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Abstract
An interesting way to explore curved spaces is to play games governed by the rules of non-Euclidean geometries. However,
modeling tools and game engines are developed with Euclidean geometry in mind. This paper addresses the problem of porting
a game from Euclidean to elliptic geometry. We consider primarily the geometric calculations and the transformation pipeline.

1. Introduction

Euclidean, elliptic and hyperbolic geometries differ only in the
parallel axiom, i.e., for a given line and point not on the line,
they postulate the existence of exactly one, none, and more than
one non-intersecting line passing through the given point. Visual-
izing non-Euclidean spaces is important in mathematics, cartogra-
phy and art [LR96, GMV15, OCH19]. Image space rendering re-
interprets the definition of a ray according to the geodesics of the
geometry [Gro95, BLV15, VSN20, WBE∗06]. Object space ren-
dering algorithms can be adapted realizing that ignoring metric
properties like distance or angle, projective geometry is a com-
mon ground for all geometries [Wee02, Gun10]. However, anima-
tion of objects and the camera definition involve geometric cal-
culations like the determination of distance, angle and direction,
finding orthogonal directions, and setting up transformation matri-
ces [PG92, HHMS17, MN19].

The objective of this paper is to present a simple method of con-
verting games developed for Euclidean geometry to elliptic geom-
etry. We consider the modification of the matrices in the full trans-
formation pipeline, the conversion of the objects from Euclidean to
elliptic space, and geometric calculations.

2. The embedding space

To examine Euclidean and elliptic geometries analytically, we can
take an outsider’s view, and look at them from a space of one more
dimensions, i.e., we consider the 3D geometries as subsets of a 4D
embedding space. The embedding space is associated with four or-
thogonal unit basis vectors i, j, k, l, and its elements are charac-
terized by four-element row vectors v = (x,y,z,w). The point g of
coordinates (0,0,0,1) is included in both geometries, and is called
the geometry origin to distinguish it from the embedding space ori-
gin of coordinates (0,0,0,0). The 4D embedding space is endowed
with dot product:

〈v1,v2〉= x1x2 + y1y2 + z1z2 +w1w2.

2.1. Euclidean geometry

In the embedding space, the points p = (px, py, pz, pw) of the Eu-
clidean 3D space are identified by equation pw = 1. As vectors
are directions between two points, vectors v of the Euclidean space
have vw = 0. A line defined by points p and q is the intersection
of the 3D Euclidean space and the 2D plane defined by points p,
q and the origin of the embedding space (Figure 1). The 4D space
can also embed the Projective 3D geometry if we consider lines
crossing the origin to be the points of the projective space.

2.2. Elliptic geometry

Points p belong to the elliptic 3D geometry if they are on the unit
3D hyper-sphere defined by equation 〈p,p〉 = 1. Points of the el-
liptic geometry are diameters of the unit hyper-sphere, thus an-
tipodal points (px, py, pz, pw) and (−px,−py,−pz,−pw) are the
same. Treating points as diameters preserves the validity of the Eu-
clidean axiom stating that “two distinct points unambiguously de-
fine a line” also in the spherical structure. Elliptic geometry is in
fact projective geometry with the metric of the sphere. To guaran-
tee that antipodal points provide the same results in calculations,
we take the absolute value of the dot product.

Vectors v are directions that do not point out of the geometry,
thus they must be in the 3D tangent hyperplane called tangent space
of the hyper-sphere at their start. Position vectors of points on an
arbitrary dimensional sphere centered in the origin are orthogonal
to the tangent space, thus vectors should satisfy 〈p,v〉= 0.

A line defined by points p and q is again the intersection of the
3D hyper-sphere and the 2D plane of the embedding space defined
by points p, q and its origin similarly to Euclidean geometry. It
means that lines in Euclidean and elliptic geometries are projec-
tively equivalent assuming the origin of the embedding space to be
the center of projection.

The distance d between points p and q is the angle between their
directions from the origin, i.e. d = cos−1(|〈p,q〉|).
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Figure 1 shows the 2D projective, Euclidean and elliptic geome-
tries in the 3D embedding space. Note that this figure is for anal-
ogy only since we investigate 3D geometries in the 4D embedding
space, which would be hard to visualize.
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Figure 1: 2D Euclidean points are in the pw = 1 plane while ellip-
tic points are on the 〈p,p〉 = 1 sphere. Vectors are in the tangent
plane of their starting point. A line defined by points p and q is on
the plane defined by p, q and the origin. 2D projective geometry
considers the lines crossing the origin to be points of the geometry
to reduce the dimension of the embedding space.

3. Finding a vector that is orthogonal to two other vectors

The calculation of vector v that is orthogonal to two other vectors
a and b is needed in many tasks, including the construction of the
view matrix or the Frenet frame. In Euclidean geometry, the cross
product solves this problem, so we are looking for its appropriate
generalization in elliptic geometry by taking into account that the
result is a vector that should also be in the tangent space of point p
where this calculation is made, i.e., orthogonal to position vector p.
The proposed operation is called the three-operand cross product:

v =⊗(p,a,b) =

∣∣∣∣∣∣∣∣
i j k l

px py pz pw
ax ay az aw
bx by bz bw

∣∣∣∣∣∣∣∣ . (1)

To prove that vector v is indeed perpendicular to the three operands,
let us consider the scalar product of v and an arbitrary vector u:

〈u,v〉=

∣∣∣∣∣∣∣∣
ux uy uz uw
px py pz pw
ax ay az aw
bx by bz bw

∣∣∣∣∣∣∣∣ .
If u were in the subspace of p, a, b, then according to the properties
of determinants, the determinant would be zero, so the dot product
of the result of Eq. 1 and u is zero, indicating that v is in the tangent
space at p and orthogonal to a and b.

4. Transformations and isometries

Our goal is to express transformations as 4× 4 matrix multiplica-
tions, which should map the set of points of the elliptic geometry
onto the same set, and preserve antipodal equivalence. 4× 4 ma-
trices of the O(4) isometry group, where rows are orthogonal unit
vectors, meet this criterion.

4.1. Translation

In Euclidean geometry translating an object means adding the
translation vector to the position vector of the vertices. However, in
elliptic geometry, the allowed vectors depend on the point, thus we
have to find an alternative in the O(4) group. To identify the appro-
priate class of isometries that can be called translations in elliptic
geometry, we consider the intuitive properties. The translation

• is an isometry preserving the dot product and the orientation,
• is defined by point q = (qx,qy,qz,qw) to which the geometry

origin of coordinates g = (0,0,0,1) is translated, and
• should keep the original and modified direction parallel in the

embedding space as much as possible.
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Figure 2: Translation is the composition of two reflections on hy-
perplanes crossing the origin and of normals n1 = (qx,qy,qz,0)
and n2 = q−g, respectively.

Concerning the requirement of isometry and orientation preser-
vation, we are left with 4D rotations or equivalently even number of
reflections. In order to distinguish elliptical translation from ellipti-
cal rotation, we can say that elliptical translations modify the geom-
etry origin and keep the directions as parallel as possible while el-
liptical rotations preserve the geometry origin. Both translation and
rotation can be built of even number of reflections. In Euclidean ge-
ometry, the composition of two reflections is a translation if the two
planes are parallel. In our case, the transformation should preserve
the hyper-sphere, therefore the planes should contain the origin,
thus they cannot be parallel, but we can aim at the closest possible
case. It means that we use planes that are orthogonal to the geodesic
between the geometry origin and target point q. Reflection of point
p on a hyperplane of normal vector n in the 4D embedding space
can be obtained as

p′ = p−2
〈p,n〉
〈n,n〉n (2)

which is a linear operation for p and can thus be expressed as a
matrix multiplication. We use two reflections transforming the ge-
ometry origin g to q (Figure 2). The first hyperplane goes through
the geometry origin and has a normal vector that points into the
direction of q on the sphere, i.e. n1 = (qx,qy,qz,0). The second hy-
perplane is halfway between the geometry origin and point q with
normal vector n2 = q−g. Substituting these into Eq. 2, we obtain:

T(q) =


1− qxqx

1+qw
− qxqy

1+qw
− qxqz

1+qw
−qx

− qyqx
1+qw

1− qyqy
1+qw

− qyqz
1+qw

−qy

− qzqx
1+qw

− qzqy
1+qw

1− qzqz
1+qw

−qz

qx qy qz qw

 .
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The last row of the matrix is the target point q, thus this matrix
indeed translates the geometry origin to this point.

4.2. Rotation

Rotation is also an isometry, but unlike translation, it keeps the ge-
ometry origin at (0,0,0,1). From this, the fourth row of the trans-
formation matrix should also be (0,0,0,1). In case of isometries the
row vectors of the matrix are orthogonal, thus the first three row
vectors must be orthogonal to (0,0,0,1), which means that their
fourth coordinates are zero. So, the structure of the transformation
matrix in elliptic geometry is identical to that of the Euclidean ge-
ometry.

4.3. The view matrix

The camera is defined by eye position e and three orthogonal unit
vectors in the tangent space of the eye, right direction i′, up direc-
tion j′, and negative view direction k′. The orthogonality can be
enforced with the three-operand cross product of Section 3. The
view matrix transforms the coordinates of this basis to the basis at
the geometry origin where the axes are i, j, k, l. The view matrix
can be expressed as

V =


i′x j′x k′x ex
i′y j′y k′y ey
i′z j′z k′z ez
i′w j′w k′w ew

 (3)

To prove that this matrix meets the requirements of the view matrix,
we look at the transformation of the eye position e and the basis
vectors. The eye position is transformed as

e ·V = (〈e, i′〉,〈e, j′〉,〈e,k′〉,〈e,e〉) = (0,0,0,1).

since i′, j′, k′ are in the tangent space of eye position e, and the eye
position is in the elliptic space identified by 〈e,e〉= 1.

The transformation of the right direction i′ is

i′ ·V = (〈i′, i′〉,〈i′, j′〉,〈i′,k′〉,〈i′,e〉) = (1,0,0,0) = i.

The transformation of j′ and k′ is similar.

4.4. The perspective transformation matrix

After the view transformation, the camera is at the geometry origin,
looks at the−z direction, its right direction is axis x and its up direc-
tion is axis y. The visible frustum is defined by field of view angles
δx and δy as well as minimal dmin and maximal dmax distances on
the optical axis, i.e. along the geodesic leaving the geometry origin
in the −z direction. Using OpenGL the GPU assumes that the ver-
tex shader outputs the point in homogeneous coordinates and the
viewing rays are parallel with axis z, and considers a point inside
the frustum if inequalities −w ≤ x,y,z ≤ w are satisfied. Thus, the
perspective transformation should map the selected frustum to the
domain defined by the clipping inequalities.

With a linear transformation of the 4D embedding space,
the 3D hyper-sphere of elliptic geometry is transformed to a
3D hyper-ellipsoid (Figure 3). Let us consider three special
points on the circular optical axis: The eye position is the
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Figure 3: Perspective transformation maps the hyper-sphere to
hyper-ellipsoid preparing the object for GPU clipping and pro-
jection, which interprets embedding coordinates as homogeneous
coordinates.

geometry origin g = (0,0,0,1). The entry point in the view
frustum is (0,0,−sin(dmin),cos(dmin)), and the exit point is
(0,0,−sin(dmax),cos(dmax)). The eye position should be mapped
to the ideal point (0,0,λ,0) of axis z, the entry point to the front
clipping plane defined by −w′ = z′ and the exit point to the back
clipping plane of equation w′ = z′. From these requirements, we
can obtain the following perspective transformation matrix

P =


1

tan(δx/2) 0 0 0

0 1
tan(δy/2) 0 0

0 0 − sin(dmin+dmax)
sin(dmax−dmin)

−1

0 0 − 2 sin(dmin) sin(dmax)
sin(dmax−dmin)

0

 .

5. Porting objects from Euclidean to elliptic geometry

When the virtual world is created, we usually use modeling tools
following the rules of Euclidean geometry, and outputting points
in Cartesian coordinates. The models and points need to be “trans-
ported” to the elliptic space preserving all properties that are valid
in both geometries. We assume that our objects are also triangle
meshes in elliptic geometry, where a triangle is defined by its ver-
tices, and edges are straight line segments. So, we need to consider
only the porting of points representing vertices and the vectors, e.g.
normals, associated with them. As lines only approximately pre-
served, the tessellation should be refined enough.
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Figure 4: Transporting objects from Euclidean to elliptic space.
Stereographics projection preserve angles and circles, central pro-
jection lines, but both of them strongly distort distances.

As the spherical geometry has non-zero curvature, any corre-
spondence with Euclidean geometry necessarily introduces distor-
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tions, such as change of distance, angle, or type of geometric prim-
itives. There are many possibilities to project the Euclidean space
onto a sphere or a half-sphere (Figure 4). Instead of mapping the in-
finite Euclidean space to the finite elliptic space, we need to trans-
form a finite part of the Euclidean space to the hyper-sphere, but
only with distortions really required by the curved space. As in
games, objects are typically defined in modeling space, i.e. close to
the origin, and transformed to the actual position by translations,
we prefer a mapping where the distortion diminishes close to the
geometry origin.

A mapping meeting this requirement is based on the recognition
that it is worth preserving the distance and the direction of the point
from the geometry origin. If a point has Cartesian coordinates ~P =
[X ,Y,Z] in Euclidean geometry, it means that the point is at distance
d =
√

X2 +Y 2 +Z2 from the geometry origin and its direction is
defined by unit vector ~P/d. The natural pair of this Euclidean point
in elliptic space is the point

p = P(~P) =
(
~P/d sin(d),cos(d)

)
that is also in direction ~P/d and at the same distance d from the ge-
ometry origin. Note that the tangent space of elliptic and Euclidean
geometries are identical at the geometry origin, thus this direction
can be ported from one to the other without any modification.

Let us consider vector (~V ,0) in Euclidean space starting at point
(~P,1). If point (~P,1) were at the geometry origin, then the Eu-
clidean and the elliptic space vectors would be the same. If the
point is moved to p, the vector should follow it with minimum
change, which is provided by the developed matrix of translation.
This means that vectors can be transported from Euclidean to ellip-
tic space by applying the translation on them:

v = (~V ,0) ·T(P(~P)). (4)

6. Game adaptation and results

The proposed method has also been integrated into the Unity3D
engine. Object definition can be adapted according to Section 5,
which needs the modification of an existing game engine where it
uploads triangle meshes to the GPU. The transformation matrices
are changed according to the results of Section 4, which can happen
in the engine where these matrices are passed as uniform variables
to the GPU. Considering diameters as “points” in elliptic geometry
means that an object is visible in the location mirrored at the origin
as well. This effect is produced by rendering every object twice,
once with the original coordinates and once with negated ones.

Figure 5 shows snapshots from games comparing the feeling of
the Euclidean and elliptic geometries.

7. Conclusion

This paper proposed an approach to prepare games in elliptic geom-
etry. We investigated the adaptation of the geometric calculations,
object definitions, transformation matrices and the physical simu-
lation.
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Figure 5: Games in Euclidean (top) and in elliptic (bottom) spaces.
Note that in elliptic space objects at distance close to π have similar
perceived size as objects being at distance close to zero.
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