still unbiased in the asymptotic case.

For very small M values, the missing energy becomes noticeable at the corners

since they are darker than expected. Although this is still much better than the too

bright patches, this problem can be further reduced by a special type of mean value

substitution. When it turns out that the random estimator of the current transfer is

too large, then instead of replacing it by zero, it can be replaced by its approximated

mean L(~y, ω′~y→Aj
) ·F~y→Ai

· ρ(~y → ~x). This is as accurate as the radiance L is close to

its converged value.

5.5 Application of the constant radiance term

Usually just a fraction of the patches belong to light sources. Importance sampling

on the other hand will probably select the shooting patches from the light sources.

One alternative for making it better is the first-shot technique, but since it selects

the center of the light source patches deterministically, it introduces bias.

Anyway, the hemicube shooting by nature is very good at performing first-shot,

so doing a first-shot before starting the algorithm seems unnecessary. On the other

hand, the selection probability of the non light source patches can be significantly

5.5. APPLICATION OF THE CONSTANT RADIANCE TERM 79

improved by transforming the radiance function to a function with smaller amplitude

[NNPP98].

mean

radiance

Figure 5.4: When subtracting the mean, the importance sampling more probably
selects the non light sources.

A constant radiance value is extracted from the solution in every surface point

and direction. However, we should be careful, when choosing this constant value.

The optimal constant value is hard to find for each patch separately, but even a

conservative estimate can improve the convergence. The average radiance L can be

computed by the assumption that all points have the same BRDF and albedo, that

are computed as the average [NNPP98].

The average radiance is determined by:

L =

∫
Ω

∫
S

Le(~x, ω) cos θd~xdω

Sπ(1− amean)
,

where amean is the average albedo of the scene, calculated by:

amean =
1

Sπ
·
∫

Ω

∫

S

a(~x, ω) cos θd~xdω.

Formally, let us decompose the radiance function into this average L and a distance

from the average ∆L. Substituting L = L + ∆L into the rendering equation, we can

obtain:

∆L(~x, ω) = Le(~x, ω) + (a(~x, ω)− 1) · L + T ∆L.

Note that we obtained a rendering equation for the ∆L term, having modified the

emission function with (a(~x, ω) − 1)L. This new light source term is negative for

physically valid scenes, which means that the non light source patches emit negative

power. Therefore, when doing importance sampling we should use the absolute values

of power for computing the selection probability of the patches. After the iteration

5.6. RESULTS 80

finishes and ∆L(~x, ω) is obtained, we should add the average radiance L to the final

result.

Figure 5.5: R2D2 meets an alien in the Cornell-box. The image was rendered with
the new method using the biased variance reduction and the constant radiance step.

5.6 Results

The presented algorithm has been implemented in C++ in OpenGL environment.

The images have been rendered with 500× 500 resolution. The faces of the hemicube

had 600× 600 pixels. The algorithm can render moderately complex scenes within a

minute.

We tried the hemicube randomization with scenes of specular reflectance, and

according to our experience the hemicube randomization resulted in 5-15 percent

speed-up. Without using the constant radiance step, importance sampling selected

the light sources very frequently, i.e. in about 50 percents of iterations. When

applying the constant radiance step, this decreased to 32 percent. This trick increased

the speed by another ten percent.

When the Cornell box scene with R2D2 and the alien (figure 5.5) was rendered, the

500 iterations needed 50 seconds on a PentiumrIII 1Ghz computer using GeForce2

MX graphics hardware. Note the specular highlight on the back wall and on the body

of R2D2. The specular albedos were set to 0.27 and 0.2 and the shine parameters

5.7. SUMMARY 81

Figure 5.6: An office scene rendered with the new method using biased variance
reduction.

of the Phong BRDF to 28 and 10, respectively. Other surfaces also have specular

albedos, usually in the range of 0.05 − 0.0. Rendering the office room (figure 5.6),

which contains a specular vase, took about 60 seconds and needed 600 iterations.

5.7 Summary

In this chapter we presented a new stochastic rendering technique that is based on the

randomization of the classical hemicube approach. This randomization speeds up the

convergence of the algorithm and ensures rendering non-diffuse scenes with the same

storage space as required by the radiosity method. In order to get rid of the artifacts

of the randomization, we proposed trading of noise with bias in a way that the error

gets smaller, but the algorithm is still unbiased asymptotically. We also discussed

some improvements for the basic algorithm, which included the random selection of

the hemicube faces and the application of the constant radiance step.

Chapter 6

The combination of ray-bundle
based strategies

Global illumination algorithms can be classified as local and global transfer methods.

Local methods find a single point (or patch) in a given step and transfer its radiance

towards other point(s). Global methods, on the other hand, select the source and the

target of the transfer simultaneously. In the context of stochastic iteration, parallel

ray-bundle iteration belongs to the global group, and the perspective ray-bundle

algorithm is a local method. In this chapter we propose the combination of global and

local global illumination algorithms in the sense of multiple importance sampling. In

this way, the combined method can eliminate the higher noise at the corners produced

by local methods and the need for first-shot for global techniques. The modified

multiple importance sampling and the combined algorithm are the own work of the

author and concerns to thesis 4 (see chapter 8).

6.1 Introduction

Local line methods find the starting point of the half-line first, then they obtain the

direction of the line, which will identify the intersection point or the other point of

the transfer. An alternative is the global line approach which samples the two points

simultaneously. Local methods are better if the radiance distribution is heterogeneous

and the scene is sparse, while global methods can win for dense scenes of homogeneous

radiance. There have been many discussions about the comparative advantages of

these algorithms, but no method can be claimed to be the best. This is not surprising

since each method has advantages and disadvantages in certain situations. Thus in-

stead of insisting to a given technique, it is worth combining several of them, in a way

that the advantages are preserved. Such quasi-optimal combination of Monte-Carlo

sampling techniques is offered by multiple importance sampling [Vea97]. Assume

that integral L =
∫
P

l(z)dz needs to be evaluated. Monte-Carlo quadratures generate

82

6.2. MULTIPLE IMPORTANCE SAMPLING IN ITERATION 83

samples with certain probability density. Suppose that we have N different samp-

ling techniques. Sampling method i uses probability density pi(z), thus the primary

estimator of this method is l(z)/pi(z). Assume also that with method i we obtain

Ni samples zi1, . . . ziNi
. The combined estimator is computed from the samples of all

sampling techniques, applying appropriate weighting functions wi(z), and summing

the results:

〈L〉c =
N∑

i=1

1

Ni

Ni∑
j=1

wi(zij) · l(zij)

pi(zij)
=

N∑
i=1

Ni∑
j=1

l(zij)

di(zij)
(6.1)

where the divider is

di(z) =
Nipi(z)

wi(z)
.

The combined estimator is unbiased, i.e. the expected value of this estimator gives

back the original integral, if for all z values
∑N

i=1 wi(z) = 1. In order to find an

optimal weighting, the variance of the combined estimator 〈L〉c should be minimized

by setting the weights appropriately and also taking into account the constraint of

unbiasedness. Unfortunately, this optimization problem cannot be solved analytically,

but different quasi-optimal solutions can be obtained. One such approximate solution

is called the balance heuristic [VG95]:

wi(z) =
Nipi(z)∑N

k=1 Nkpk(z)
. (6.2)

Substituting these weights into equation (6.1), we can conclude that balance heuristic

divides with the total density

di(z) =
N∑

k=1

Nkpk(z) = d(z)

instead of the original densities Nipi(z) of the individual methods.

6.2 Multiple importance sampling in iteration

Multiple importance sampling can be efficiently used in random walk algorithms

that obtain samples independently [SW99]. However, the application of multiple

importance sampling in iteration like algorithms requires further considerations. We

could, for example, use all sampling techniques to obtain a tentative value in the next

iteration step then find the real value as the weighted average of the results of the

individual methods, but this method would slow down the progress of the iteration

and thus the introduction of higher order terms. Thus we propose to randomly select

just a single technique in each iteration step, compute just a single sample, and apply

the other techniques to the already iterated value.

6.3. COMBINATION OF METHODS USING RAY-BUNDLES 84

To consider the random selection formally, let us assume that the sample is com-

puted with method i with probability Pi.

The modified estimator uses the indicator functions ξi, which are 1 if the respective

method generates a sample:

〈L〉c =
N∑

i=1

wi(zi) · l(zi)

pi(zi)
· ξi. (6.3)

The requirement of the unbiasedness becomes:

N∑
i=1

Pi · wi(z) = 1.

The modified formulae of balanced heuristics is the following:

wi(z) =
pi(z)∑N

k=1 Pk · pk(z)
.

Thus when a sample is computed, its contribution is always divided by

d(z) =
N∑

k=1

Pk · pk(z)

no matter which sample strategy is used.

This general approach can be used for different global illumination algorithms. We

have applied it to the combination of local and global ray-shooting as it was proposed

in [P7]. In the context of this dissertation we present here the other combination, the

mixture of parallel and perspective ray-bundle based transfers.

6.3 Combination of methods using ray-bundles

So far, we introduced three different random radiance transfer methods that use

different sampling probabilities. Parallel ray-bundle tracing samples the direction

from point ~x with a uniform density, i.e. the probability of generating a direction in

dω is
dω

2π
.

Note that we use 2π due to the bi-directionality of the algorithm.

When just a single plane is used for parallel radiance transfer, contribution to

point ~x is possible only if the plane is between point ~x and that point ~y which is

visible from here. If the maximum size of the scene is R, then probability that a

contributing direction is in dω is

|~x− ~y| · dω

2πR
.

6.3. COMBINATION OF METHODS USING RAY-BUNDLES 85

For perspective ray-bundle shooting, the probability that shooting point is in

differential area dy of patch j is

pj · dy

Aj

=
Φj · dy

Aj

∑
i Φi

.

Before applying the concept of multiple importance sampling, we have to solve the

problem that different methods formulate the light transport problem with different

integrals. Parallel ray-bundles use directional itegrals while perspective ray-bundle

shooting applies surface integrals. According to the formula of differential solid angles

dω =
dy cos θ~y

|~x− ~y|2 ,

directional integrals can also be converted to surface integrals, thus the probability

densities used by the discussed methods are the following:

p1(~y) =
cos θ~y

2π · |~x− ~y|2 ,

p2(~y) =
cos θ~y

2πR · |~x− ~y| ,

p3(~y) =
pj

Aj

.

Each of them is good for a particular part of the scene. The parallel ray-bundles

are effective if the scene consists of patches of similar radiance, while the perspective

ray bundles are effective if one or several patches are much brighter than the others

(note that these bright points are selected with much higher probability by perspective

ray-bundle shooting). Thus perspective ray-bundle shooting is the best method if the

scene contains small light sources. It is thus highly intuitive why parallel ray-bundle

algorithms always apply a first shot to distribute the illumination of the light sources,

letting the algorithm compute only the indirect illumination.

On the other hand, the transfer of nearby points is better coped by parallel trans-

fers then by perspective transfers. Close points are obtained by parallel ray-bundle

tracing with the higher probability, this probability is smaller if just a single plane

is used and the smallest for perspective ray-bundle shooting. Thus in homogeneous

environment, corners (close patches) can be rendered in a better way by parallel ray-

bundle transfers using software z-buffer, and radiance transfer between distant patches

can be rendered better by parallel ray-bundle transfers using hardware z-buffer.

In order to obtain a method that does not require first shot and can nicely render

corners and close objects, the presented techniques are combined according to multiple

importance sampling.

Suppose that each of the three methods is used with probability P1, P2 and P3,

respectively. Since one method is applied in each step P1 + P2 + P3 = 1. These

6.4. RESULTS 86

probabilities can be specified by the user, taking into account the features of the

scene and the time cost of the application of the methods. A simple way is setting

these parameters to be inversely proportional to their computation time.

The divider of balanced heuristic becomes:

d(~y) = P1
cos θ~y

2π|~x− ~y|2 + P2
cos θ~y

2πR|~x− ~y| + P3
pj

Aj

.

When parallel ray-bundles are used, this weight should be multiplied by dy/dω =

|~x− ~y|2/cos θ~y in order to replace surface points ~y by directions dω:

d(~ω) = P1
1

2π
+ P2

|~x− ~y|
2πR

+ P3
pj

Aj

|~x− ~y|2
cos θ~y

.

Let us interpret these results. When a perspective ray-bundle transfers the light

in the combined method, the integrand of the rendering equation,

v(~x, ~y) · L(~y, ~ω′) · fr(~ω
′, ~x, ~ω) · cos θ′~x · cos θ~y

|~x− ~y|2

is divided by d(~y) instead of its own sampling density p3(~y). The integrand can

be very large if the two points ~x and ~y are close, which is not compensated by the

original density p3(~y), resulting in high variance around the corners. However, thanks

to parallel transfers, the combined density includes a similar |~x− ~y|2 factor, thus the

corner spikes can be eliminated. On the other hand, when parallel bundles are used

alone, variance is caused by the variation of the source radiance. This error is also

reduced in the combined method, since we divide the transfer by d(~ω), which includes

the source radiance thanks to the probability density of perspective transfers.

The optimal selection of P1, P2 and P3 depends on how homogeneous the radi-

ance in the scene. It is worth setting the probability of perspective bundles high

at the beginning of the algorithm and letting parallel ray-bundles refine the roughly

distributed light energy.

Note that all the three methods require just partial information about the radi-

ance function, parallel ray-bundle transfer needs the radiance values just in a single

direction, perspective ray-bundle transfer requires the radiance distribution of a sin-

gle patch only. The combined algorithm should be able to serve the needs of the

underlying algorithms. Therefore in an iteration step let us thus compute only the

irradiance on each patch, which is independent of the transfer direction of the next

step. With the irradiance information we also store the incoming direction. This

determines the memory requirement of the combined algorithm, which is 2 variables

per patch. In the next iteration step, when the output radiance of a patch in a given

direction is needed, it is obtained on the fly, multiplying the irradiance by the BRDF

of the patch taking into account the previous and current directions.

6.4. RESULTS 87

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300 350 400 450 500

number of iteration

Average Error

Parallel Ray Bundle (Hw.)

Perspective Ray Bundle

Combined Ray Bundle

Parallel Ray Bundle (Sw.)

Figure 6.1: Error of the software z-buffer parallel, hardware z-buffer parallel, pers-
pective and combined ray-bundle shooting algorithms for the Cornell box

6.4 Results

In order to test the proposed method we have selected the standard Cornell Box scene.

The images have been rendered with 500 x 500 resolution. The transillumination

buffer contained 1000 x 1000 pixels. Figure 6.2 shows the Cornell box rendered by

parallel ray bundles with software z-buffer and with the hardware z-buffer method,

by perspective ray bundles and by the combined method. The computation time was

7 seconds in all cases. Note that parallel bundles distribute the energy with higher

noise generally, but are good in rendering corners. The result of perspective bundles is

better except for the annoying spikes at the corners. The combined method preserves

the advantages of each technique and results is much more pleasing image than its

parents.

In figure 6.1 we have plot the average error for the 4 algorithms. As it is expected,

the combined method gives the lowest error.

6.5 Summary

We proposed the modification of multiple importance sampling, which is a technique

for combining different sampling algorithms. We have applied our mathematical

framework to ray bundle iteration methods. We proposed a stochastic iteration al-

gorithm that dynamically combines three random radiance transport methods based

on the actual radiance approximation. The method is able to render complex glossy

scenes in about a minute and is particularly effective if the surfaces are not highly

specular.

6.5. SUMMARY 88

Parallel software Parallel hardware

Perspective Combined

Figure 6.2: Comparison of stochastic iteration using parallel ray bundles with software
z-buffer, parallel ray-bundles with hardware z-buffer, perspective ray-bundles and
the combination of the three methods respectively using the same computation time
(7 seconds on a Pentiumr4/1.4GHz computer)

Chapter 7

Animation

This chapter proposes a non-diffuse global illumination algorithm that is fast enough

to be appropriate for interactive walkthroughs and general animations. To meet

the severe performance requirements, we heavily exploit coherence both in time and

space, and use randomization to reduce the time and storage complexity. To speed up

convergence and to support animation, the approximation of the radiance is stored in

the object space as well. However, in order to reduce the high memory requirements

of such representations and to reduce finite-element artifacts, we use just a random

approximation, which fluctuates around the real radiance function. The direction

dependent radiance approximation is represented in a compact way, by four random

variables per patch. The key of performance is then to make the error – i.e. the

variance of this compact approximation – as small as possible. In addition to main

part separation, we apply a novel sampling scheme inspired by the Metropolis method

to achieve this goal. In this algorithm light transfers are computed by both local and

global methods using ray bundles and with the support of the graphics hardware. The

animation algorithm with the special iteration phase concept concerns to thesis 5 (see

chapter 8).

7.1 Introduction

Of late years there was significant advancement in animation techniques. The movie

and game industry requires more believable human motion and photo-realistic facial

animation techniques [SK03, RN00, BW97]. However, this dissertation is concerned

for animating architectural models which pose other problems that do not appear in

human animation.

The recent growth of computing power and available memory made it possible to

use global illumination algorithms for complex scenes even on PC class computers.

It is usual that these rendering systems render a complex scene with high quality

in a couple of minutes. They are designed for rendering static scenes. If they are

applied for dynamic scenes, every illumination computation has to be repeated for

89

7.1. INTRODUCTION 90

each frame, which makes them impractical for animation sequences.

However, this approach is not only impractical, but results in typical errors like

temporal aliasing. Stochastic methods suffer from noise both in the spatial and in the

temporal dimensions. The temporal anti-aliasing tries to reduce the little differences

in lighting reconstruction which occurs in the successive frames. If it is not considered,

the result is unpleasant flickering and shimmering, which can be perceived easily by

the human observer.

Recently, new algorithms have been proposed, which tries to remedy these prob-

lems. These dynamic algorithms can be classified as:

• Offline global illumination animation:

These methods are intended for final production of high-quality animations,

where the dynamic behavior of the scene is known a-priori. Usually an ani-

mation script is given that contains this information. The objective here is to

exploit the temporal coherence in order to reduce the vast computation need

for rendering e.g. 300 frames for a 10 second long TV-advertisement. Other

goal of these algorithms is the reduction of temporal aliasing. By exploiting the

coherence between successive frames, they typically increase the speed of the

rendering by 5-10 times, compared with the blind algorithm, which renders all

frames from the scratch. Notice that this speed increase is still far enough from

the need of real-time applications.

• Interactive global illumination animation:

These methods are designed for speed. They usually make simplifications and

give up to achieve good quality of illumination reconstruction. They have to

provide fast response for changes in the scene properties.

7.1.1 Offline global illumination animation

It is straightforward that interactive algorithms can be used for offline rendering;

however, the same is not true in the opposite direction. In the context of this dis-

sertation we are interested only in interactive global illumination, thus we omit to

discuss the offline methods. We just mention the most important approaches, which

are the space-time hierarchical radiosity by Damez [DS99] [DSH01], the multi frame

lighting method by Besuievsky [BP01a] [BS96], the time dependent photon mapping by

Cammarano [CJ02], the image based methods for animation by Nimeroff [NDR96b],

two perception-guided animation rendering (the Animation Quality Metric (AQM)

by Myszkowski [KM99] and the visual attention modeling by Yee [Yee00] and frame-

to-frame coherent animation with two pass radiosity by Martin et al. [MPT99].

7.1. INTRODUCTION 91

7.1.2 Interactive global illumination animation

The interactive global illumination animation is an area of intensive research, and as

we are intending to show that in this introduction, – in spite of great progress has

been made recently – this problem has not been fully solved yet. The first initiatives

for interactivity were connected the radiosity algorithm. The incremental progressive

radiosity was published by Chen [Che90] [XSG00] and George [GSG90] independently.

The algorithm selects the dynamic objects (one after the other) and shoots the energy

of this object toward all other static objects. Then it selects one static object and

shoots the energy towards the dynamic objects, and shoots the negative energy to

surfaces which are now in the shadow volume of the dynamic object. The selection

of static objects is repeated until the approximated error decreases under a certain

threshold.

However, progressive radiosity is slightly outdated and excelled by hierarchical ra-

diosity. The first dynamic hierarchical radiosity was proposed by Hanrahan [HSA91].

One problem with his approach is the lack of control the trade-off between accuracy

and speed.

The dynamic hierarchical radiosity was later extended by shaft that represents

a set of lines between two elements in the hierarchy. Therefore this algorithm –

which was published by Drettakis [DS97] – uses line-space hierarchy for hierarchical

radiosity.

However, two main problems appear when using interactive radiosity solutions.

The first is that it can never result in a full global illumination solution, since they

are targeted only for calculating the diffuse radiosity. Other problem is that they do

not scale well with the complexity of the scene, and therefore they are restricted to

very simple scenes. The papers listed before usually present examples with using only

a few hundred polygons.

The glossy illumination is also covered by the algorithm presented by Granier

[GDW00], where the diffuse part of the illumination is handled by classical hierarchical

radiosity and the glossy part is computed by stochastic particle shooting. They report

3–5 seconds per frame, which is hardly qualify that the unified hierarchical algorithm

can be interactive. However, for calculating the first frame of the animation is also

slow (according to their proposal, 35 minutes is spend for the initial frame).

The hybrid hardware radiosity and ray tracing was proposed by Udeshi and Hansen

[UH99] uses the video card hardware for direct illumination. The shadow computation

is also done in hardware by the shadow volume algorithm. The implementation uses

64 processors and 8 graphics pipelines for moderate complexity scenes. The ray

tracing part of the algorithm involves calculating the color of that pixel in which

specular or refractive objects are seen.

The instant radiosity published by Keller [Kel97a] uses at first a photon tracing

stage, which approximates the diffuse radiance in the scene (it is very similar to the

photon map method of Jensen). The resulted photon hits become virtual light sources,

7.1. INTRODUCTION 92

which can be used in the rendering pass as OpenGL point light sources. Thus, this

algorithm can exploit the graphics hardware. If 40–100 point light sources is selected

the resulting image is quite free from shadowing artifacts. Considering that OpenGL

can use maximum 8 light sources, the hardware rendering is also broken down into

phases. The result of rendering phases is piled up in the accumulation buffer of the

graphics card. However, the active virtual light sources must be selected with care,

since in the neighborhood of a virtual light source the illumination of the surfaces

tends to be too bright. This is an annoying side effect of this method. Other problems

concern dynamic environments. If the objects or a light source changes its position,

the approximation of the diffuse radiance by photon hits becomes invalid. However,

the recomputation of the light distribution is not fast.

Recently, a very promising approach was presented by Dmitriev. The selective

photon tracing [DBMS02] is similar to the hybrid hardware radiosity and ray tracing

method in the calculation of the direct illumination. Both of them use graphics

hardware for rendering direct light and use shadow volumes for shadow calculation.

The indirect lighting is handled by a quasi-random photon tracing, where density

estimation is used for calculating the radiance at the vertices of the mesh. This

information can be used later by Gouraud or Phong illumination calculation that is

implemented on the graphics card. As before, in dynamic scenes, the recomputation

of the illumination at the vertices must be done from the scratch, which takes for a

while.

We point out that the hardware calculation of direct illumination can use only

directional and point light sources, which is hardly enough for simulating the most

common area light sources that is the main criterion for global illumination algo-

rithms.

The interactive global illumination using a distributed ray-tracing engine was pro-

posed by Wald [IWS02] and it exploits the fact that the ray-tracing can be parallelized

quite easily. Using SIMD1 CPU instructions, which can process 4 computations at

a time on a cluster of 16 PCs (Athlon 1800+) they report 1.5 fps and 1.84 fps for

quite complex scenes. The method scales well with the complexity of the scene, since

ray-tracing with space partitioning is an O(logn) algorithm (after O(nlogn) prepro-

cessing), where n is the number of surfaces in the scene. Similarly as in the instant

radiosity a coarse representation of the radiance is generated by shooting particles in

the first pass. These particles are then treated as virtual light sources. The caustics

are treated separately by a method very similar to the caustics map used in Jensen’s

photon map algorithm. The rendering pass uses ray-tracing, which is fast concerning

that the computation is distributed on a local network of PCs. Notice that the same

problems occurs as it was discussed by the preceding algorithms (e.g. selection of the

virtual light sources, dynamic environments).

1SIMD: Single Instruction Multiple Data

7.1. INTRODUCTION 93

Other approaches that are important to mention are not really global illumination

algorithms on their own. They are intended to complement the rendering by spec-

ifying what part of illumination needs to be recomputed by the global illumination

algorithm in the successive frame. With the help of these methods it is always pos-

sible to generate fast feedback for the user by invalidating less portion of the current

approximation of the illumination. Naturally, this produces less accurate image, but

can result real interactivity. If the underlying global illumination supports it, they

can control the trade-off between speed and accuracy. These algorithms fall into two

categories.

The reconstruction can be made in image space as it was proposed by Walter

[BW99] [WDG02]. They generate images by reprojecting samples stored in a con-

tainer called Render Cache. As the dynamic environment changes, the samples stored

in the Render Cache age, and based on the age of them a gray-scale image, the priority

image is generated. Using this image, new samples are requested from the underlying

global illumination algorithm. Notice that it is worth requesting those samples which

are most likely to change in the next frame. However, these approach cannot compen-

sate the drastic changes on the image plane. For example when the camera changes

rapidly, all samples (the full image) become invalid. If it is desirable to maintain

interactivity, the assembly of the image have to use both invalid and valid samples

from the Render Cache, which distorts the final image.

The reconstruction can be also made in object space similarly as in image space.

In the algorithm presented by Tole [TPWG02] the Render Cache is replaced by the

Shading Cache, which stores samples of shading information for patch vertices in the

3D mesh. In this method, not points, but patches are selected for update. This

suggests that this method is suited for diffuse lighting only, however view dependent

specular characteristics of the surfaces can be also treated with a special care. Ac-

cording to the authors the Shading Cache needs only 10 percent of that samples that

is required by using the Render Cache.

7.1.3 Discussion

Animations can be classified by the changes that could happen in the dynamic envi-

ronment, which can be:

• Camera – camera parameters can change, which includes the position, the

orientation and the viewing angle.

• Geometry – objects can change their position and orientation.

• Light conditions – point and area light sources can change their position

orientation and goniometric properties.

7.1. INTRODUCTION 94

• Material – the surface attributes can change, which includes modifying the

BRDF or BSDF (e.g. changing the color, the refractive index or the texture

generated by e.g. procedural textures)

The camera animations, also called walkthroughs [BP95], correspond those cases

when only the camera moves. We refer the animation as general animation when

even objects are allowed to change their properties.

Walkthroughs are simpler to compute since if we had the radiance function, they

would only require to identify the points visible from the new eye position and to

obtain their radiance. However, the radiance is also a function of the viewing direction

if the surfaces are non-diffuse, thus the explicit representation of this radiance function

is usually not feasible [BS96]. General animations are even more difficult to render,

since all properties, even light source intensity may change in time. In architectural

walkthroughs, images should be generated usually close to real-time, but when we

stop to look at small details, we have the time to wait for more accurate images.

Making global illumination fast enough to be appropriate for walkthrough and

general animations is one of the most important challenges of rendering. To reach

this goal, we can either try to increase the computation speed to a level that rendering

from scratch takes just a fraction of a second, or we may exploit not only object space

and view space coherence [CLSS97, Chr00] but also time coherence, and recompute

only those parts of the illumination, which became invalid [Che90, DS97, TPWG02,

BS96, BP01b].

Taking into account the enormous computation required by the global illumination

solution, the first approach is feasible only if we have huge computational power

provided by a parallel system and/or we use simplifications [WBS02, FSZ98]. On the

other hand, coherence allows interactive rendering even on a single computer. This

chapter proposes an algorithm that falls into this second category.

Coherence methods make the errors correlated. Sometimes it is an advantage

since it can reduce dot noise and flickering. However, coherence can also have dis-

advantages, and can result in artifacts such as light leaks, for example. Due to time

coherence the highlights and shadows may follow the movement of the objects with

a noticeable delay. Such problems should be avoided by the smart application of

the coherence, such as by good quality or adaptively subdivided meshes, continuous

directional functions [SP94a] and by elegant heuristic strategies to locate disconti-

nuities [WBS02]. Concerning the problems of time coherence, we need a mechanism

that quickly updates the changed illumination.

If we use random walks to transfer the light, we face the problem of slow conver-

gence and of the task to figure out which walks are affected by object movements. A

brute force approach would regenerate all paths from scratch as it was presented by

Wald [WBS02]. Alternatively, pioneer paths can also be selected to find the changes.

Then the algorithm should recompute only those walks which are close to the pioneer

paths reporting changes as in selective photon tracing [DBMS02].

7.2. RANDOM REPRESENTATION OF THE RADIANCE 95

Adapting the solution to the continuously evolving environment is somehow natu-

ral in iteration approaches [Bek99, SK99b]. In iteration the solution of the previous

frame is supposed to be the initial value of the iteration, which will converge to

the required solution with the speed of a geometric series. Considering the better

initial convergence and the view independence, iteration seems to be the better al-

ternative for animation than random walk methods. However, we should pay a high

price for this remarkable convergence in terms of storage space, which becomes re-

ally prohibitive if the surfaces are non-diffuse, not to mention the visible artifacts of

finite-element approximations. These were one of the main problems in the radiosity

based interactive global illumination described before.

To attack the problems, we propose an iteration algorithm with a novel random

radiance approximation scheme that uses finite-element decomposition just in the

spatial domain. The directional variation of the radiance is represented randomly,

which requires just a few variables per patch, but provides a low variance estimate.

Thus the proposed method is mesh based with continuous (not finite-element) but

random directional radiance representation. Due to the low variance random repre-

sentation, the convergence rate of iteration is preserved in the initial phase of the

computation, and just the smaller random variations should be eliminated by the

slower Monte-Carlo quadrature computing the radiance only for the view directions

of the patches. Even the geometric convergence is too slow at parts of the scene

where the radiance changes considerably during an animation sequence. Thus in our

approach we follow a combined strategy, which is basically an iteration, but when

objects move, it switches itself to a special mode, which removes previous transfers

that having become invalid and introduces new ones as fast as possible.

We use our combined ray-bundle iteration algorithm developed in chapter 6. As

it was introduced before, the combined algorithm selects one method from the 3

ray-bundle strategies in each iteration cycle. These strategies are the parallel ray-

bundle with software z-buffer, the parallel ray-bundle with hardware z-buffer and the

perspective ray-bundle iteration. The optimal selection probabilities P1, P2 and P3

(see section 6.3) depend on how homogeneous the radiance in the scene. It is worth

setting the probability of perspective bundles high at the beginning of the algorithm

and letting parallel ray-bundles refine the roughly distributed light energy. On the

other hand, parallel ray-bundles force all patches to communicate, thus they can be

efficiently used to detect changes during the animation.

7.2 Random representation of the radiance

The discussed methods sample the radiance function in each step and obtain a new

function. The radiance is a four variate function and usually has high variation. Our

goal is to avoid the complete representation of this function, because that would pose

prohibitive memory requirements.

7.2. RANDOM REPRESENTATION OF THE RADIANCE 96

As it was presented in section 6.3, the combined ray-bundle algorithm stores

the irradiance (i.e. the incoming radiance estimate multiplied by the cosine of the

incoming angle) and the direction of the last light transfer on each patch. For those

patches that are not hit by rays, the irradiance of this iteration step is zero. From

irradiance In and incoming direction ~ωin
n of iteration step n, the reflected radiance of

the patch in an arbitrary direction ~ω can be obtained as

Lrr
n (~ω) = In · fr(~ω

in
n , ~ω).

Examining the Lrr
n (~ω) sequence, we can note that it has a high fluctuation since its

elements are zero or very small when the patch is not the target of a transfer or

the incoming direction is not the preferred direction of the BRDF, but when it is

lucky enough to be hit by rays from the preferred direction, then it gets a larger

contribution.

The variance of the whole method can be reduced if the fluctuation of this sequence

is decreased. The general idea is to replace sequence In by another sequence, which

is smoother but still results in the correct reflected radiance when averages are calcu-

lated. We use a combination of two techniques. The first is based on the main part

separation [P2] [Kel99]. The second technique – which was proposed in [P9] – applies

random acceptance and rejection according to Metropolis Sampling [MRR+53]. We

should note that Metropolis sampling is used differently than in the Metropolis Light

Transport algorithm [VG97]. Instead of sampling light paths proportional to their

carried luminance, our objective is to develop a random representation of the direc-

tional radiance, which fluctuates around the real radiance maintaining a constant

luminance.

The first method separates the constant main part of the reflected radiance, which

is replaced by its average. Let us store the directional average of the reflected radiance

in variable Ld
n in each patch computed as

Ld
n =

1

n
·

n∑

k=1

Ik · a(~ωin
k)

π
=

1

n
· In · a(~ωin

n)

π
+

(
1− 1

n

)
· Ld

n−1,

where a(~ω) is the albedo of the material. Note that this main part is computed not

only from the last transfer but from the average of all transfers happened so far. We

could take advantage of the fact that the main part is independent of the outgoing

direction, thus an average could be computed that is valid for all directions. Thus a

better (i.e. lower variance) sequence of the reflected radiance is

Lrr
n (~ω) = Ld

n + In ·∆fr(~ω
in
n , ~ω).

where ∆fr is the difference BRDF

∆fr(~ω
in
n , ~ω) = fr(~ω

in
n , ~ω)− a(~ωin

n)

π
.

7.2. RANDOM REPRESENTATION OF THE RADIANCE 97

This technique reduces the general fluctuation, but the variation of the transfers

represented by the difference BRDF still remains high in the sequence. Unfortunately,

we cannot use the same trick of averaging here, since this term does depend on

the outgoing direction ~ω, which will change from iteration cycle to iteration cycle.

Therefore, either a finite-element representation of the reflected radiance is needed,

or we should store all incoming directions and irradiance values. Both approaches

have prohibitive memory requirements.

The second variance reduction technique solves this problem without requiring

additional variables. We shall still store a single incoming direction and irradiance

per patch in addition to the main part, but the incoming direction and the irradiance

will not necessarily come from the last transfer (figure 7.1).

ωin
I

Ld Lr

Figure 7.1: Random representation of the radiance

This method reduces the fluctuation by replacing a random sequence by another

sequence of ,,similar samples”. During the transformation zero samples are ignored,

large samples of the original sequence will be scaled down and small samples will be

scaled up. This transformation should not distort the expected values computed from

the sequence, thus a scaled down value will appear more times in the new sequence.

Denoting the albedo of the difference BRDF by ∆a(~ωin), an appropriate scaling is:

In

L(In∆a(~ωin
n))

· Cn, where Cn =
1

n
·

n∑

k=1

L(Ik∆a(~ωin
k)),

since it makes the luminance of the reflected radiance estimates similar.

The average computed from the transformed sequence will be correct if we can

guarantee that Im is expected to appear L(Im∆a(~ωin
m))/Cm times. A sampling scheme

that can produce samples proportional to L(Im∆a(~ωin
m)) is based on random accep-

tance and rejection similar to Metropolis sampling [KBSK03]. At each iteration step

the new irradiance In is compared with the stored irradiance Im. If L(In∆a(~ωin
n)) is

greater or equal than L(Im∆a(~ωin
m)), then the new irradiance and its incoming direc-

tion will replace Im and the stored incoming direction in the random representation

of the radiance. However, when L(In∆a(~ωin
n)) is smaller than L(Im∆a(~ωin

m)), the new

irradiance is accepted randomly with probability L(In∆a(~ωin
n))/L(Im∆a(~ωin

m)).

When combined with the separation of the main part, the improved sequence of

reflected radiance estimates is

Lrr
n (~ω) = Ld

n +
Im ·∆fr(~ω

in
m , ~ω)

L(Im∆a(~ωin
m))

· Cn,

7.3. RADIANCE UPDATES IN WALKTHROUGH ANIMATION 98

where Im is the irradiance accepted most recently.

In order to establish importance sampling for perspective ray-bundles, the lumi-

nance of the patches should also be known. The computation of the powers from the

irradiance values is also straightforward, the irradiances should be multiplied by the

albedos a(~ωin) of the patches. The luminance of a patch of area A is

L(Φ) =
(L(Le)π + L(Ld)π + Cn

) · A.

Finally, we emphasize that only the main part converges, but sequence Lrr
n (~ω) will

fluctuate around the main part forever. However, this does not pose any problem since

the image is obtained as the average of the image estimates of subsequent iteration

steps. Thus Monte-Carlo integration happens in the image space, while we maintain

a random, but low variance radiance estimate in the object space. This random

radiance estimate speeds up the iteration and supports animation as well.

7.3 Radiance updates in walkthrough animation

We proposed a random representation of the object space radiance. Since these values,

including main part radiance Ld, irradiance I, incoming direction ~ωin and scaling value

C, are independent of the camera, and they remain valid when the camera moves.

When the camera moves, the new visible radiance values of the patches are set to

Leye(~ω) = Le(~ω) + Ld +
I ·∆fr(~ω

in, ~ω)

L(I∆a(~ωin))
· C.

This is a low variance estimator, thus even this initial value is quite close to the real

visible radiance. Then, iterating further, a new image is computed as an average of

the random estimates. Initial flickering can be reduced if the iteration is started from

a weighted average of the previous and the new visible radiance values.

7.3.1 Results

Figure 7.2 shows two displayed images and a temporary result of a walkthrough

animation. This scene consists of 27 thousand patches having both diffuse and spec-

ular reflections. The wardrobe, which is the most specular object in this scene, has

the following material properties: (0.3, 0.3, 0.4) diffuse albedo on the wavelengths of

red, green and blue respectively, 0.45 wavelength independent specular albedo, and

the shininess of the Phong-like BRDF is 28. The probabilities of the 2 parallel and

perspective transfers were 0.15, 0.15 and 0.7, respectively. Note the slight differ-

ence between the middle image obtained after changing the camera and making a

single iteration, and the right image taken after performing more iterations to get

a converged image. This small difference shows that the proposed random radiance

representation is quite accurate in glossy scenes. This approach allows 3 frames per

7.4. RADIANCE UPDATES IN GENERAL ANIMATION 99

old camera position after moving the camera iterating further

Figure 7.2: The left and right images show two frames of a walkthrough animation.
The middle image is not seen by the user, but demonstrates the effect of just changing
the camera location but not allowing time for the iteration to adapt to the new
situation. Note that the algorithm needed a few iterations to correct the highlights.

second walkthrough on a 2GHz Pentiumr4 computer if only three iterations are per-

formed in each frame. Since the errors in subsequent frames are highly correlated,

the error due to the small iteration number is not noticeable for the user. Thanks to

the spatial finite-element representation, there is no dot noise, and the frame rate is

practically independent of the image resolution (we rendered the images at 800× 800

resolution). When the user stops, the algorithm needs only one second to converge

to the final image.

7.4 Radiance updates in general animation

In general animations objects may move and the emission of the light sources may

change, which modifies the rendering equation. At the beginning of a frame the scene

is represented by rendering equation L = Le + T L, and the approximation of its

solution is available. Because of the changes of object properties, the new situation is

described by a new light transfer operator Tnew and a new emission function Le
new in

the next frame. The new radiance function Lnew will be the solution of the updated

rendering equation:

Lnew = Le
new + TnewLnew.

Theoretically, we could continue the iteration with the new light transfer operator

supposing the previous solution as the initial value, and the radiance will converge

to the new solution. However, this is often not fast enough in animation sequences.

Shadows may be visible in their old position for a few seconds. In order to avoid

7.5. SUMMARY 100

this, when objects move, we switch to a special iteration mode to quickly correct the

radiance where it changed significantly.

Let us denote the difference of the new and the old radiance functions by ∆L =

Lnew − L. Subtracting the old version of the rendering equation from the new one,

we obtain:

∆L = (Le
new − Le + TnewL− T L) + Tnew∆L.

We got an equation for ∆L, which is formally similar to the original rendering equation

with the following light source term

Le∗ = Le
new − Le + TnewL− T L.

It means that the same iteration algorithm can be continued to compute the change

of the radiance function with this modified light source term. In order to work

with the new light source term, the radiance transfer of each iteration cycle should

be computed twice. First, placing objects at their original positions, the original

radiance is transferred with negative sign (i.e. term −T L of Le∗ is computed). Then,

having moved the objects to their new positions, the new radiance is transferred with

positive sign (i.e. TnewL + Tnew∆L = Tnew(L + ∆L) is calculated).

These double transfers quickly update the illumination according to the new situ-

ation and after a few iterations, the shadows and highlights are moved to their new

positions. At the end of this special iteration phase, the computed ∆L increments

are added to the stored radiance representation (i.e. to the main part and to the sca-

ling factor). In order to further refine the results, the algorithm switches back to the

normal stochastic iteration scheme and iterates according to formula Le
new+TnewLnew.

7.4.1 Results

Figure 7.3 shows two displayed images and temporary results of an object animation.

The scene consists of 20 thousand patches. The stripes of the egg have (0.1, 0.2, 0.7)

and (0.8, 0.04, 0.04) diffuse albedos, 0.14 specular albedo, and the shininess values are

9 and 11, respectively. The rabbit’s diffuse albedo is (0.16, 0.19, 0.63), the specular

albedo is 0.15, and the shininess is 9. The animation speed depends on the number

of special iterations made to update the radiance. We have found that 10 iterations

provide good images, which results in 1 frames per second. In interactive applications,

however, users require a prompt response from the system, thus accuracy should be

traded for speed. This is possible if the iteration number in the update cycles is

reduced.

7.5 Summary

In this chapter we propose a random radiance representation scheme and an anima-

tion approach that can exploit both space and time coherence. This representation

7.5. SUMMARY 101

old after moving the object

end of adaptation continuing the iteration

Figure 7.3: The first and last images show two frames of an object animation rendered
at 1 frame per second on a Pentiumr4 2GHz computer. The two other images are
not seen by the user, but demonstrate the roles of the adaptation phase.

7.5. SUMMARY 102

requires just a few values per patch, thus the storage requirement is modest, it is close

to the storage need of a diffuse radiosity algorithm, although the proposed method is

also good for glossy scenes. If the surfaces are not highly specular, the variance caused

by the randomization is small due to the applied main part separation and the appli-

cation of Metropolis sampling to maintain a constant luminance. Thus we can get fast

initial convergence of finite-element based iteration methods without their prohibitive

memory requirements. The used stochastic iteration algorithm combines three ran-

dom radiance transport methods based on multiple importance sampling. This novel

combined strategy preserves the advantages of local and global light transfers, and

eliminates the corner problem of local shooting and the necessity of first shot of global

sampling. The combined method is able to render moderately complex glossy scenes

with the speed required by interactive systems. The application of parallel and pers-

pective ray-bundles not only resulted in an effective global illumination algorithm,

but proved to be really powerful to detect where the radiance function should be

updated in an animation sequence.

Highly specular surfaces pose problems for this approach since they increase the

variance of the random radiance representation and require higher tessellation levels

to reconstruct the quickly changing radiance in the highlights. Fortunately, stochastic

iteration applying bundles performs well on scenes containing a lot of patches. The

rasterization and the radiance transfer through the pixels of the buffers are the bot-

tlenecks of the computation, and not the geometric transformations (the rasterization

time does not change if the patches are tessellated further, and the number of required

iterations depends on the variation of the radiance function and not on the number of

patches). On the other hand, the spatial finite-element representation eliminates the

objectionable dot-noises and reduces the flickering of other Monte-Carlo algorithms

and makes the algorithms practically independent of the image resolution.

Chapter 8

Conclusion

This dissertation studies a novel global illumination approach – namely the stochastic

iteration – which is so new that it is not yet investigated frequently in the computer

graphics literature. However, this gives good opportunity to refine the basic algorithm

and fill the gaps that was left behind since the first proposal of the algorithm in

[SK99b].

8.1 Contribution of this thesis

The main contribution of this dissertation is the interactive global illumination ani-

mation. According to the Chinese proverb that “The journey of a thousand miles,

starts with a single step.”, we achieve our big main goal by making separate steps.

The first thesis – that is detailed in chapter 3 – can be considered as a sidetrack,

since it deals width one detail of the random walk global illumination approach,

namely the optimal survival probability of the Russian roulette. The study can be

used also in other scientific areas, because Russian roulette is a general technique used

in Monte-Carlo methods. The rest of the dissertation focuses strictly on stochastic

iteration methods. I summarize the contribution of this dissertation in the following:

Thesis 1: Russian roulette optimization ([P1]):

I have analyzed the possibility of optimizing Russian roulette that is used in

random walk algorithms for calculating the infinite Neumann series. I have proved

that the local albedo that is usually used for the surviving probability is not optimal,

but the optimal probability lies between the local albedo and 1. The more homogenous

the radiance of the scene, the optimal probability is closer to 1.

Thesis 2: Extended parallel ray-bundle iteration ([P2]):

I have worked out a method for improving parallel ray-bundle iteration. The new

algorithm subdivides the radiance function into a finite-element component and into

a Monte-Carlo component, therefore the global illumination problem is decomposed

into a simple finite-element problem and into a low variance Monte-Carlo problem.

103

8.2. NEW RESEARCH DIRECTIONS 104

The Monte-Carlo part is responsible for building the finite-elements, on the other

hand, the finite element part reduces the variance of the Monte-Carlo component.

The method is similar to the classic main part separation. The difference in this

case is that the main part is not known and it cannot be integrated in a closed form.

Therefore the main part is generated adaptively by Monte-Carlo quadrature. I applied

the general mathematical scheme to the ray-bundle stochastic iteration algorithm and

came to the conclusion that it improves the rendering speed.

Thesis 3: Perspective ray-bundle iteration ([P3]):

I generalized the hemicube based diffuse radiosity for specular scenes. The new

algorithm suits into the stochastic iteration framework. Furthermore, I extended this

basic perspective ray-bundle iteration by importance sampling, random selection of

hemicube sides, constant radiance term and by introducing a special controllable bias

that results significant variance reduction.

Thesis 4: Combination of ray-bundle based strategies ([P4, P5, P6, P7]):

I combined different methods based on stochastic iteration. At first I modified the

method of multiple importance sampling for being applicable to iteration algorithms.

I combined three algorithms: parallel ray bundles with software z-buffer, parallel ray-

bundles with hardware z-buffer and perspective ray-bundles. The combined method

preserves the advantages and eliminates the drawbacks of the underlying techniques.

It is not only effective if the scene consists of patches of similar radiance but also if

one or several patches are much brighter than the others.

Thesis 5: Ray-bundle based global illumination animation ([P8, P9]):

I extended the combined algorithm and achieved walkthrough and general ani-

mation with interactive speed on a single computer. I worked out a special iteration

phase for updating the radiance after moving dynamic objects.

8.2 New research directions

As with any other work there are always things and ideas that are left untried or

unimplemented. Some possible directions – in which the work in this thesis can be

continued – are gathered together here.

It would be possible to extend the ray-bundle iteration by using BTF (Bidirec-

tional Texture Function) instead of BRDF. In this way the points across the surface

of the patches can have different colors, which could not only improve the direct

illumination in the rendering, but the textures should play important rule in inter-

reflection calculations also, which would result nice effects like the reflection of a

texture painting on a glossy surface.

Other enhancements for the parallel ray-bundle iteration are also possible. The

8.3. A FINAL WORD 105

transillumination directions are sampled uniformly, which is not a necessity. Direc-

tions can be generated by any probability distribution function. It would be advan-

tageous to consider importance sampling which prefer those directions that convey

more energy. For improving the rendering of visible specular surfaces, it should pre-

fer those directions which would possible generate the perfect mirror directions when

reflected towards the eye. This view dependent importance sampling for transillumi-

nation direction should improve the rendering of nearly perfect visible mirrors.

The rendering equation proposed by Kajiya considers only surfaces and assumes

that the light intensity is not attenuated in the transport between two surfaces. How-

ever, there is a recent trend to extend current global illumination algorithms with

participating media. The parallel ray-bundle iteration can be extended by rendering

partly transparent particle points onto the transillumination buffer. The perspective

ray-bundle and also the combined algorithm require other treatments that we would

like to present in the future.

As with any other global illumination animation, which is based on stochastic

approaches, the temporal aliasing may be annoying to the human observer. This

sometimes occurs as flickering, darkening and lightening the colors of the surfaces in

the successive frames. The offline animation algorithms try to handle this by using the

same random numbers or low discrepancy sequences for each frame. In our algorithm

the main part separation is effective for reducing the temporal aliasing. However,

other anti-aliasing techniques would further improve the rendering.

It is a general technique to decompose the lighting distribution into direct and in-

direct parts. The radiance caused by the indirect illumination should be computed by

ray-bundle based stochastic iteration and the direct illuminations should be generated

using the graphics card by placing point light sources in the scene. We successfully

used this decomposition in the parallel ray-bundle iteration in static environments.

However, enhancing the combined iteration proposed for dynamic environments is

straightforward and could result faster generation of image sequences.

The parallel approach – even with a small number of computers – is an effective

way to produce speedup. It is very likely that the first real-time global illumination

methods will be distributed applications. Since parallel ray-bundle iteration can be

modified for running on more than one CPU, we should consider implementing our

combined ray-bundle method to run in distributed environment.

8.3 A final word

We think that stochastic iteration has a bright future and with the help of this work

it is getting wider publicity among the computer graphics scientist. On the user side,

there are high demands – especially among the people working in the CAD industry

or in architectural design – for very fast and very realistic rendering. Our belief is that

computer graphics is marching on the road which eventually leads to real-time global

8.3. A FINAL WORD 106

illumination for complex scenes. In the future we will surely get there. However, they

are still many snags and challenges to overcome. This dissertation is aimed to step

forward on this road.

Appendix A

Framework for global illumination
algorithms

This appendix describes a rendering framework called RenderX for testing and imple-

menting global illumination methods. We started to build the rendering framework 4

years ago by supporting the implementation needs of our computer graphics research.

We named the system RenderX. The system has been developed by Ferenc Csonka,

Balázs Benedek, László Szécsi, Gábor Sźıjártó and László Kovács and supervised by

the author of this dissertation. This architecture facilitates in the realization of exis-

ting algorithms and in the development of new techniques, since it frees programmers

and researchers from implementing an entire system, thus enables them to focus only

on those areas that they are interested in. The system is built on an object ori-

ented basis, therefore it is flexible and can be extended easily. Compared to other

frameworks, a unique feature of our system is that it supports both types of global

illumination techniques, namely the random walk and the finite-element approaches.

To illustrate the strength of the framework, we implemented and compared existing

and newly developed rendering methods for global illumination. The pseudo-code

for global illumination algorithms are briefly revisited and the implementation issues

together with the rendering results are presented in this chapter.

A.1 Introduction

In recent years computer graphics researchers have paid a lot of efforts for trying the

usefulness of their algorithms in practice. Most of the authors implement a complete

software package for their published paper. However, this has two major drawbacks.

At first, this requires unnecessarily too much work for the researcher, since he spends

a lot of time for debugging his source code. On the other hand, comparing the results

of the different rendering strategies is not possible.

Using a framework, which is a test-bed for the realization of many global illu-

mination algorithms is inevitable. The most important feature of such a rendering

107

A.2. PREVIOUS WORK 108

framework is the open-source nature. Thus rendering systems which are given as a

compiled binary (DLL) and accessible through just an API are not feasible.

A.2 Previous work

There are several existing systems that enable researchers to construct their algo-

rithms and compare it to other methods. Usually the implementation is started by a

single researcher and after the first initial steps the system was extended by a team.

The Vision system [Slu95] was developed in the context of a PhD thesis in 1995. It

contains software components, which communicate by the CORBA protocol. Vision

considers a physically based object-oriented decomposition of the rendering process.

The Abstract Rendering Toolkit [Tob98] (ART) is the product of the Vienna

University of Technology. The group promised to release the first public beta in

2001, but until now the source code is not accessible on the Internet, only for the

researchers of the Vienna group. Therefore we do not have a chance to inspect their

system or compare it with our framework.

The state-of-the-art is definitely the RenderPark [Bek93] system. The develop-

ment was started by Philippe Bekaert as a test-bed for his research in 1997. Since

then it has become famous, and it is used mostly in the Max Planck Institute in

Saarbrücken. The strength of RenderPark is its extensive usage of radiosity algo-

rithms.

The EFFIGI [LW00] (An Efficient Framework For Implementing Global Illumi-

nation) system is new a player on the field. Breaking the tradition, this framework is

built on a completely new concept. It is constructed by the Image Synthesis Group

of the Trinity College Dublin. The system is built on COM (Component Object

Model), which is a robust protocol for connecting software components. Because of

that, the unique feature of EFFIGI is that it is not restricted to a single programming

language.

In spite of the limitation as a robust rendering framework, the open-source PovRay

[Pov] should be also mentioned here. It is useful only for implementing random walk

type global illumination algorithms.

A.3 The component architecture

This section presents a general overview of the structure of the RenderX framework.

We identify the basic subsystems that are needed for the rendering process. Note

that we just study the core of the system here, and we do not consider, for example,

the user interface classes. The user interface subsystem can contain more classes then

all other subsystems in our framework. They are usually reached via an API (Motif,

QT, MFC).

A.3. THE COMPONENT ARCHITECTURE 109

The framework presented in this paper tries to achieve the following goals:

• enable code sharing and reuse,

• as generic and flexible as possible,

• easy to understand,

• there is no fixed rendering algorithm,

• efficient,

• open source,

• the user is not required to learn the entire core, just the part of interest.

A.3.1 Geometry subsystem

When designing the components in the rendering architecture, at first the basic build-

ing blocks of the system must be identified.

Some utility classes were obviously needed: points, vectors of different lengths,

colors, matrices. It is possible to use off-the-self solutions for these basic entities, but

for flexibility issues, in our framework we realized our own classes. The geometry

subsystem is responsible for defining surfaces (or volumes also). Since there are

many different techniques for representing surfaces (poligons, NURBSs, etc.), we

should derive many surface classes from an abstract surface parent class. However,

for efficiency reasons (hardware acceleration) we currently support only the triangle

primitive, which is realized in the CPatch class. On the other hand, introducing other

surface types into the system is not difficult.

Another basic utility class is the ray class, represented by a unit-vector and the

point of origin. The aim is to choose the interfaces in a way that the rendering

methods can be designed independently from the representation of the scene (type

of geometrical primitives) and the underlying algorithms. Heckbert observed that

geometrical primitives share a common interface for ray-tracing systems. Kirk and

Arvo has generalized this idea [AK89], and observed that the ray-object intersection

structures (regular grid, octree, BSP-tree, kd-tree) can also be hidden into a common

interface. In RenderX we support both the octree and the kd-tree data structures.

Because of the speed advantage, the kd-tree is the default data structure.

A.3.2 Shader subsystem

This subsystem describes the reflection of light at a point of the surface. This descrip-

tion is independent from the actual representation of the geometric objects. Usually,

the shader is responsible to store the BSDF (Bidirectional Scattering Distribution

A.3. THE COMPONENT ARCHITECTURE 110

Geometry View

Shader

Scene

Rendering Algorithms

Vector
Rgb
Patch
Kd-tree
Path
PathNode
HitRec

Material
Brdf
Bsdf
Edf

Camera
ScreenBuffer
ToneMapper

Importer
Exporter

Figure A.1: The component diagram of the RenderX architecture and the most im-
portant classes

Function). The BRDF (Bidirectional Reflectance Distribution Function) is a sim-

plified BSDF, which does not include transmittance. The subsystem is built on the

CMaterial class that represents an abstract material type. The material consists of

a CBrdf and a CEdf (Emittance Distribution Function) class. The abstract CBrdf

can hide any type of BRDFs from its realization. For example, we usually use the

CPhongBrdf, which describes a Phong type specular shader. Other shaders (like

Cook-Torrance) can be easily added to the framework. We consider the area ligh-

sources as common surfaces with materials, which has a CEdf component. The most

feasible Edf uses cosine distribution for emitting light. In spite of the fact that the

point light sources are physically impossible to exist, they are also allowed in the

system. They are stored separately and can be considered by the rendering method.

A.3.3 View subsystem

In the geometry and shader subsystems we determined what is to be rendered. In

this section we specify what kind of image generation we need. The view subsystem

defines one particular view of the scene, which corresponds to one particular image.

A single scene can also have multiple Camera objects, in which case it is possible to

switch between them. This subsystem is mainly defined by the Camera object. In

our system we assume the pinhole camera model, so the Camera object contains the

position, viewing and up direction, focal distance, field of view angles, distances of

the two cutting planes and image resolution.

A.3. THE COMPONENT ARCHITECTURE 111

The ScreenBuffer corresponds to the final stage of the image generation process.

The concept of ScreenBuffer in RenderX is a rectangular array of pixels with a given

width and height and 3 channels for each pixels. It contains a radiance map and color

map. Radiance map contains radiance values, which are the result of a rendering

algorithm. Color map contains the quantized [0..255] values of the radiance map.

The quantization is made by the ToneMapper object before displaying the image.

Different tonemapping techniques can be applied by deriving a new tonemapper from

the abstract ToneMapper class.

A.3.4 Scene subsystem

In contrast to the previous subsystems, this subsystem does not describe parts of

the scene, rather it helps organizing the scene description. This subsystem contains

helper classes, which are cardinal in the system. One corresponds to building up the

scene from a scene description file. These are the so called Importer classes. They

build the geometry, shader and view subsystems. In our framework there are 3 types

of them. The VRMLReader can read VRML2.0 scene files, the 3DSReader reads 3D

Studio files and the SCEReader reads scenes files saved by ArchiCAD.

The output of the rendering is the final image, so the exporters are also important

in a rendering architecture. The RenderX currently supports BMP, TGA and PNG

file formats.

A.3.5 Rendering algorithm subsystem

If there is a hierarchy, this subsystem is on the top of the others. Different rendering

algorithms can be implemented by deriving a subclass from the RenderingAlg abstract

class and call the StartRender() method of the instance. Since the RenderX support

multi-threading, it is desirable – and it is the default – that the StartRender() is called

in a different thread of the process. At first it allows running different algorithms

parallel and another advantage is that the user does not loose the feedback and

interactivity when starting a single algorithm.

A.3.6 Implementation

The implemented user interface consists a preview window (drawn by OpenGL) al-

ways open, where the user can interactively navigate through the scene. When he

selects a rendering algorithm another sub-window opens and the global illumination

algorithm starts in a different thread. The user can still navigate in the preview

window or select other menus with other rendering algorithms.

The complete RenderX architecture is written in C++ [Sou97] and currently con-

sists about 50 classes. The scene walkthrough mode allows the user to interactively

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 112

move in the scene, which is implemented using the OpenGL 1.3 API. The user inter-

face is implemented using the MFC (Microsoft Foundation Classes) API.

A.4 Algorithms for the RenderX architecture

In order to show the strength of the framework, we implemented the most common

global illumination algorithms [SK99a]. We introduce briefly the pseudo-code here,

present implementation issues and show the final images. The images were usually

rendered in 600x600 resolution using PentiumrIII 1.4 Ghz computer.

A.4.1 Gathering algorithms

In the next sections, a number of practical random walk algorithms are reviewed.

The primary classification of random walk algorithms is based on the direction of

generated rays. If the walks are started at the eye and go opposite to the light, then

the algorithm is called gathering. On the other hand, if the walks originate at the

light sources and go in the direction of the light, then the algorithm is called shooting.
The general structure of all random walk type gathering algorithms is:

for (each pixel p) {
color = 0
for (i = 1 to N) {

ray = sample ray randomly from the eye through pixel p
samplecolor = c · Trace(ray)
color += samplecolor/N

}
SetPixel(p, color)

}

A.4.2 Ray-casting

Ray-casting is a local-illumination algorithm of type LDE (see section 2.3), which
replaces the unknown radiance inside the integral of the rendering equation by the
emission function. The “Trace” function of ray-casting is:

Trace(ray) {
(object, ~x) = FirstIntersect(ray)
if (no intersection)

return Lsky

color = Le(~x, -ray.dir) + DirectLight(~x, -ray.dir) + Ambient()
return color

}

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 113

Eye

window

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Figure A.2: Ray-casting

In this algorithm Lsky is the radiance of background illumination (e.g. sky),

“FirstIntersect” is responsible for finding that object which is first intersected by the

ray and also the intersection point.

Figure A.3: Alien meets R2D2 in the Cornell-box

“DirectLight”, on the other hand, computes an estimate of the single reflection of

the light originated from the light sources, which happens at point ~x into the given

direction. It is achieved by following shadow rays (see in figure A.2), and it is easy to

perform, when the scene contains only point light sources. In order to handle area light

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 114

sources, Monte-Carlo integration can be used, which selects N uniformly distributed

~yi samples on the light source area and accumulates the radiance contribution of the

samples.

Without the ”Ambient” term, the directly not illuminated surfaces are completely

black. This is not suitable for final images, so a simple constant estimation (ambient)

for the indirect illumination is added to the final color.

The R2D2 image rendered with this method can be seen in figure A.3. The scene

consists of 22K patches and the rendering time was 8 seconds.

A.4.3 Path tracing

The path tracing is a special case of stochastic ray tracing (see section 2.4.2 for

details). It is a traditional Monte-Carlo approach for global illumination, and it is

based on the multi-dimensional integral formulation of the rendering equation.

This method creates a path history for a single particle interacting with the envi-

ronment until absorption using BRDF sampling and Russian roulette. Rather than

spawning new rays at each intersection, it chooses a random direction according to

a density pi which is approximately proportional to the BRDF of the surface. The

walk is continued with a probability of the albedo (Russian roulette).

The measured value of a single path is

P = c · (L1 + L2 + L3 + . . .).

where Li is the radiance estimate of the subpath of length i.

This estimate has very high variation if the light sources are small. This problem

can be solved if light source sampling is combined with the gathering walk, which

means that at each visited point the effects of the light sources are estimated.
The implementation of the “Trace” function of path tracing is:

Trace(ray) {
(object, ~x) = FirstIntersect(ray)
if (no intersection)

return Lsky

color = Le(~x, -ray.dir)+ DirectLight(~x, -ray.dir)
prob = BRDFSampling(-ray.dir, normal, newRay)
if (prob = 0)

return color
color +=Trace(newRay)·w(newRay.dir, normal, -ray.dir)/prob
return color

}

In this program “BRDFSampling” finds a new direction or if it returns 0, then it

has decided that the walk has to be stopped because of Russian-roulette. Note that

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 115

Figure A.4: Image rendered with path tracing

this algorithm generates all but the last directions of the path by BRDF sampling

and the last is obtained by light source sampling. Thus if the surface is shiny (close

to ideal mirror or ideal refractor), then the quality of the light source importance

sampling can be quite bad. Since almost ideal surfaces close to the light sources are

responsible for caustics, path tracing — as other gathering type algorithms — is poor

in rendering caustics effects.

An architectural scene rendered with path tracing can be seen in figure A.4. The

scene consists of 15K patches and the rendering time was 1.5 hours.

A.4.4 Bidirectional path tracing

Bidirectional path tracing (see section 2.4.4 for details) initiates paths at the same

time from a selected light source and from the camera. After some steps, either

a single deterministic shadow ray is used to connect the two types of walks, or all

points of the gathering walk are connected to all points of the shooting walk using

deterministic rays. If the deterministic shadow ray detects that the two points are

occluded from each other, then the contribution of this path is zero.

An architectural scene rendered with an extended type of bidirectional path tra-

cing which uses dependent tests for filtering [P20] can be seen in figure A.5. The

scene consists of 20K patches and the rendering time was 30 minutes.

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 116

Figure A.5: Image rendered with bidirectional path tracing

A.4.5 Metropolis light transport

Metropolis method (see section 2.4.5 for details), generates samples by perturbing the

previous path, thus this method expected to be better than blind bidirectional path

tracing for difficult lighting conditions.

Figure A.6 was generated by the Metropolis algorithm. The average computation

time of a single mutation took 0.005 msec on a PentiumrIII 1.4 Ghz computer.

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 117

Figure A.6: Image rendered with the Metropolis Light Transport

A.4.6 Photon map

Bidirectional path tracing connects a single gathering walk to a single shooting walk.

However, if the effects of all shooting walks could be stored, then when a new gathering

walk is computed, it could be connected to all of the shooting walks simultaneously,

which can significantly increase the number of samples in the integral quadrature.

This is exactly what Jensen [Jen96] proposed, also giving the definition of a data

structure, called the photon-map (see section 2.4.6 for details) which can efficiently

store the effects of many shooting walks.

A photon map is a collection of photon hits at the visited points of the paths

generated in the shooting phase of the algorithm.

The photon-map is organized in a kd-tree to support efficient retrieval. A photon

hit is stored with the power of the photon on different wavelengths, position, direction

of arrival and with the surface normal.

The algorithm has thus three phases:

• Photon tracing.

• Sorting the photon map and balancing the kd-tree.

• Final gathering, which uses a standard ray-tracing to collect information from

the photon map.

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 118

Figure A.7: Image rendered with the Photon Map method

In figure A.7 the “fighting animals” scene can be seen. This image is the result of

the direct visualization of the photon map. Note the bumping artifacts on the image.

A better image quality can be achieved by performing direct light source computation

first, and using the photon map just for the indirect illumination. The rendering time

of the scene (21K patches) took 50 minutes.

A.4.7 Parallel ray-bundle iteration

This dissertation is based on the careful implementation of stochastic iteration algo-

rithms. The parallel ray-bundle iteration was detailed in chapter 4. For the sake of

completeness we mention this type of algorithm also here.

An architectural scene is presented in figure A.8. The scene has 15K patches.

As all types of object space rendering algorithm strongly exploits coherence, it is

no surprise that the rendering time was 150 seconds for this scene. Note that the

rendering time is not affected by the resolution of the image.

A.4. ALGORITHMS FOR THE RENDERX ARCHITECTURE 119

Figure A.8: Architectural scene rendered with parallel ray-bundle iteration

A.4.8 Perspective ray-bundle iteration

The list of implemented stochastic iteration algorithms is continued. The perspective

ray-bundle iteration – as one of the results of this thesis – was described in chapter 5.

The architectural scene presented in figure A.9 consists 30K patches. The direct

illumination is calculated separately by sampling points on area light sources. This

is a costly process, so the rendering time is 3 minutes. The Soutpark scene has the

same properties. As in the previous algorithm, the rendering time is not affected by

the resolution of the image.

A.4.9 Others

Besides the presented algorithms, many other global illumination methods were also

tried and tested within this framework. Most of them is provably unbiased combina-

tion of these methods. Some of them are extensions of the presented methods.

Like in other software package developments, there are always ideas to be left

unimplemented giving ammunition for future work. The system does not yet give

full support for texture mapping. First of all this should be implemented. It would

be also desirable to introduce a Sampler abstract class, therefore the many types of

stratification methods could be tried easily.

A.5. SUMMARY 120

Figure A.9: Architectural scene and Eric Cartmen from Southpark rendered with
Perspective Ray-bundle Iteration

A.5 Summary

In this appendix we have presented a rendering framework which is successful for

implementing many of the latest photorealistic image synthesis algorithms. The pro-

grammer can experiment with various ideas (different BRDFs, different ray-object in-

tersection methods), without significantly alter the source code. Since the framework

has great flexibility and the components support code reuse, the RenderX package is

definitely a powerful rendering environment.

Publications

Directly related to theses

[P1] György Antal, László Szirmay-Kalos: Finding Good Termination Probability

for Random-Walks. Proceedings of Spring Conference on Computer Graphics,

pp. 205–211, 2000

[P2] László Szirmay-Kalos, Ferenc Csonka, György Antal: Global Illumination as a

Combination of Continuous Random Walk and Finite Element Based Iteration.

Computer Graphics Forum (Eurographics 2001), Vol. 20, No. 3, pp. 288–298,

2001

[P3] György Antal, László Szirmay-Kalos, Ferenc Csonka: Hemicube Shooting for

Non-Diffuse Global Illumination. Proceedings of Spring Conference on Com-

puter Graphics, IEEE Computer Society, pp. 81–88, 2002 (best paper award:

first prize)

[P4] György Antal, László Szirmay-Kalos, Ferenc Csonka: Multiple Strategy

Stochastic Iteration For Architectural Walkthroughs. Computers & Graph-

ics, Elsevier Journal, Vol. 26, No. 3., pp. 192–198, 2003.

[P5] György Antal, László Szirmay-Kalos, Ferenc Csonka, Csaba Kelemen: Mul-

tiple Strategy Stochastic Iteration for Architectural Walkthroughs. Dagstuhl

Seminar on Monte-Carlo Methods in Rendering, 2001

[P6] György Antal, László Szirmay-Kalos, Ferenc Csonka, Csaba Kele-

men: Multiple Strategy Stochastic Iteration for Architectural

Walkthroughs. Technical Report, TR-186-2-01-17, Vienna, 2001,

http://www.cg.tuwien.ac.at/research/TR/

[P7] György Antal, Ferenc Csonka: Combining Global and Local Global-

-Illumination Algorithms. Proceedings of Spring Conference on Computer

Graphics, pp. 199–206, 2003, (best paper award: third prize)

121

PUBLICATIONS 122

[P8] György Antal, Balázs Benedek, Ferenc Csonka: Global Illumination Anima-

tion with Ray Bundle Iteration. Proceedings of the 2nd Hungarian Conference

on Computer Graphics, pp. 205–213, 2003

[P9] László Szirmay-Kalos, György Antal, Balázs Benedek: Global Illumination

Animation with Random Radiance Representation. Rendering Techniques’03,

(Eurographics Symposium on Rendering), Editors : P. Christensen, D. Cohen-

Or, pp. 64–73, 2003

Books or part of books

[P10] László Szirmay-Kalos, György Antal: Metropolis Sampling in Random Walk

Global Illumination Algorithms. appears in book ”Graphics Programming

Methods”, (edited by Jeff Lander), Charles River Media, 2003.

[P11] Szirmay-Kalos László, Antal György, Csonka Ferenc: Háromdimenziós grafika,

animáció és játékfejlesztés. (book in Hungarian) ComputerBooks, 2003

[P12] Antal György: Java3D. (book chapter) Nyéky J. et al. ed. Java 2 útikalauz

programozóknak, ELTE TTK Hallgatói Alaṕıtvány, Budapest, Hungary, 1999.

pp. (II)364–422, (III)362-494.

Other publications in the topic of the dissertation

[P13] György Antal, Ferenc Csonka: An Efficient And Robust Framework for Global

Illumination Algorithms. Proceedings of 1st Hungarian Conference on Com-

puter Graphics, pp. 198–206, 2002

[P14] Csaba Kelemen, László Szirmay-Kalos, György Antal, Ferenc Csonka: Sim-

ple and Robust Mutation Strategy for Metropolis Light Transport Algorithm.

Computer Graphics Forum (Eurographics 2002), Vol. 21., No. 3, 2002

[P15] Ferenc Csonka, László Szirmay-Kalos, György Antal: Generalized Multiple

Importance Sampling for Monte-Carlo Global Illumination. Machine Graphics

and Vision, Vol. 11, No. 4, 2002

[P16] György Antal, László Szirmay-Kalos, Ferenc Csonka: Weighted Multipass

Method Based on Stochastic Iteration and Random Walk Methods. Proceed-

ings of Winter School Of Computer Graphics Conference, pp. 24–31, 2002

[P17] Balázs Benedek, László Szirmay-Kalos, György Antal: Weighted Importance

Sampling in Shooting Algorithms. Proceedings of Spring Conference on Com-

puter Graphics, pp. 192–198, 2003

PUBLICATIONS 123

[P18] László Szirmay-Kalos, György Antal, Mateu Sbert: Progressive Light Path

Development. Proceedings of Winter School of Computer Graphics Conf., pp.

411–418, 2001

[P19] Ferenc Csonka, László Szirmay-Kalos György Antal: Cost-Driven Multiple

Importance Sampling for Monte-Carlo Rendering. MCM Conference, Salzburg,

2001

[P20] Ferenc Csonka, László Szirmay-Kalos, Csaba Kelemen, György Antal: Depen-

dent Tests driven Filtering in Monte-Carlo Global Illumination. Eurographics

Conference, 2002

[P21] Ferenc Csonka, György Antal: A Multi-Phase Energy Preserving Filtering

Method for Architectural Scenes. Proceedings of 1st Hungarian Conference on

Computer Graphics, pp. 189–197, 2002

[P22] Csonka Ferenc, Antal György: Sztochasztikus iteráció fényelnyelő közegben.

Proceedings of 2nd Hungarian Conference on Computer Graphics, pp. 214–219,

2003

[P23] Ferenc Csonka, László Szirmay-Kalos, György Antal: Cost-Driven Multiple

Importance Sampling for Monte-Carlo Rendering. Technical Report, TR-186-

2-01-19, Vienna, 2001

Bibliography

[AK89] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques.
In Andrew S. Glassner, editor, An Introduction to Ray Tracing, pages
201–262. Academic Press, London, 1989.

[AK90] J. Arvo and D. Kirk. Particle transport and image synthesis. In Com-
puter Graphics (SIGGRAPH ’90 Proceedings), pages 63–66, 1990.

[Bek93] Ph. et al. Bekaert. Renderpark. Technical report, 1993.
http://www.cs.kuleuven.ac.be/cwis/research/graphics/RENDERPARK.

[Bek97] Ph. Bekaert. Error control for radiosity. In Rendering Techniques ’97
(8th Eurographics Workshop on Rendering), Porto, Portugal, 1997.

[Bek99] Ph. Bekaert. Hierarchical and stochastic algorithms for radiosity.
PhD thesis, University of Leuven, 1999. http://www.cs.leuven.ac.be/
cwis/research/graphics/ CGRG.PUBLICATIONS/PHBPPHD.

[BNN+98] Ph. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. Willems.
Hierarchical Monte-Carlo radiosity. In Rendering Techniques ’98, pages
259–268, 1998.

[BP95] Kadi Bouatouch and Sumanta N. Pattanaik. Interactive Walkthrough
Using Particle Tracing. In Rae E. Earnshaw and John A. Vince, edi-
tors, Computer Graphics Developments in Virtual Environments (CG
International ’95 Proceedings), Boston, MA, 1995. Academic Press.

[BP01a] Gonzalo Besuievsky and Xavier Pueyo. Animating radiosity environ-
ments through the multi-frame lighting method. Journal of Visualization
and Computer Graphics, 12:93–106, 2001.

[BP01b] Gonzalo Besuievsky and Xavier Pueyo. A monte carlo method for accele-
rating the computation of animated radiosity sequences. In Proceedings
of Computer Graphics International 2001, pages 201–208, 2001.

[BS96] Gonzalo Besuievsky and Mateu Sbert. The multi-frame lighting method
- a Monte-Carlo based solution for radiosity in dynamic environments.
In Rendering Techniques ’96, pages 185–194, 1996.

124

BIBLIOGRAPHY 125

[BW97] Takács B. and H. Wechsler. A dynamic and multiresolution model of
visual attention and its application to facial landmark detection. In
Computer Vision and Image Understanding, volume 71, 1997.

[BW99] S. Parker B. Walter, G. Drettakis. Interactive rendering using the render
cache. In Rendering Techniques’99 (Proceedings of the 10th Eurographics
Workshop on Rendering), pages 235–246, 1999.

[CCWG88] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A progres-
sive refinement approach to fast radiosity image generation. In Computer
Graphics (SIGGRAPH ’88 Proceedings), pages 75–84, 1988.

[CG85] M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for
complex environments. In Computer Graphics (SIGGRAPH ’85 Pro-
ceedings), pages 31–40, 1985.

[Che90] Shenchang Eric Chen. Incremental Radiosity: An Extension of Progres-
sive Radiosity to an Interactive Image Synthesis System. In Computer
Graphics (ACM SIGGRAPH ’90 Proceedings), volume 24, pages 135–
144, August 1990.

[Chr00] P. Christensen. Faster photon map global illumination. Journal of
Graphics Tools, 4(3):1–10, 2000.

[CJ02] Mike Cammarano and Henrik Wann Jensen. Time dependent photon
mapping. In Rendering Techniques 2002 (Proceedings of the Thirteenth
Eurographics Workshop on Rendering), June 2002.

[CLSS97] P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clus-
tering for glossy global illumination. ACM Transactions on Graphics,
16(1):3–33, 1997.

[CMSK97] B. Csébfalvi, G. Márton, and L. Szirmay-Kalos. Fast opacity control of
volumetric CT data. In Winter School of Computer Graphics ’97, pages
79–87, Plzen, Czech Republic, 1997.

[CPC84] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
Computer Graphics (SIGGRAPH ’84 Proceedings), pages 137–145, 1984.

[CS02] D. Chetverikov and D. Stepanov. Robust euclidean alignment of 3d point
sets. In Proc. First Hungarian Conference on Computer Graphics and
Geometry, pages 70–75, Budapest, 2002.

[CSK98] B. Csébfalvi and L. Szirmay-Kalos. Interactive volume rotation. Machine
Graphics and Vision, 7(4):793–806, 1998.

BIBLIOGRAPHY 126

[CSSD96] P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose.
Global illumination of glossy environments using wavelets and impor-
tance. ACM Transactions on Graphics, 15(1):37–71, 1996.

[CW93] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image
Synthesis. CA. Academic Press Professional, San Diego, 1993.

[dB25] Louis de Broglie. Recherches sur la théorie des quanta. Annales de
Physique, 10:22–128, 1925.

[DBMS02] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-Peter Sei-
del. Interactive global illumination using selective photon tracing. In
Rendering Techniques 2002 (Proceedings of the Thirteenth Eurographics
Workshop on Rendering), June 2002.

[DDM02] Cyrille Damez, Kirill Dmitriev, and Karl Myszkowski. Global illumi-
nation for interactive applications and high-quality animations. Euro-
graphics, September 2002. STAR - State of the Art Report.

[DLW93] Ph. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing
with direct computation of pixel intensities. In Compugraphics ’93, pages
128–137, Alvor, 1993.

[DS97] George Drettakis and Francois X. Sillion. Interactive update of global
illumination using a line-space hierarchy. In Computer Graphics (ACM
SIGGRAPH ’97 Proceedings), volume 31, pages 57–64, 1997.

[DS99] Cyrille Damez and Francois Sillion. Space-time hierarchical radiosity. In
Rendering Techniques ’99, pages 235–246, New York, NY, 1999. Springer
Wien.

[DSH01] Cyrille Damez, Francois X. Sillion, and Nicolas Holzschuch. Space-time
hierarchical radiosity with clustering and higher-order wavelets. In Pro-
ceedings of Eurographics 2001, September 2001. Available on Computer
Graphics Forum Volume 20 CD-ROM.

[Dut96] Ph. Dutre. Mathematical Frameworks and Monte Carlo Algorithms for
Global Illumination in Computer Graphics. PhD thesis, Dept. Computer
Science, Faculty of Engineering, Katholieke Universiteit Leuven, Leuven,
1996.

[DW91] Mark A. Z. Dippe and Erling Henry Wold. Stochastic Sampling: Theory
and Application. In George W. Zobrist, editor, Progress in Computer
Graphics. Ablex Publishing, Norwood, NJ, 1991.

[DW94] Ph. Dutre and Y. D. Willems. Importance-driven Monte Carlo light
tracing. In Rendering Techniques’94 (Proceedings of the 5th Eurographics
Workshop on Rendering), 1994.

BIBLIOGRAPHY 127

[DW96] Ph. Dutre and Y. D. Willems. Potential-driven Monte Carlo particle
tracing for diffuse environments with adaptive probability functions. In
Rendering Techniques ’96, pages 306–315, 1996.

[Far97] G. Farin. Curves and Surfaces for Computer-Aided Geometric Design.
Academic Press, San Diego, 1997.

[FSZ98] Dieter Fellner, Stephan Schaefer, and Marco Zens. Parallel Computing:
Fundamentals, Applications and New Directions, volume 12 of Advances
in Parallel Computing, chapter Photorealistic Rendering in Heteroge-
neous Networks. Elsevier Science, 1998. Proceedings of Parallel Com-
puting ’97.

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, Mass.,
1990.

[GD01] Xavier Granier and George Drettakis. Incremental updates for rapid
glossy global illumination. In Computer Graphics Forum (Proceedings of
Eurographics 2001), volume 20, pages 268–277, September 2001.

[GDW00] Xavier Granier, George Drettakis, and Bruce Walter. Fast global illu-
mination including specular effects. In B. Peroche and H. Rushmeier,
editors, Rendering Techniques 2000 (Proceedings of the Eleventh Euro-
graphics Workshop on Rendering), pages 47–58, New York, NY, 2000.
Springer Wien.

[Gla95] Andrew Glassner. Principles of Digital Image Synthesis. Morgan Kauf-
mann Publishers, Inc., San Francisco, 1995.

[Gor93] P. Cohen M. Hanrahan P. Gortler, S. Schröder. Wavelet radiosity. In
Computer Graphics (SIGGRAPH ’93 Proceedings), pages 221–230, 1993.

[GSG90] David W. George, Francois X. Sillion, and Donald P. Greenberg. Radio-
sity Redistribution for Dynamic Environments. IEEE Computer Graph-
ics and Applications, 10(4):26–34, July 1990.

[GTG84] Cindy M. Goral, Kenneth E. Torrance, and Donald P. Greenberg. Mo-
deling the interaction of light between diffuse surfaces. In Computer
Graphics (SIGGRAPH ’84 Proceedings), pages 213–222, 1984.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Ben-
nett Battaile. Modelling the Interaction of Light Between Diffuse Sur-
faces. In Computer Graphics (ACM SIGGRAPH ’84 Proceedings), vol-
ume 18, pages 212–222, July 1984.

BIBLIOGRAPHY 128

[Hec91] P. S. Heckbert. Simulating Global Illumination Using Adaptive Meshing.
PhD thesis, University of California, Berkeley, 1991.

[Hec92] P. S. Heckbert. Discontinuity meshing for radiosity. In Third Eurograph-
ics Workshop on Rendering, pages 203–226, 1992.

[Her91] Ivan Herman. The Use of Projective Geometry in Computer Graphics.
Springer-Verlag, Berlin, 1991.

[HG83] Roy Hall and Donald P. Greenberg. A testbed for realistic image syn-
thesis. IEEE Computer Graphics and Applications, 3(8):10–20, 1983.

[HMF98] M. Hyben, I. Martisovits, and A. Ferko. Scene complexity for rendering
in flatland. In L. Szirmay-Kalos, editor, Spring Conference on Computer
Graphics, pages 112–120, 1998.

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A Rapid Hierar-
chical Radiosity Algorithm. In Computer Graphics (ACM SIGGRAPH
’91 Proceedings), volume 25, pages 197–206, July 1991.

[ICG86] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method
for non-diffuse environments. In Computer Graphics (SIGGRAPH ’86
Proceedings), pages 133–142, 1986.

[IWS02] Carsten Benthin Alexander Keller Ingo Wald, Thomas Kollig and Philipp
Slusallek. Interactive global illumination. In P. Shirley G. Sakas and
S. Müller, editors, Rendering Techniques 2002 (Proceedings of the 13th
Eurographics Workshop on Rendering), pages 9–20, 2002.

[JC98] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light
transport in scenes with participating media using photon maps. ACM
Computers and Graphics (SIGGRAPH ’98 Proceedings), pages 311–320,
1998.

[Jen95] H. W. Jensen. Importance driven path tracing using the photon maps.
In Rendering Techniques ’95, pages 326–335, 1995.

[Jen96] H. W. Jensen. Global illumination using photon maps. In Rendering
Techniques ’96, pages 21–30, 1996.

[JJHL77] F. E. Nicodemus J. C. Richmond J. J. Hsia, I. W. Ginsber and
T. Limperis. Geometrical considerations and nomenclature for re-
flectance. NBS Monograph (U. S. Dept. of Commerce), 1977.

[Kaj86] J. T. Kajiya. The rendering equation. Computer Graphics (SIGGRAPH
’86 Proceedings), pages 143–150, 1986.

BIBLIOGRAPHY 129

[KBSK03] Cs. Kelemen, B. Benedek, and L. Szirmay-Kalos. Bi-directional rays in
global illumination. In WSCG 2003 Conference, Posters, Plzen, 2003.

[Kel97a] Alexander Keller. Instant radiosity. In Computer Graphics (ACM SIG-
GRAPH ’97 Proceedings), volume 31, pages 49–56, 1997.

[Kel97b] Alexander Keller. Quasi-Monte Carlo Methods for Photorealistic Image
Synthesis. PhD thesis, University of Kaiserlautern, ISBN 3-8265-3330-5,
1997.

[Kel99] Alexander Keller. Hierarchical Monte Carlo image synthesis. Technical
Report 298/99, Universität Kaiserslautern, AG Numerische Algorith-
men, 1999. to appear in Mathematics and Computers in Simulation.

[KM99] T. Tawara K. Myszkowski, P. Rokita. Perceptually-informed acceler-
ated rendering of high quality walkthrough sequences. In Rendering
Techniques’99 (Proceedings of the 10th Eurographics Workshop on Ren-
dering), pages 5–18, 1999.

[Kra89] G. Krammer. Notes on the mathematics of the PHIGS output pipeline.
Computer Graphics Forum, 8(8):219–226, 1989.

[Kra03] G. Krammer. Bevezetés a Számı́tógépi grafikába - Jegyzet. ELTE, 2003.
http://krammer.web.elte.hu/eltettk/grafika/jegyzet/.

[Lan91] B. Lantos. Robotok Irányitása. Akadémiai Kiadó, Budapest, Hungary,
1991. (in Hungarian).

[LW93] E. Lafortune and Y. D. Willems. Bi-directional path-tracing. In Com-
pugraphics ’93, pages 145–153, Alvor, 1993.

[LW00] Collins S. Leeson W., O’Sullivan C. EFFIGI. an efficient framework for
implementing global illumination. In Eighth International Conference
in Central Europe on Computer Graphics, Visualization and Interactive
Digital Media (WSCG 2000), 2000.

[MA01] D. Cohen-Or S. Fleishman D. Levin C. Silva M. Alexa, J. Behr. Point
set surfaces. In IEEE Visualization, pages 21–28, 2001.

[MPT99] Igancio Martin, Xavier Pueyo, and Dani Tost. Frame-to-frame coherent
animation with two-pass radiosity. Technical Report IIiA 99-08-RR, In-
stitut d’Informatica i Aplicacions, Universitat de Girona, Girona, Spain,
June 1999.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1091, 1953.

BIBLIOGRAPHY 130

[NDR96a] J. Nimeroff, J. Dorsey, and H. Rushmeier. Implementation and analysis
of a global illumination framework for animated environments. IEEE
Transactions on Visualization and Computer Graphics, 2(4), 1996.

[NDR96b] Jeffry Nimeroff, Julie Dorsey, and Holly Rushmeier. Implementation
and analysis of an image-based global illumination framework for ani-
mated environments. IEEE Transactions on Visualization and Computer
Graphics, 2(4):283–298, December 1996.

[Neu95] L. Neumann. Monte Carlo radiosity. Computing, 55:23–42, 1995.

[Neu01] A. Neumann. Constructions of Bidirectional Reflection Distribution
Functions. PhD thesis, Institute of Computer Graphics and Algorithms,
Technical University of Vienna, Wien, Austria, June 2001. Available
from http://www.cg.tuwien.ac.at/research/theses.

[NFKP94] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. A new stochastic
radiosity method for highly complex scenes. In Proc. of the 5th. EG
Workshop on Rendering, 1994.

[NN89] L. Neumann and A. Neumann. Photosimulation: Interreflection with ar-
bitrary reflectance models and illumination. Computer Graphics Forum,
(8):21–34, 1989.

[NNB+96] A. Neumann, L. Neumann, P. Bekaert, Y. Willems, and W. Purgathofer.
Importance-driven stochastic ray radiosity. In Rendering Techniques ’96,
1996.

[NNPP98] L. Neumann, A. Neumann, J. Prikryl, and W. Purgathofer. The constant
radiance term. Machine Graphics Vision, 7(3):535–549, 1998.

[NNSK98] L. Neumann, A. Neumann, and L. Szirmay-Kalos. New simple re-
flectance models for metals and other specular materials. Technical Re-
port TR-186-2-98-17, Institute of Computer Graphics, Vienna University
of Technology, 1998.

[NNSK99] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Reflectance models
with fast importance sampling. Computer Graphics Forum, 18(4):249–
265, 1999.

[NPT+95] L. Neumann, W. Purgathofer, R. F. Tobler, A. Neumann, P. Elias,
M. Feda, and X. Pueyo. The stochastic ray method for radiosity. In
Rendering Techniques ’95, pages 206–218, 1995.

[Pop87] Gy. Popper. Bevezetés a végeselem-módszer matematikai elméletébe.
BME Mérnöktovábbképző Intézet, Budapest, 1987.

[Pov] PovRay. The persistence of vision raytracer. http://www.povray.org.

BIBLIOGRAPHY 131

[PRE95] D. Play, J.F. Rigal, and T. Endrődy. Feature based geometric modelling
and analysis of multibody mechanical system behaviour. Periodica Poly-
technica (UTBudapest, Ser.Mech.Eng), 39(2):131–15, 1995.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, New York, 1985.

[RN00] Zs. Ruttkay and H. Noot. Solution strategies to produce facial anima-
tions. In Proceedings of the ERCIM/CompulogWorkshop on Constraints,
San Padova, Italy, 2000.

[RV00] G. Renner and J. Vida. Reconstruction of free-from features by genetic
algorithms. In 2000 International CIPRP Design Seminar, pages 411–
416, Haifa, Israel, 2000.

[RVW98] G. Renner, T. Várady, and V. Weiss. Reverse engineering of free-form
features. In PROLAMAT 98, CD proceedings, Trento, 1998.

[SA97] M. Sbert and Brusi A. Comparing finite and biased infinite path length
shooting random walk estimators for radiosity. In Proc. Spring Con-
ference on Computer Graphics (SCCG ’97), Budmerice, Slovakia, 1997.
Comenius University Press.

[SAWG91] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illu-
mination solution for general reflectance distributions. Computer Graph-
ics (SIGGRAPH ’91 Proceedings), 25(4):187–198, 1991.

[Sbe96] Mateu Sbert. The Use of Global Directions to Compute Radiosity. PhD
thesis, Catalan Technical University, Barcelona, 1996.

[Sbe00] M. Sbert. Optimal absorption probabilities for random walk radiosity.
Graphical Models, 62:56–70, 2000.

[SDS95] F. Sillion, G. Drettakis, and C. Soler. Clustering algorithm for radiance
calculation in general environments. In Rendering Techniques ’95, pages
197–205, 1995.

[SGCH93] Peter Schroder, Steven J. Gortler, Michael F. Cohen, and Pat Hanrahan.
Wavelet Projections for Radiosity. In Fourth Eurographics Workshop on
Rendering, number Series EG 93 RW, pages 105–114, Paris, France, June
1993.

[Sil95] François X. Sillion. A unified hierarchical algorithm for global illumina-
tion with scattering volumes and object clusters. IEEE Transactions on
Visualization and Computer Graphics, 3(1), 1995.

BIBLIOGRAPHY 132

[SK98] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumina-
tion. Technical Report TR-186-2-98-21, Institute of Computer Graphics,
Vienna University of Technology, 1998. http://www.cg.tuwien.ac.at.

[SK99a] L. Szirmay-Kalos. Monte-Carlo Methods in Global Illumination. Insti-
tute of Computer Graphics, Vienna University of Technology, Vienna,
1999. http: //www.iit.bme.hu/˜szirmay/script.pdf.

[SK99b] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumina-
tion. Computer Graphics Forum (Eurographics’99), 18(3):233–244, 1999.

[SK00] L. Szirmay-Kalos. Photorealistic Image Synthesis with Ray-Bundles.
Hungarian Academy of Sciences, D.Sc. Dissertation, Budapest, 2000.
http//www.iit.bme.hu/˜szirmay.

[SK03] N. Magnenat-Thalmann S. Kshirsagar. Visyllable based speech anima-
tion. In Computer Graphics Forum (Proceedings of Eurographics 2003),
2003.

[SKe95] L. Szirmay-Kalos (editor). Theory of Three Dimensional
Computer Graphics. Akadémia Kiadó, Budapest, 1995.
http://www.iit.bme.hu/˜szirmay.

[SKF97] L. Szirmay-Kalos and T. Fóris. Radiosity algorithms running in sub-
quadratic time. In Winter School of Computer Graphics ’97, pages 562–
571, Plzen, Czech Republic, 1997.

[SKFNC97] L. Szirmay-Kalos, T. Fóris, L. Neumann, and B. Csébfalvi. An analysis
to quasi-Monte Carlo integration applied to the transillumination radi-
osity method. Computer Graphics Forum (Eurographics’97), 16(3):271–
281, 1997.

[SKSMT00] L. Szirmay-Kalos, M. Sbert, R. Martinez, and R.F. Tobler. Incoming
first-shot for non-diffuse global illumination. In Spring Conference of
Computer Graphics ’00, 2000.

[Slu95] P. Slussalek. Vision. An Architecture for Physically-Based Rendering.
PhD thesis, Universitat Erlangen-Nürnberg, Nürnberg,, 1995.

[Slu97] P. Slussalek. Photo-realistic rendering — recent trends and develop-
ments. In Eurographics ’97, STAR reports, pages 35–57, 1997.

[Sou97] Bjarne Soustroup. The C++ Programming Language. Addison-Wesley,
3rd edition, 1997.

[SP94a] F. Sillion and C. Puech. Radiosity and Global Illumination. Morgan
Kaufmann Publishers, Inc., San Francisco, 1994.

BIBLIOGRAPHY 133

[SP94b] Francois Sillion and Claude Puech. Radiosity and Global Illumination.
Morgan Kaufmann, San Francisco, CA, 1994.

[SSG+99] M. Stamminger, A. Scheel, A. Granier, F. Perez-Cazorla, G. Drettakis,
and F. Sillion. Efficient glossy global illumination with interactive view-
ing. In Graphics Interface’99, Kingston, Ontario, 1999.

[SSG+00] Marc Stamminger, Annette Scheel, Xavier Granier, Frederic Perez-
Cazorla, George Drettakis, and Francois Sillion. Efficient glossy global
illumination with interactive viewing. Computer Graphics Forum,
19(1):13–25, 2000.

[Suy02] Frank Suykens. On robust Monte Carlo algorithms for multi-pass global
illumination. PhD thesis, Dept. Computer Science, Faculty of Engineer-
ing, Katholieke Universiteit Leuven, Leuven, 2002.

[SW99] F. Suykens and Y. D. Willems. Weighted multipass methods for global
illumination. Computer Graphics Forum, 18(3):209–220, 1999.

[Sza95] Zs. Szalavári. Rendering natürlicher atmosphärisher lichteffecte. Techni-
cal report, http://www.cg.tuwien.ac.at/research/rendering/halos, 1995.

[TM93] R. Troutman and N. L. Max. Radiosity algorithms using higher order
finite element methods. In Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), pages 209–212, 1993.

[Tob98] R. F. Tobler. ART — Advanced Rendering Toolkit. Technical report,
1998. http://www.cg.tuwien.ac.at/ reseach/ rendering/ ART.

[TPWG02] Parag Tole, Fabio Pellicini, Bruce Walter, and Donald P. Greenberg.
Interactive global illumination in dynamic scenes. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2002 Annual Conference),
21(3):537–546, 2002.

[UH99] Tushar Udeshi and Charles D. Hansen. Towards interactive photoreal-
istic rendering of indoor scenes: A hybrid approach. In D. Lischinski
and G. W. Larson, editors, Rendering Techniques ’99, pages 63–76, New
York, NY, 1999. Springer Wien.

[Vea97] Eric Veach. Robust Monte Carlo Methods for Light Transport Simula-
tion. PhD thesis, Stanford University, December 1997. Available from
http://graphics.stanford.edu/papers/veach thesis.

[VG94] E. Veach and L. Guibas. Bidirectional estimators for light transport.
In P. Shirley G. Sakas and S. Müller, editors, Photorealistic Rendering
Techniques (Proceedings of the fifth Eurographics Workshop on Render-
ing, pages 147–162, 1994.

BIBLIOGRAPHY 134

[VG95] Eric Veach and Leonidas J. Guibas. Optimally Combining Sampling
Techniques for Monte Carlo Rendering. In Computer Graphics Proceed-
ings, Annual Conference Series, 1995 (ACM SIGGRAPH ’95 Proceed-
ings), pages 419–428, 1995.

[VG97] E. Veach and L. Guibas. Metropolis light transport. Computer Graphics
(SIGGRAPH ’97 Proceedings), pages 65–76, 1997.

[Vid93] J. Vida. Integration of Blends into a Solid Modeller. PhD thesis, Com-
puter and Automation Institute (SZTAKI), Budapest, 1993.

[VMC97] T. Várady, R. R. Martin, and J. Cox. Reverse engineering of geometric
models - an introduction. Computer-Aided Design, 29(4):255–269, 1997.

[Wat99] Alan Watt. 3D Computer Graphics. Addision-Wesley, 3rd edition, 1999.

[WBS02] I. Wald, C. Benthin, and P. Slussalek. Interactive global illumination
using fast ray tracing. In 13th Eurographics Workshop on Rendering,
2002.

[WDG02] Bruce Walter, George Drettakis, and Donald P. Greenberg. Enhancing
and optimizing the render cache. In Rendering Techniques 2002 (Pro-
ceedings of the Thirteenth Eurographics Workshop on Rendering), June
2002.

[Wil01] Alexander Wilkie. Photon Tracing for Complex Environments. PhD
thesis, Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, Wien, Austria, April 2001. Available from
http://www.cg.tuwien.ac.at/research/theses/.

[XSG00] Changyu Xing, Jizhou Sun, and R. L. Grimsdale. Accelerated incremen-
tal radiosity algorithm. Journal of Computer Science and Technology,
15(1):47–55, 2000.

[Yee00] Yang Li Hector Yee. Spatiotemporal sensitivity and visual attention for
efficient rendering of dynamic environments. Master’s thesis, Program
of Computer Graphics, Cornell University, Ithaca, NY, August 2000.

[Zat93] Harold R. Zatz. Galerkin radiosity: A higher-order solution method for
global illumination. In Computer Graphics, Annual Conference Series,
pages 213–220, 1993.

[ZBP99] J. Zaninetti, P. Boy, and B. Peroche. An adaptive method for area
light sources and daylight in ray tracing. Computer Graphics Forum,
18(3):139–150, 1999.

