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Abstract
Positron Emission Tomography (PET) reconstruction executes simulations of the measurement process, called
forward projection, and update steps, called back-projection. In this paper, we compare voxel-driven with
line-of-response-driven back projectors in terms of performance and quality. In static PET reconstruction, the
spatial function of the radiotracer density needs to be reconstructed observing the detector hits of gamma photons
during the process of the radiotracer decay. The computation is based on the maximum likelihood principle, which
means that we look for the spatial activity distribution function that maximises the probability of the actual mea-
surements. The reconstruction is computationally complex, requiring the massively parallel architecture and the
power of GPUs. Our aim is fast 3D reconstruction. Using the ML-EM scheme – according to our experience – the
back-projection is the bottle-neck of performance; this is the reason why we deal with this part of the algorithm.

1. Introduction

In Positron Emission Tomography, β+ particles (positrons)
are emitted, which, after meeting electrons, generate
γ-photon pairs. The detectors can observe some of them,
this is the input data of the reconstruction algorithm. We
are interested in the space function (x(⃗v)), which tells us
the positron density, which is proportional to the radiotracer
density. We search this function in the following finite func-
tion series form:

x(⃗v) =
Nvoxel

∑
V=1

xV bV (⃗v), (1)

where the components of x = (x1,x2, . . . ,xNvoxel ) are un-
known coefficients and bV (⃗v) are basis functions, which are
typically defined on a voxel grid 2. Furthermore, x(⃗v)≥ 0 is
required, as only non-negative density value is plausible.

In this paper, we assume the following equipment geom-
etry: detector crystals are packed together into forming 2D
grids, called detector modules, and the measured object is
surrounded by detector modules forming a cylindrical shape.
A line that uniquely connects two detector crystals is a line of
response (LOR), but this term is also used to refer to a line,
which connects infinitesimally small parts of the surface of
detectors.

When two photons are detected within a few nanoseconds,
it is registered as a coincidence event of the corresponding
LOR. It is possible that the two photons were not born from
the same annihilation, this phenomenon is called a random
coincidence. However, in this paper, random coincidence
events are neglected. Aftermath positron-electron annihila-
tion, the generated γ-photon pair is almost anti-parallel. As
the particles participating in the annihilation have non-zero
momentum, and the momentum has to be conserved, the
generated photons have an angular uncertainty of approxi-
mately 0.25 degrees FWHM 1, known as acollinearity. We
neglect this phenomenon, so initially the photons travel a
linear path. The host tissue can absorb or scatter photons;
assuming that the detector detects them, a coincidence event
will be registered. Assuming that scattering is neglected, a
coincidence event can only be generated by a photon pair
emitted in the tube between the two detector crystals.

1.1. Static PET reconstruction

The objective of PET reconstruction is to determine the
unknown coefficients x = (x1,x2, . . . ,xNvoxel ) from the mea-
sured hits in detector pairs y = (y1,y2, ...,yNLOR). The cor-
respondence between positron density x(⃗v) and the ex-
pected number of hits ỹL in LOR L is described by scan-
ner sensitivity4, 5 T (⃗v → L) that expresses the probability of
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generating a coincidence event in the two detectors of LOR
L, given that a positron is emitted from point v⃗:

ỹL =

∫
V

x(⃗v)T (⃗v → L)dv (2)

where V is the volume where the positron density needs to be
reconstructed. In consideration of Equation (1), we achieve:

ỹL =
∫
V

Nvoxel

∑
V=1

xV bV (⃗v)T (⃗v → L)dv =
Nvoxel

∑
V=1

ALV xV (3)

where

ALV =

∫
V

bV (⃗v)T (⃗v → L)dv (4)

is the System Matrix (SM). Therefore Equation (3) can also
be written in matrix form:

ỹ = A ·x. (5)

An element of the SM is a probability that an event is de-
tected in LOR L given that a decay happened in voxel V .
Its accurate computation requires particle transport, typically
performed with Monte Carlo simulation 10, 11, 9.

1.2. The ML-EM scheme

There are numerous techniques to find the density function
x(⃗v), but now we will focus on the Maximum Likelihood
Expectation Maximization (ML-EM) method by Shepp and
Vardi8. This method incorporates that the measured photon
incidents yL in different LORs are independent random vari-
ables having Poisson distribution with expected value ỹL.
The goal of this algorithm is to find x that has most prob-
ably generated the measured data y.

Similarly to other numerical solutions, this is also an iter-
ative method. The algorithm alternates forward projection

ỹ(n)L =
Nvoxel

∑
V=1

ALV x(n)V , (6)

and back projection

x(n+1)
V =

x(n)V
NLOR

∑
L=1

ALV

NLOR

∑
L=1

ALV
yL

ỹ(n)L

(7)

in each iteration step (n = 0,1, . . .), starting with some care-
fully chosen x(0).

Notice that we have to face high computational complex-
ity, as the iteration works with large matrices (in real scan-
ners, the typical dimensions are4: NLOR = 1.6 × 108 and
Nvoxel = 2563 ≈ 1.6× 107, so the SM’s size is in the order
of 1015 bytes). We cannot store such large matrices, so we
need to re-compute matrix elements in every iteration step.
For practical use, the algorithm should be evaluated reason-
ably fast, which requires extensive computation power. The

massively parallel GPU has proven to be the most effective
instrument in solving this problem,3 so we built our imple-
mentations on the CUDA platform.

With regard to the implementation, these operators (for-
ward and back projectors) can be performed either in a
voxel-driven or a LOR-driven approach 12, 13. For example,
ỹL in Equation (6) can be computed either launching threads
for every LOR, and compute the sum (output-driven, gath-
ering), or launching threads for every voxel, and adding the
contribution of the voxel to every affected ỹL (input-driven,
scattering).

Let us quote Guillem Pratx and Lei Xing7:

“It is important to note that both gather and scat-
ter formulations produce the same output and have
the same theoretical complexity. However, on the
GPU, gather operations are more efficient than
equivalent scatter operations, because memory
reads and writes are asymmetric: memory reads
can be cached and are therefore faster than mem-
ory writes; furthermore, memory reads can ex-
ploit hardware-accelerated trilinear filtering. Last,
by writing data in an orderly fashion, gather oper-
ations avoid write hazards. Scatter operations re-
quire slower atomic operations to avoid such write
hazards.”

In a nutshell, there are performance differences on the GPU.
In this paper, we will show that this is not as simple as stated
in the article: input-driven back-projection can be faster than
output-driven; nonetheless, there are output quality issues to
be considered.

1.3. Voxel-driven approach of back-projection

In Equation (7), x(n+1) can be calculated with launching
threads for every voxel, accumulating the numerator and de-
nominator values in each thread (this is a cycle for LORs),
and write the result back (one global memory write per
thread). The task of one thread is illustrated in Figure 1.

2. LOR-driven back-projection

As mentioned above, if we wish to reach a faster reconstruc-
tion algorithm, we need to speed up back-projection. Be-
cause of this, it is worth trying the input-driven approach
too. Based on Equation (7), we obtain:

x(n+1)
V =

NLOR

∑
L=1

ALV
yL

ỹ(n)L

x(n)V

NLOR

∑
L=1

ALV

=
NLOR

∑
L=1

ALV
yL

ỹ(n)L

x(n)V

NV
(8)

where

NV =
NLOR

∑
L=1

ALV (9)
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Figure 1: A thread of the voxel-driven back-projection pro-
cesses a line crossing the voxel for each LOR.

values are called normalization factors, which only need to
be calculated once, as a precomputation step.

In Equation (8), x(n+1) can be calculated with launching
threads for every LOR, visiting the voxels intersected by the
corresponding LOR, and adding the contribution of the LOR
to xV . The task of a computational thread is illustrated in
Figure 2. Visiting the voxels along a line (LOR) can be done
with the 3D-DDA (three-dimensional digital differential an-
alyzer) traversal algorithm. This algorithm travels a linear
path in 3D space, and visits the voxels intersected by the
line, efficiently computing the length of the line segments
inside each voxel.
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Figure 2: A thread of the lor-driven back-projection tra-
verses the line of the corresponding LOR, and computes the
contribution of every voxel.

2.1. Implementation issues

Notice that atomic operations are required, because we have
colliding writes. Although this is a performance limiting fac-
tor, the original (voxel-driven) back-projection needed about
30% more time than the LOR-driven solution. Nevertheless,
there is a problem with the quality of the result, if the voxel
edge length is significantly smaller than the edge length
of the detector crystals (e.g. high-resolution small-animal
PET). In this situation, because of the difference in edge
length, the LORs are too sparse compared to the voxels.
There are voxels intersected by many LORs, and there are
voxels intersected rarely, which results in noisy output, as il-
lustrated in Figure 4b. The reference image is shown in Fig-
ure 4c, while the result of the voxel-driven approach can be
found in Figure 4a.

2.2. Improving quality with more rays

We can achieve better covering of voxels (see Figure 4d) by
using more rays per detector-pair. We improved quality by
choosing ray start and end points on detector-crystals using
Poisson-Disk sampling 4.

2.2.1. Poisson-Disk sampling

Poisson-Disk sampling produces random points that are no
closer to each other than a minimum distance, as illustrated
in Figure 3.
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Figure 3: 10 Poisson-disk sampled random points, with
minimum distance of 0.25. Notice that the territory of the
points loops around to the other sides.

As the territory of the points loops around to the other
sides, the generated points can be reused in different threads.
Furthermore, if different iterations have independently gen-
erated rays, the covering of the voxels becomes better for the
whole optimization. We precomputed these random points
off-line on the CPU, and they are copied to the GPU as an
initialization step.
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(a) Voxel-driven approach. (b) LOR-driven approach: noisy behaviour of the back-projection,
due to sparsely sampled voxels.

(c) The reference image: this shape is the subject of our measure-
ment.

(d) 10 Poisson-Disk sampled rays/detector-pair, LOR-driven ap-
proach.

Figure 4: In this figure we can compare the result of different algorithms after 10 iterations with the reference image.

2.3. Problems with the improvements

The problem with these corrections is that the computation
time is proportional to the number of rays in each LOR. If
we wish to achieve the same quality provided by the other
algorithm, we need more time, which is counterproductive.

3. Results

We have implemented the algorithms on the CUDA
platform. The processing times are measured with an
NVidia 940MX graphics card. During volume visualisa-
tion, we used 4D linear regression for gradient estimation.6
The hypothetical equipment geometry was as follows:
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4 detector modules, each with 32 × 32 detector crystal;
LORs were selected only from opposing detector modules,
so NLOR = 2×322 ×322 ≈ 2×106; 1283 voxels, the ratio
of detector edge length and voxel edge length was 8.

To compare the qualities of different algorithms, we used
the L2 norm of the difference vector d of the result x, and the
expected (real) x∗:

||d||2 = ||x−x∗||2 =
√

∑
i
(xi − x∗i )

2. (10)

Figure 5 illustrates the evolution of the L2 norm in three al-
gorithms, with the quality of the 10th iteration of the voxel-
driven approach set to one, as a baseline.
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Figure 5: The evolution of L2 norm in 10 iterations. Voxel-
driven approach provide a bit better quality than LOR-
driven approach with ten Poisson-Disk sampled rays / LOR,
and LOR-driven approach with only one ray / LOR is diverg-
ing from the 4th iteration.

Considering the parameters mentioned above, the execu-
tion times and the relative result qualities to the voxel-driven
algorithm can be seen in Table 1. Notice, that the LOR-
driven solution with 1 ray / LOR is faster than the voxel-
driven, but the provided quality is unsatisfying. The LOR-
driven solution with 10 rays / LOR is providing almost the
same quality as the voxel-driven, but the execution time is
far too long.

Algorithm Time of back- Relative Result
projection (s) L2 Norm

voxel-driven 4.6 1.0 Fig. 4a
LOR-driven (1 ray) 3.4 65.5 Fig. 4b
LOR-driven (10 rays) 28 1.1 Fig. 4d

Table 1: The comparison of different algorithms after 10 it-
erations in terms of execution time and result quality.

4. Conclusion

We have investigated the problem of static PET reconstruc-
tion with LOR-driven back-projection. We have shown that
the LOR-driven method can be faster than the voxel-driven

solution, but it introduces quality problems. Assuming the
above mentioned equipment geometry and properties, it is
not worth using LOR-driven back projection.
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