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Abstract
This paper proposes a scalable dynamic PET reconstruction approach for GPUs. In dynamic PET reconstruction
the space-time activity function needs to be recovered from measurements. The computation is based on the max-
imum likelihood principle, which means that we look for the space-time function that maximizes the probability
of the actual measurements. The enormous computational burden can be handled by GPUs if the algorithm is
decomposed to parallel, independent threads and the storage requirements are kept under control. As in practical
systems, the number of spatial basis functions is in the range of a hundred million, while the number of events can
exceed billions, we should avoid storing many voxel arrays or multiple LOR arrays. Both the computational com-
plexity and the storage space are proportional to the number of frames, i.e. how fine the temporal discretization
is, which determines the ability to reconstruct high frequency phenomena. To reduce the storage requirements and
the computation time, the number of frames should be minimized, but without compromising the reconstruction of
quick changes. The paper addresses this problem and presents techniques for minimizing the number of frames
while maintaining the temporal accuracy of the reconstruction.

1. Introduction

In dynamic Positron Emission Tomography (PET), we focus
on the dynamic nature of biological processes, like accumu-
lation and emptying drugs in certain organs. Such studies
are essential in pharmaceutical research. Dynamic tomogra-
phy reconstructs space-time activity density of the points of
interest at time t. To represent the spatial dependence with
finite data, the space-time activity is expressed in a finite
function series form. In the simplest case, the domain is de-
composed to NV regions, which are assumed to be homo-
geneous. A region can be a larger volume of an organ or
anatomic part that is believed to be homogeneous, or a small
voxel that discretizes the volume of interest. In this respect
there is no difference between region-based and voxel-based
reconstruction approaches, only the number and definition
of the regions differ. In this paper we consider both options
and use the word region even if it is as small as a voxel.

We assume that the radiotracer concentration can be ex-
pressed by a common kinetic model C(pV , t), where spatial
dependent properties are encoded in a low dimensional vec-
tor of Np kinetic parameters pV . Such models can be de-
fined based on the mathematical description of the biologi-

cal/chemimal processes or on compartment analysis. Then,
the activity density is the product of the concentration and
the exponential fall-off exp(−λt) due to the decay, where λ

is the decay rate of the radiotracer.

If the reconstruction and kinetic parameter estimation are
separated and executed after each other, the approach is in-
direct. In a direct method, reconstruction and parameter es-
timation are merged into a single process. Direct reconstruc-
tion can be considered as a regularization in the time domain
since we impose the requirement that the resulting temporal
functions must belong to the class that can be represented by
the kinetic model. The state of the art and previous work on
direct estimation of kinetic parametric images for dynamic
PET are surveyed in review articles 16, 7.

Using the time activity, the expected number of radioac-
tive decays, i.e. number of positrons generated in region V
and in time interval [ts, te] is

x̃(pV , ts, te) =
te∫

ts

C(pV , t)exp(−λt)dt. (1)

The positron emitted at a decay may annihilate with an elec-



Szirmay-Kalos, Kacsó / Direct Parametric Reconstruction for Dynamic PET with Floating Frames

tron, when two oppositely directed gamma-photons are born,
which might be detected by the tomograph. A PET/CT sys-
tem collects the events of simultaneous photon incidents in
detector pairs. An event is a composition of the identification
of the detector pair, also called Line Of Response or LOR,
and its time of occurrence.

List mode reconstructions process the raw data of events.
If the measurement time is discretized by interval boundaries
t1, t2, . . . , tNT and events are binned in frames (tT , tT+1), the
time complexity reduces from the number of events to the
number of frames NT , but the information of the actual time
of the events within a frame is lost.

If the kinetic model is a linear function of non-negative
parameters, then the classical ML-EM scheme can be ex-
tended to find all parameters 5. Biologically plausible kinetic
models often depend on their parameters non-linearly, ren-
dering the classical ML-EM approach not applicable any-
more. A first approach aiming at the reconstruction of pa-
rameters of the two-tissue-compartment model for each re-
gion rather than only for a few ROIs searched the maximum
of a penalized likelihood with the parametric iterative coor-
dinate descent algorithm 2. The one-compartment model was
considered in 18. Wang et al. 17 proposed the application of
optimization transfer principle to find the optimum for gen-
eral kinetic models, which locally approximated the objec-
tive function of the optimization. This method alternates in-
dependent reconstructions of the frames and model fitting in
iteration steps using, for example, the Levenberg-Marguard
algorithm.

Our approach builds on that of Wang 17 and executes the
maximum-likelihood dynamic reconstruction method with a
two-level iteration scheme that decomposes the solution to
phases where each phase can be efficiently implemented on
the GPU, i.e. can be computed by parallel threads with no
communication. Data exchange may happen just between
phases. Additionally, the storage compexity of the method
is low, we need to represent the compressed list of events, a
single LOR array, and just a few voxel arrays, in additional
to the final results, which is the voxel array storing one pa-
rameter vector at each voxel.

To handle the problem of the fine frames, we present a
floating frame approach, where the advantages of list mode
and binned mode are combined. The time discretization is
neither uniform nor fixed during the reconstruction process,
but frames are floating during the iterations to minimize the
discretization error while working with relatively low num-
ber of frames at a time.

2. Dynamic PET reconstruction

The correspondence between positron generation and
gamma photon detection is established by system matrix A
12, 11. that expresses the probability of generating an event
in LOR L given that a positron is emitted in voxel V . The

expected number of events ỹL(ts, te) in LOR L during frame
(ts, te) is the sum of the contributions of all voxels in the vol-
ume during this time.

ỹL(ts, te) = ∑
V

AL,V x̃(pV , ts, te). (2)

Unknown coefficients p are found to maximize the prob-
ability of the actually measured data. The measured number
of hits in LOR L in frame (ts, te) follows a Poisson distri-
bution of expectation ỹL(ts, te). Because of the statistical in-
dependence of different LORs and different frames as we
required them to be disjoint, the combined probability con-
sidering all LORs and all frames is the product of elemen-
tary probabilities. According to the concept of maximum-
likelihood reconstruction, unknown parameters are found to
maximize the following log-likelihood:

logL= ∑
L

∑
T
(yL(tT , tT+1) log ỹL(tT , tT+1)− ỹL(tT , tT+1)) .

(3)

The optimization problem has very high computational
complexity. The number of free variables, i.e. the dimension
of the search space is NP×NV , the log-likelihood acting as
the optimization target is a sum of NL×NT terms. The range
of NV and NL is typically several hundred millions, NT is
typically in the order of a hundred, and NP is less than 10
since we wish to describe a time function with a few param-
eters. Thus, both the dimension of the search space and the
number of terms in the optimization target can be in the or-
der of millions. This means that the search method should be
carefully designed and high performance computation plat-
forms should be exploited.

The reconstruction means the maximization of the log-
likelihood of Equation 3. The likelihood has an extremum
where all partial derivatives are zero. Computing the partial
derivatives, we obtain

∑
T

∂x̃(pV , tT , tT+1)

∂pV,P
∑
L

(
AL,V

yL(tT , tT+1)

ỹL(tT , tT+1)
−AL,V

)
= 0.

(4)
for V = 1,2, . . . ,NV and P = 1, . . . ,NP. Thus, we have
NV ×NP equations, each containing NT terms that depend
on unknown parameters of all voxels, and the computation
of each equation requires the consideration of all LORs L
for which AL,V is not zero. Note that accurate reconstruction
requires the computation of positron range and scattered par-
ticle paths as well, which makes system matrix A not sparse.

The computation of the derivatives of the log-likelihood
requires a static forward projection and a back projection in
each frame T . Indeed, in frame T , the expected number of
radioactive decays in region V is x̃(pV , tT , tT+1), which is
forward projected to obtain ỹL(tT , tT+1) according to Equa-
tion 2. A gathering type approach is obtained if computa-
tional threads are assigned to LORs and each thread com-
putes the expected hits for a single LOR L during frame T
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An ML-EM static back projection would obtain a new esti-
mate of the activity as

xV (tT , tT+1) = x̃(pV , tT , tT+1) ·
∑L AL,V

yL(tT ,tT+1)
ỹL(tT ,tT+1)

∑L AL,V
.

Note that this step is a classical ML-EM step, where a gath-
ering algorithm assigns computational threads to regions and
each thread computes a single value xV (tT , tT+1).

From this equation, we can express

∑
L

AL,V
yL(tT , tT+1)

ỹL(tT , tT+1)
=

xV (tT , tT+1)

x̃(pV , tT , tT+1)
·∑

L
AL,V ,

which can be substituted into Equation 4:

∑
T

∂x̃(pV , tT , tT+1)

∂pV,P

(
∑
L

AL,V

)(
xV (tT , tT+1)

x̃(pV , tT , tT+1)
−1
)
= 0.

(5)
Dividing both sides by the sensitivity of the voxel, i.e. by
∑L AL,V , we get an equivalent requirement for the extremum
of the likelihood

∑
T

∂x̃(pV , tT , tT+1)

∂pV,P

(
xV (tT , tT+1)

x̃(pV , tT , tT+1)
−1
)
= 0. (6)

In this equation x̃(pV , tT , tT+1) depends on the unknown pa-
rameter vector of the given voxel pV , while xV involves for-
ward and back projections and depends on the parameter
vectors of all voxels. Thus, if xV were known, then the com-
putation could be decoupled for different voxels, where a
system of equations with NP unknowns needs to be solved.
In this way, forward/backward projection can be separated
from the parameter fitting, thus the complexity of the algo-
rithm will be the sum of the complexities of the two steps
and not their product.

Having fixed xV (tT , tT+1), the non-linear equation is
solved with the Levenberg-Marquard algorithm. This can
also be imagined as a curve-fitting process.

Concerning the evaluation and the solution of this equa-
tion on massively parallel architectures, the process should
be decomposed to phases where computational threads are
assigned either to voxels or LORs and can be executed with-
out inter-thread communication. Note that in forward projec-
tion we should compute many LOR values from many voxel
values, in back projection many voxel values from many
LORs, in the phase of voxel activity evaluation many voxel
parameter values to many voxel activity values. On parallel
architectures gathering type or output-driven algorithms are
preferred where the parallel threads are assigned to the out-
put values and a thread gathers the contributions of inputs
that can affect this particular output. As number of LORs NL
is huge and the number of voxels NV is also large, at most
one LOR array and just a few voxel arrays can be used by
the algorithm. To achieve this goal, the computation of the
derivative of the log-likelihood function is decomposed to

steps that can be executed by the GPU, and its iterative solu-
tion is decomposed to sub-iterations. Let us first consider the
evaluation of the derivative of the log-likelihood function.

There are various options to regularize the solution, which
is essential in the case of inverse problems. One option is the
modification of the optimization target in Equation 3 by a
regularization term that penalizes unacceptable solutions 4,
where, for example, the spatial or temporal variation is too
high. The method of sieves 9, 10, 15, 13, on the other hand, does
not modify the optimization target, but filters the iterated ap-
proximation in each iteration step 1, 6. Mathematically, this
approach projects the current estimate into the subspace of
acceptable solutions in each iteration 8, 3. Filtering can also
exploit anatomic information gathered by a CT or an MR 14.

Putting the discussed steps together, the pseudo-code of
the reconstruction is as follows:

for n = 1 to nmax do // main iteration
for T = 1 to NT do // iterate through frames

// evaluation

foreach voxel V in parallel x̃V =
tT+1∫
tT

C(pV , t)exp(−λt)dt

// forward projection
foreach LOR L in parallel ỹL = ∑V ′ AL,V ′ x̃V ′

// back projection

foreach voxel V in parallel xV = x̃V ·
∑L AL,V

yL
ỹL

∑L AL,V

endfor
// curve fitting
foreach voxel V in parallel p̂(n+1)

V = Solve Equation 5
// filtering
foreach voxel V in parallel p(n+1)

V = Filter(p̂(n+1)
V )

endfor

The most time consuming steps of the reconstruction are
the forward projection and back projection, and these steps
should also be repeated in every iteration and for every
frame. Even if its time is reduced by efficient parallel com-
putation of the GPUs, it still takes long and requires the tem-
porary storage of a voxel array for each frame. Thus, not
only the time complexity but also the storage requirement
will be prohibitive if the number of frames is large. Thus,
the reduction of the number of frames is imperative. How-
ever, distributing events just in a few bins may lead to infor-
mation loss, and as a result, the quality of the reconstruction
of the high frequency phenomena may degrade. This paper
proposes a method that minimizes the computational error
due to such frame reduction.

3. The method of frame definition

Suppose that the time is decomposed to a lot of fine frames,
but the number of frames makes both time and storage re-
quirements prohibitive. Thus, we should reduce the number
of frames making them longer. We focus on how the frames
should be merged and defined to introduce just a small error
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in the reconstruction. Of course, a frame definition method
is feasible only if it does not require a reconstruction with
many frames since our objective is to reduce the number of
frames to speed up reconstruction. Thus, sub-optimal or ap-
proximate methods are also acceptable if they meet this re-
quirement.

We first examine how the reconstruction error is modified
if two frames are merged together. Then, using the obtained
error measure, different frame definition methods are pro-
posed.

Note that during reconstruction we need to solve equa-
tions of form

F(pV ) = ∑
T

∂x̃(pV , tT , tT+1)

∂pV,P

(
xV (tT , tT+1)

x̃(pV , tT , tT+1)
−1
)
= 0.

(7)
Let us now consider the change of expected activity
x̃(pV,P, t) as a result of merging frames T∗ and T∗+ 1. We
use the following shorthand notations, where index i is 1 for
the first frame, i.e. when ts = tT∗ and te = tT∗+1, index i is
2 for the second frame, i.e. when ts = tT∗+1 and te = tT∗+2,
and index i is 12 for the merged frame, i.e. when ts = tT∗ and
te = tT∗+2:

x̃(pV , ts, te) = x̃i,
∂x̃(pV , ts, te)

∂pV,P
= x̃′i , xV (ts, te) = xi,

yL(ts, te) = yL,i, ỹL(ts, te) = ỹL,i.

Variable x̃ giving the expected number of radioactive de-
cays and its derivative are additive in frames since they are
time integrals (Equation 1):

x̃1 + x̃2 = x̃12, x̃′1 + x̃′2 = x̃′12.

As the expected number of hits ỹL(ts, te) depends linearly
on expected voxel activities x̃V (ts, te) (Equation 2), it is also
additive, so is the number of measured hits yL(ts, te):

ỹL,1 + ỹL,2 = ỹL,12, yL,1 + yL,2 = yL,12.

We show that the result of the back projection

xV (tT , tT+1) = x̃(pV , tT , tT+1) ·
∑L AL,V

yL(tT ,tT+1)
ỹL(tT ,tT+1)

∑L AL,V

is also approximately additive if the ratios of expected de-
cays x̃ in frame T∗ and frame T∗+ 1 are similar in all vox-
els and mainly due to the different lengths of the frames.
Note that this requirement is met if the time dependence of
C(pV , t)exp(−λt) is roughly constant in the time interval of
the two frames since ratio

x̃V (tT , tT+1)

x̃V (tT+1, tT+2)
= r

is then equal to the lengths of the two merged frames. If the
ratios are the same, then

x̃1
ỹL,1
≈ x̃2

ỹL,2
≈ x̃12

ỹL,12
.

Taking into account that the number of measured hits in
LORs yL(ts, te) is also additive

x̃1yL,1

ỹL,1
+

x̃2yL,2

ỹL,2
≈

x̃12yL,12

ỹL,12
.

Using this, the additivity of the back projection results can
be shown:

x1 + x2 = x̃1 ·
∑L AL,V

yL,1
ỹL,1

∑L AL,V
+ x̃2 ·

∑L AL,V
yL,2
ỹL,2

∑L AL,V
≈

x̃12 ·
∑L AL,V

yL,12
ỹL,12

∑L AL,V
= x12.

If frames are merged, then error ∆F is introduced into the
equation, so instead of the original equation we solve

F(pV )+∆F = 0

where error

∆F = x̃′12
x12
x̃12
− x̃′1

x1
x̃1
− x̃′2

x2
x̃2

(8)

is due to frame merging. Using the additivity relations, the
error can be approximated as

|∆F|= x̃1x̃2
x̃1 + x̃2

∣∣∣∣x1
x̃1
− x2

x̃2

∣∣∣∣ ∣∣∣∣ x̃′1x̃1
− x̃′2

x̃2

∣∣∣∣
The difference of the solved equation ∆F makes some er-

ror ∆p in parameter vector p, which in turn, modifies the
complete activity density and its integrals in frames. What
we are interested in is the scale of this modification, for
which a tractable error measure should be found. Based on
the recognition that the solution of Equation 7 is equivalent
to a time curve fitting problem, the difference of x̃ obtained
with and without merging the frames can be well represented
by the difference of its values at the point of time where the
two frames are merged. It means that we assume that error
∆F translates only to error ∆x̃ of x̃12. Thus, we look for the
difference of x̃12 that can alone compensate the modification
of F , while assuming that the temporal function is similar in
other frames:

F(pV +∆p)−F(pV ) = ∆F = x̃′12
x12

x̃12 +∆x̃
− x̃′12

x12
x̃12

.

Using first order approximation

x12
x̃12 +∆x̃

≈ x12
x̃12

(
1− ∆x̃

x̃12

)
.

and the result of Equation 8, we can express error ∆x̃ as

∆x̃ =
x̃2

12
x̃′12x12

(
x̃′12

x12
x̃12
− x̃′1

x1
x̃1
− x̃′2

x2
x̃2

)
. (9)

With the additivity relations, the absolute value of error
∆x̃ can be expressed in the following form:

|∆x̃| ≈ x̃1x̃2(x̃1 + x̃2)

(x̃′1 + x̃′2)(x1 + x2)

∣∣∣∣x1
x̃1
− x2

x̃2

∣∣∣∣ ∣∣∣∣ x̃′1x̃1
− x̃′2

x̃2

∣∣∣∣ . (10)
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With this error formula we can select that pair of con-
secutive frames that can be merged together introducing
the smallest error while reducing the number of frames by
one, and iterating the same approach, reducing the number
of frames to an arbitrary number. The direct application of
this approach requires a fine frame solution at least approxi-
mately since the error formula contains variables of the two
fine frames that are merged. We call this the bottom-up ap-
proach, which needs efficient approximations of the recon-
struction taking higher number of frames.

The error formula can also be used in a top-down ap-
proach that starts with a very few number of frames and re-
fines them where necessary. However, in this case, we need
heuristics to guess the data of the fine frames since only the
data of the merged frame is available.

Finally, we can modify the frame boundaries without
changing the number of frames. Again, heuristics is needed
to approximate the data of the fine frame that is attached to
a different larger frame.

3.1. Bottom-up approach

The bottom-up approach needs initial reconstruction with
many fine frames, which is feasible only if the number of re-
gions is small. Thus, at the first phase of the method, we use
large voxels and execute real region based reconstruction. If
the number of regions is small, then the system matrix can
be stored in the computer memory, so we should compute it
only once making forward and back projections fast. Having
obtained a reconstruction with high temporal but low spatial
resolution, the spatial resolution is increased while the tem-
poral reconstruction is decreased controlled by Equation 10.
It means that we merge those frames where the introduced
error in the low spatial resolution model is minimal.

3.2. Top-down approach

In the top-down approach we start with a relatively few num-
ber of frames and split a frame into two if necessary. To de-
cide which frame should be split, we should use equation 10
in reverse direction and ask how the error can be maximally
decreased by decomposing a frame into two frames. Before
subdivision, we have the data of the combined frame only,
so decision should be based only on this. Factor∣∣∣∣x1

x̃1
− x2

x̃2

∣∣∣∣ ∣∣∣∣ x̃′1x̃1
− x̃′2

x̃2

∣∣∣∣
depends on the difference of the relative errors of refined
frames, so this factor is ignored during the decision. When
a frame is broken into two, we decompose the time interval
into two equal parts, so x̃1 and x̃2 are approximately equal,
thus their product can be well approximated as

x̃1x̃2 ≈
(

x̃1 + x̃2
2

)2

according to the relation of the geometric and arithmetic
means. Using this approximation we decompose that frame
where

(x̃1 + x̃2)
3

(x̃′1 + x̃′2)(x1 + x2)
≈ x̃3

12
x̃′12x12

is maximal.

4. Results

To examine the proposed method, we use a 2D model 12

where NL = 2115 and NV = 1024 (Figure 1) and reconstruct
the activity curves of a 2D brain model. For this model, the
system matrix can be precisely computed.
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Figure 1: 2D tomograph model: The detector ring contains
90 detector crystals and each of them is of size 2.2 in voxel
units and participates in 47 LORs connecting this crystal to
crystals being in the opposite half circle, thus the total num-
ber of LORs is 90× 47/2 = 2115. The voxel array to be
reconstructed is in the middle of the ring and has 32×32 res-
olution, i.e. 1024 voxels. The lower image shows the blood
input function and the simulated time activity curves in the
gray matter (ROI 2) and white matter (ROI 1) of the brain.

For defining the frame boundaries we use the bottom–
up approach. We split 20s the measurement time into 100
frames and merged the two consecutive frames introducing
the smallest error. we repeat this prcess until the number of
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Figure 2: The resulting 5 frames using the discussed methods
and a simple uniform split of the measurement time.

frames is sufficiently low, in this particular case at the end we
have 5 time frames. The introduced error can be expressed
by the Equation 10 or 9. An other option is to merge those
two frames where the sum of activities is minimal, thus re-
sulting in frames proportional with the number of hits.

Figure 2 shows the results of these frame merging meth-
ods, while on Figure 3 we see the different stages of the
frame merging process, and the normalized merging errors
for the consecutive time frames.

For the reconstruction with high spatial resolution we use
the obtained 5 frames. Figure 4 shows the activity error dur-
ing the iterations, and the resulting averaged time activity
functions obtained with the different method used for frame
definition. Note that the results are much better if the mea-
surement time is not just simply split into 5 equal length
frames but we use the one of the proposed methods.

5. Conclusions

In this paper we investigated the problem of dynamic PET
reconstruction when the total activity in a region of inter-
est needs to be reconstructed as a function of time. We have
shown that binning in time but still using non-constant basis
functions is possible and can greatly reduce the computation
time while maintaining the accuracy of the time consuming
list mode reconstruction. We have also shown that the pro-
posed methods for defining a low number of time frames
provides more accurate results than the simple uniform divi-
sion of the measurement time.
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Figure 3: The results of the frame merging process at different stages, using the bottom–up approach: starting from 100 frames
and merging the two consecutive frames with the smallest (a) ∆F value, (b) ∆xs value and (c) ∑x value.
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Figure 4: (a) Error of the time activity functions during the iterations. (b-e) The reconstructed parametric time activity curves
using the obtained 5 time frames from the different frame definition methods. Averages and the standard deviations are depicted.
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