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Abstract. Positron Emission Tomography reconstruction is ill posed.
The result obtained with iterative maximum likelihood estimation has
maximum probability, but is often unrealistic and has noisy behavior.
The introduction of additional knowledge in the solution process is called
regularization. Common regularization methods enforce continuity, smooth-
ness or finite band-limits, but these are inappropriate in PET since typi-
cal solutions may have sharp features. Total variation regularization does
not impose smoothness requirements and preserves edges and boundary
surfaces, thus we incorporate this scheme in the reconstruction process.
However, total variation involves the absolute value of the derivative,
and the absolute value function cannot be differentiated at zero. We in-
vestigate different options to handle this problem, including the addition
of a small constant to avoid singularity and the primal-dual algorithm,
and also address the efficient evaluation of the total variation on the
massively parallel GPU architecture.

1 Introduction

In positron emission tomography (PET) we need to find the spatial intensity
distribution of positron—electron annihilations. During an annihilation event,
two oppositely directed photons are produced [1], which may be detected by
detectors. We collect the number of simultaneous photon incidents in detector
pairs, also called Lines Of Responses or LORs (Figure 1).

The inputs of the reconstruction algorithm are the measured responses of
LORs: (y1,¥2,---,YNLopn)- The required output of the reconstruction method is
the emission density function z(v) that describes the number of photon pairs
(i.e. the annihilation events) born in a unit volume around point v. To represent
the unknown function with finite data, it is approximated in a finite element
form:

Noyozel
xz(v) = Z zy by (v),
V=1
where 1, 23, ..., 2y, ., are the unknown coefficients and by (v) (V =1,..., Nyoger)

are pre-defined basis functions. If by (v) is tri-linearly decreasing from a voxel
to the neighboring voxels, then we work with tri-linear approximation, which
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Fig. 1. Positron Emission Tomography. The pair of photons emitted at emission point
v is detected by a pair of detectors at z1 and z2, respectively. Detectors are organized
into planar detector modules, which form a ring around the measured object.

is directly supported by the graphics hardware at no additional computational
cost.

The correspondence between the coefficients of the emission function (voxel
intensities) and the detector responses is built of the elemental conditional prob-
ability density that a photon pair lands at the two detectors of LOR L given
that they are emitted at point v in directions w and —w, which is denoted by
P(v,w — L). This probability depends on the level of accuracy on which the
physical phenomena are simulated. If we execute scatter, random, and attenua-
tion compensation separately, and assume that detectors are ideally black, then
only the geometry needs to be considered. In this case, the probability density
is 1 if the line of place vector v and direction w intersects both detector surfaces
of LOR L and zero otherwise (Figure 1).

If a photon pair is isotropically emitted from point v, then the expectation
of the photon incidents in LOR L is:

Nyozel

Nyowel
_ dw
gL = Vg,l xv//bv(v)P(v,w %L)%dv: Vgﬂ Arvay (1)

V Qg

where V is the volume of interest and (2 is the directional set of a hemisphere.
Note that we should integrate only on the hemisphere since the photons of the
emitted pair may be exchanged. We shall denote the probability that a photon
pair born in voxel V contributes to LOR L by Apy:

d

/ / by (v)P(v,w — L)2—wdv = Ay
Y

V Q2
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The task of the reconstruction is to find voxel intensities of x = (z1, %2, ..., ZN,,..,)
based on the measured LOR incidents in y = (y1,¥2,.--,YNLop). Assuming
that photon incidents in different LORs are independent random variables with
Poisson distribution, the expectation maximization (EM) [7] algorithm should
maximize the following likelihood function:

NLOR gyL ~ NLOR
log L(z) = log H %67“ = Z (yrlogyr — Jr) +c.
L=1 Yr: L=1

where ¢ is independent of the voxel intensities, and thus can be ignored during
optimization.

2 Regularization
The Expectation Maximization algorithm, as the solution of inverse problems
in general, is known to be ill-conditioned, which means that enforcing the max-

imization of the likelihood function may result in a solution with drastic oscilla-
tions and noisy behavior (Figure 2).

error

Iteration number

Fig. 2. The ill-conditioning of the EM algorithm. The reconstruction error first de-
creases then it starts to increase while noise levels get larger.

This problem can be attacked by regularization methods that include ad-
ditional information in the objective function as a penalty term. The penalty
term should be high for unacceptable solutions and small for acceptable ones.
Standard regularization methods like Tikhonov regularization and Truncated
Singular Value Decomposition (TSVD) assume the data set to be smooth and
continuous, and thus enforce these properties during reconstruction. However,
the typical data in PET reconstruction are different, there are sharp features
that should not be smoothed with the regularization method. We need a penalty
term that minimizes the unjustified oscillation without blurring sharp features.
An appropriate penalty term is the total variation (TV) of the solution [5]. The
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total variation measures the length of the path traveled by the function value
while its parameter runs over the domain. In one-dimension and for differen-
tiable functions, the total variation is the integral of the absolute value of the
function’s derivative. In higher dimensions, the total variation can be defined as
the integral of the absolute value of the gradient:

:/\/|Vx(v)|2dv.
2

Total variation regularization means the inclusion of the TV norm in the
objective function that is optimized. In PET reconstruction, we find where the
sum of the negative likelihood and a term that is proportional to the total
variation has its minimum:

E(z) = —log L(x) + ATV (z). (2)

Here, X is the regularization parameter that expresses the strength of the regu-
larizing penalty term.

The objective can be regarded as a functional of emission function z(v), or
alternatively, having applied finite element decomposition to z(v) as a function
of voxel values x = (21,...,2nN,,,.,). In our first approach, we adopt the second
view. So, to minimize the objective function with respect to the voxel values, all
partial derivatives must be zero:

OE(x)
axv

=0, V=1,..., Nyogel-

The derivative of the objective function is:

Nror

Z a:l]L yL Z 8yL aTV(:C(’U))
(9.%\/ axv :l]L al’v al‘v '

At the optimal point these partial derivatives must be zero, thus we have

NZ O, | OTV(x(v)) NZ 9L yr

8xv axv

which leads to the following iteration scheme to aim at the optimum:

Z 8Z/L YL

dzy G,

(n+1) _
X .
v MNomg 8TV(:C(”)(1)))

Z al‘v 393\/

The partial derivative of expected LOR value g is the probability that an
annihilation in the considered voxel contributes to this LOR:
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The partial derivatives of the total variation functional are:
oTV(x(v)) [ 0Vx(v)/dvy

ory ) IVeE

The integrand of this formula has a singularity where the gradient is zero, which
needs to be addressed. We consider two major ways to solve this problem, and
several alternatives for the evaluation of the partial derivatives of the total vari-
ation.

3)

2.1 Minimization with singularity elimination

The singularity can be avoided by re-defining the TV term by adding a small

positive constant 3:
TV (z) = /\/ |Vz(v)|? + dv
%

Note, however, that this modified TV term will not be invariant to sharp features
anymore, and introduces some blurring.

One option to approximate the derivative formula is to use first a simple
quadrature for the integral assuming that voxels are unit cubes:

TV(x) ~ Y t(i,j,k)

.5,k

where

t(i, j, k) = \/(wm,j,k = @i k)? + (Tigrik = @ig ) + (@i e — @i k) + B,
Derivating this approximation with respect to xy = x; j 1, we obtain:

OTV (2(v)) _ 3Tijk — Tit1,4k — Tig+1k — Tijh+1

837‘/ ~ t(lvja k) *
Li gk — Li—1,5,k Ligjk — Tij—1,k  Tijk — Ligk—1 (4)
t(Z—l,j,k‘) t(Z,]—l,k) t(’L,j,k—l)

Better approximation schemes can be built by considering the actual finite
element representation. Substituting the finite element representation of =, we
obtain

OTV (x(v)) =" [ Wby (v) - by (v)

= JSV/
9y o= ) VIVa)P + 8

If we consider the sample points as corner points of a 3D grid, then basis
function by (v) tri-linearly changes in a cell of this grid from corner point V
to all neighboring corner points, where the X,Y, Z coordinates may differ by 1
voxel unit. As basis function by (v) has a similar property, the integrand can

dv. (5)
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Fig. 3. The structure of the voxel grid. A voxel sample V has 27 neighbors and is a
corner of 8 cells.

be non-zero only in those eight cells that share corner point V. Let us consider
just a single cell C of eight corner points xv/ = %00, T100; - - - » T111 Where Ty, is
the corner point, i.e. voxel, that can be obtained translating voxel V' by vector
(1,7, k). The other seven cells can be handled similarly and the derivative of the
total variation functional will be the sum of eight terms.

In a single cell, discrete sample points are generated and the integral is esti-
mated as a numerical quadrature. In order to compute the integral of equation 5
on the voxel data, we consider four different approximation schemes (Figure 4).

equation 6 equation 7 equation 9

Fig. 4. When we integrate in a cell C where voxel V is a corner, the samples of the
integral quadrature may be at the corners of the cell (left), at V' (middle), and in the
center of the cell (right).

Sampling voxel corners for quadrature: In this first option, the samples for
the numerical quadrature are the same where voxel values are represented and
are the corners of the considered cell V. As the basis functions are tri-linearly
changing and are either 0 or 1 at these points, Vby (v) and Vby(v) can be
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simultaneously non zero only if V' and V' differ at most only in one coordinate.
When v is in V, then scalar product Vby (v) - Vby/(v) equals to 3 if V =V,
it is —1 if V and V"’ differ in exactly one coordinate by 1, and zero in all other
cases. When v is in neighbor voxel V', then scalar product Vby (v) - Vby (v)
equals to 1 if V.=V’ it is —1 if V and V' differ in exactly one coordinate by 1,
and zero in all other cases.

Thus the integral quadrature using the cell corners as samples is:

/ 3TV(93('U))d,U 1 3000 — T100 — T010 — 001 n
J Oy 8 \ /(000 — 100)2 + (Zo00 — T010)2 + (Tooo — To01)? + B
2000 — 100 n
V(100 — Z000)2 + (Z100 — Z110)2 + (T100 — Z101)2 + B
Zooo — T
000 — Z010 N

\/(33010 — 2110)? + (o010 — Z000)? + (o010 — o11)? + B

Z000 — Z0o01 > (6)

\/(55001 — x101)% + (001 — Zo11)? + (Toor — Zoo0)? +

This equation can be simplified by taking just a single quadrature sample at
the lower left corner of the cell [6]:

/ 3TV(x(v))dv N 300 — T100 — o010 — 001
dxy 4\/(»”5000 — x100)? + (o000 — %010)? + (o000 — To01)? + B
(7)
Keeping only the first term of the denominator when xggg — 2190 is divided,

the second term when xggg — xg10 is divided, and the third when zggg — zgg1, We
obtain a particularly simple, but rather crude approximation:

TV (z(v 1, . . .
/7( ( ))d’U ~ — (51gn(x000 — 1‘100) —+ 81gn(x000 — $010) —+ SlgH(Z‘OOO — 1’001))
Ga:v 4
(8)

C

C

where sign is the signum function.

Sampling voxel centers for quadrature: In this option, we select the centers
of the cells as sample points. The integral of equation (5) in cell C is

~

Ory AL+ A + A+ B

b

(9)

/ 8TV(x(v))dv __ 3%ooo + 100 + To10 + Too1 — T101 — To11 — T110 — 3T111
c

where

Ax = Z(xuk — Tojk), Ay = Z(lek — Tiok), Az = Z(Cﬁm — Tijo)-

ik ik ij
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2.2 Primal-dual method

Instead of adding a small constant to the gradient, which eventually introduces
blurring, primal-dual methods increase the free variables of the search to solve
the problem of the singularity of the TV term [3]. They define a dual variable p
that is supposed to converge to Vz/|Vz|. The relation between primal variable
z and dual variable p is defined by the following extremal property:

|Vz| = sup (p- V).
Ip|<1

This extremal property is justified by the fact that the scalar product with a
free vector p is maximum if this vector is parallel to the other vector Vz and is
as long as possible, i.e. p is a unit vector because of the constraint. This vector
is p=Va/|Vaz|.

The objective function with the dual variable is converted to the following
form:

E(z,p) = —log L(z) + A/p - Vadv.
%
The reconstruction aims at finding the saddle point of this objective function:

(2,p) = min sup E(z, p).
¥ pl<t
The saddle point can be found by alternating minimization with respect to x
and maximization with respect to p under constraint |p| < 1.
In order to minimize E(z,p) with respect to emission density function z, we
force the first variation of the objective functional to be zero. The first variation
is computed as follows:

OFE(x + €0,) Neer fy, A7 (x + €6,) OV (z + €6,)
op= ——— % =_ L) R B Sl P |
" e =0 LZ:1 yL Je * v/p Je !

where §,(v) is an arbitrary perturbation function which is zero at the volume
boundary. Substituting the interpretation of the expected LOR incidents g, from
equation 1, we get:

Ojr(x +e€d,) O / / dw . / / dw
e = 5 (z+e€d,) | Plv,w — L) o dv= [ 6, | Plvw— L) o dv.
% (95 v Qn

We use partial integration for the regularization term:

/p-dez/p-Véx dvz/(p-n)&c dv—/V~p695 do.
€
\%

v v ov

where OV is the boundary of the volume and n is the normal vector of the bound-
ary surface. The first term here is zero since we assume that the perturbation
0, is zero at the boundary.
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Putting all these together, we obtain first variation:
NLOR n dw
5E—/5 - (N—l)/P(v,w%L)Z—/\V-p do
™

As this variation must be zero for arbitrary perturbation J, that is zero at the
boundary, the equation of the extremum is:

Nror

_ LZI <1> /P(v,w%L)j—:f/\V'p:O.

H

As we store the emission intensity in a finite element form, instead of requiring
this function to be constantly zero, we expect its integrals in every voxel to be
Zero:

Nror
— Z (—1)ALV—)\/V-pdv:0.
L=1 v

The iteration formula targeting this optimum is:

Nror

Z ALV*

To complete our primal-dual method, we have to update our dual variable in
every iteration. We compute the weighted average of the current estimate and
the gradient of the scalar field, and also enforce the requirement of unit length:

q=p™ + My (10)

where 7(") = 0.340.02n is the weight, which should be chosen carefully because
it strongly affects the convergence time. Since p should have maximum unit
length:
)y 4
D = . 11
max(1,]|q|) (11)

3 Total variation control on the GPU

The iteration step including the total variation requires the computation of the
derivative of the total variation with respect to each coefficient in the finite
element representation of the function to be reconstructed. If the finite element
basis functions have local support, then the derivative with respect to a single
coefficient depends just on its own and its neighbors’ values. Thus, this operation
becomes similar to a image filtering or convolution step, which can be very
effectively computed on a parallel machine, like the GPU.



10 Magdics et al.

4 Results

The presented algorithm have been implemented in CUDA and run on nVidia
GeForce 480 GFX GPUs. We have modeled the PET system of nanoPET/CT
[4] consisting of twelve square detector modules organized into a ring, and the
system measures LORs connecting a detector to three other detectors being at
the opposite sides of the ring, which means that 12 x3/2 = 18 module pairs need
to be processed. A detector module consists of Nye; = 81 x 39 crystal detectors.
The total number of LORs is Npog = 18 - (81 x 39)? ~ 180 million.

lambda = 0.005 —— i i N " i " lambda =
lambda = 0.0075 - lambda = 0.
[

g 0
\ lambda = 0.025 ------ D . lambda = 0.
R i lambda = 0.

k . jambda = 0.

0

0

CC error (%)
//
/
/
'/
/
/
/
/

cC error
/
o
i)

45 b

0 20 40 60 80 100 2 28 30 32 34 36 38 40
iteration number iteration number

Fig. 5. Error curves with respect to weight A of the TV regularization. The left image
shows the results obtained with equation 9, the right the primal-dual algorithm.

The error curves are shown in Figure 5. The CC error is computed as the
difference of one and the correlation of the reconstructed and the reference voxel
arrays. Note that the primal-dual algorithm is not better than the simpler TV
regularization scheme. As its memory requirement is much higher since not only
the actual scalar field but is gradient should also be stored, we concluded that
the primal-dual method is not worth taking. On the other hand, the accuracy
of gradient estimation should be maximized since it affects the convergence but
its computational cost is negligible with respect to the other work (Figure 6).
Thus, we should prefer equations 6, 7, 9, and 4 to equation 8.

In the error plot of the singularity elimination method, we can observe that
total variation regularization slightly reduces the speed of the initial convergence,
but makes the error keep decreasing even at higher iteration numbers (Figure 5).
However, too high TV weight (A = 0.05) causes blurring (Figure 7). With TV
regularization using proper weight (A = 0.0075), we can obtain very attractive,
2.4% error level after 100 iteration steps and 4% error level after 50 steps. The
optimal weight can be obtained with Hansen’s L-curves [2], which states that
the optimal A is where the (—log L(x))),TV (z))) parametric curve has max-
imum curvature (note that in the final solution = depends on A, so both the
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equafiun 4
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Fig. 6. Comparison of different gradient estimation formulae, including equation 4, 6,
7, 8, and 9.

likelihood and the total variation will be functions of the regularization parame-
ter. However, the algorithm developed to locate the maximum curvature points
assumes Tikhonov regularization. Our next research objective is to generalize
the L-curves method for the likelihood function and total variation term.

no TV TV with A =0.0056 TV with A =0.0075 TV with A =0.05

Fig. 7. Effects of TV regularization for Ngectiine = 4 lines per LOR. We executed 50
stochastic iteration steps in all experiments and turned filtered sampling off.

Figure 8 depicts an isosurface of the Derenzo phantom reconstructed at 128 x
144 x 144 resolution using Ngetiine = 1 lines per LOR, Ny aren = 36 steps per
line, and turning total variation regularization on with A = 0.0075. We executed
10 iterations on reduced voxel resolution and another 40 iterations on the target
resolution. On the full resolution, a single forward projection needed 2 seconds,
a backprojection 16 seconds. During the initial steps, when the volume of half
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320 MBq 16 MBq

Fig. 8. 3D isosurface renderings of Derenzo phantoms of 320 MBq and 16 MBq total
activities, reconstructed in 3 minutes on a PC equipped with two GPU cards. The two
cases corresponds to two significantly different noise levels. The higher the activity,
the lower the relative standard deviation of the measured data, i.e. the lower the noise
level.

no TV no TV TV with a = 0.0075
20 iterations 100 iterations 100 iterations

Fig. 9. Effects of TV regularization on the linearity-homogenity phantom simulated
and reconstructed with realistic detector modeling. The phantom consists of eight
homogeneous cubes with different activities. Without TV normalization, the high fre-
quency noise increases as the iteration proceeds.
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resolution (64 x 72 x 72) is iterated, an iteration cycle of both forward projection
and backprojection required just 2 seconds. The complete reconstruction took
12 minutes on a single GPU and 6 minutes on two GPUs running in parallel.

5 Conclusions

This paper investigated total variation regularization schemes for GPU based
algorithm for the reconstruction of PET measurements. As in a steepest descent
search the derivative of the total variation functional is needed, which can be
computed just from local data, this approach is very efficient on the massively
parallel GPU architecture. With respect to the expected LOR value compu-
tation, the total variation regularization has a negligible overhead. Thus, the
accuracy of the gradient estimation is worth setting to its maximum. Although
the primal-dual method has theoretical advantages, it has not proven to be bet-
ter than the simple elimination of the singularity in the absolute value function,
and its four-fold memory requirements are not justified. Concerning the simple
approach, we also showed that increasing the accuracy of the gradient estimation
helps improving the convergence of the algorithm.
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