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Abstract
Iterative Positron Emission Tomography (PET) reconstruction computes projections between the voxel space and
the LOR space, which are mathematically equivalent to the evaluation of multi-dimensional integrals. These in-
tegrals are elements of the System Matrix (SM) and can be obtained either by deterministic quadrature or Monte
Carlo (MC) methods. Due to the enormous size of the SM, it cannot be stored but integral estimation should be
repeated whenever matrix elements are needed. In this paper we show that it is worth using random SM estimates,
because this way errors made in projections can compensate each other and do not accumulate to unacceptable
values which can happen in case of deterministic approximation.

1. Introduction

In Positron Emission Tomography (PET) we need to find
the spatial positron emission density. At a positron–electron
annihilation, two oppositely directed photons are generated.
Assuming that the electron and the positron are “not mov-
ing” before collision, the energy E of the photons can be
obtained from the rest mass me of the colliding particles and
the speed of light c, E = mec2 = 511 keV. As these pho-
tons fly in the medium, they might collide with the electrons
of the material. The probability that collision happens in unit
distance is the cross section σ. During such collision the pho-
ton may get scattered, absorbed according to the photoelec-
tric effect and new photon pair may be generated, but in our
energy range and in human body only incoherent, i.e. Comp-
ton scattering is relevant. When scattering happens, there is
a unique correspondence between the relative scattered en-
ergy and the cosine of the scattering angle, as defined by the
Compton formula:

ε = 1
1+ ε0(1− cosθ)

=⇒ cosθ = 1− 1− ε
ε0ε

,

where ε = E1/E0 expresses the ratio of the scattered energy
E1 and the incident energy E0, and ε0 = E0/(mec2) is the
incident energy relative to the energy of the electron.

The differential of the scattering cross section, i.e. the
probability density that the photon is scattered from direc-

tion ω⃗ to ω⃗′, is given by the Klein-Nishina formula12:

dσ
dω

∝ ε+ ε3 − ε2 sin2 θ

where the proportionality ratio includes the classical electron
radius and the electron density of the material. Instead of
using these physical parameters explicitly, we use the mea-
sured cross section of Compton scattering on energy level
511 keV, i.e. ε0 = 1 for the representation of the material.
From this, the phase function which is supposed to be nor-
malized can be found as:

PKN(cosθ) = ε+ ε3 − ε2 sin2 θ∫
Ω ε+ ε3 − ε2 sin2 θdω

.

The energy dependence of the Compton scattering cross sec-
tion can be computed from the scaling factor in the Klein-
Nishina formula:

σ(ε0) = σ(1) ·
∫

Ω ε(ε0)+ ε3(ε0)− ε2(ε0)sin2 θdω∫
Ω ε(1)+ ε3(1)− ε2(1)sin2 θdω

.

As photons travel in the considered volume, they may get
scattered several times before they leave the volume or are
captured by a detector.

A PET/CT collects the numbers y = (y1,y2, . . . ,yNLOR) of
simultaneous photon incidents in detector pairs, also called
Lines Of Responses or LORs, and obtains the material map
of the examined object by a CT scan. The output of the
reconstruction method is the tracer density function x(⃗v),
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which is approximated in a finite function series form:

x(⃗v) =
Nvoxel

∑
V=1

xV bV (⃗v), (1)

where x = (x1,x2, . . . ,xNvoxel) are unknown coefficients and
bV (⃗v) (V = 1, . . . ,Nvoxel) are basis functions, which are typ-
ically defined on a voxel grid. The correspondence between
the coefficients of the tracer density function (voxel values)
and the LOR hits is established by the system sensitivity
T (⃗v → L) defining the probability that a radioactive decay
happened in v⃗ is detected by LOR L.

The Maximum Likelihood – Expectation Maximiza-
tion (ML-EM) scheme searches tracer density coefficients
x1, . . . ,xNvoxel that maximize the probability of measurement
results y1, . . . ,yNLOR by an iterative algorithm5, which alter-
nates simulations, called forward projections, and corrective
steps based on the computed and measured values.

Forward projection computes the expectation value of the
number of hits in each LOR L ỹ = (ỹ1, ỹ2, . . . , ỹNLOR):

ỹL =

∫
V

x(⃗v)T (⃗v → L)dv =
Nvoxel

∑
V=1

ALV xV (2)

where V is the domain of the reconstruction, i.e. the field of
view of the tomograph, and ALV is the System Matrix (SM):

ALV =

∫
V

bV (⃗v)T (⃗v → L)dv (3)

Taking into account that the measured hits follow a Pois-
son distribution, after each forward projection, the ML-EM
scheme executes a back projection correcting the voxel esti-
mates based on the ratios of measured and computed LOR
values:

x(n+1)
V = x(n)V ·

∑L ALV
yL

ỹ(n)L

∑L ALV
, (4)

where

ỹ(n)L =
Nvoxel

∑
V ′=1

ALV ′x(n)V ′

is the result of forward projecting the current estimate. With
a more compact matrix notation, we can also write

x(n+1) = ⟨x(n)V ⟩ · ĀT · y
A ·x(n)

(5)

where ⟨x(n)V ⟩ is an N2
voxel element diagonal matrix of current

voxel values,

ĀLV =
ALV

∑L′ AL′V

is the normalized SM, and vector division is interpreted
element-wise manner.

This iteration converges to a fixed point x∗ where voxel

values are not modified by this formula, i.e. the iteration
solves the following equation:

ĀT · y
A ·x∗ = 1.

In order to study the convergence properties, let us express
the activity estimate in step n as x(n) = x∗+∆x(n), i.e. with
the difference from the fixed point. Substituting this into the
iteration formula and replacing the terms by first order Tay-
lor’s approximations, we obtain4:

∆x(n+1) ≈
(

1−⟨x∗V ⟩ · ĀT · ⟨ yL

ỹ2
L
⟩ ·A

)
·∆x(n),

where ⟨ yL
ỹ2

L
⟩ is a N2

LOR element diagonal matrix of ratios yL
ỹ2

L
.

The iteration is convergent if

T = 1−⟨x∗V ⟩ · ĀT · ⟨ yL

ỹ2
L
⟩ ·A

is a contraction.

2. Error analysis

To compute forward and back projections, we should con-
sider all points where positrons can be generated and all pos-
sible particle paths that can lead to an event in LOR L. A par-
ticle path can be described by a sequence of particle–matter
interaction points, thus potential contribution T (⃗v → L) of
positron emission point v⃗ to LOR L is a high-dimensional
integral, so are the expected LOR hits in Eq. 2 and SM ele-
ments in Eq. 3.

In tomography the size of the SM is enormous since both
Nvoxel and NLOR may exceed 108, thus matrix elements can-
not be pre-computed and stored, but must be re-computed
each time when a matrix element is needed. The standard
ML-EM reconstruction scheme is based on the assumption
that SM elements as well as forward projections ỹL storing
the expected number of hits in LORs can be precisely com-
puted. However, this is not the case since re-computation
involves numerical quadrature. Deterministic quadrature re-
sults in estimations of deterministic error while Monte Carlo
(MC) methods result in random values involving random ap-
proximation error. To show why MC methods offer a better
solution, we first analyze deterministic approximation.

2.1. Deterministic approximation

Deterministic approximation makes a similar error in each
iteration step, and thus errors may accumulate during the it-
eration sequence. To formally analyze this issue, let us first
consider that SM estimations may be different in forward
projection and back projection, and due to the numerical er-
rors both differ from the exact matrix A. Let us denote the
forward projection SM by F = A+∆F and the normalized
back projection SM by B̄ = Ā+∆B̄. The ML-EM iteration
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scheme using these matrices is

x(n+1) = ⟨x(n)V ⟩ · B̄T · y
F ·x(n)

, (6)

where

B̄LV =
BLV

∑L′ BL′V

is the normalized back projector matrix.

The question is how the application of approximate matri-
ces modifies the fixed point x∗ of the iteration scheme. Let
us express the activity estimate in step n as x(n) = x∗+∆x(n).
Substituting this into the iteration formula and replacing the
terms by first order Taylor’s approximations, we obtain:

∆x(n+1) ≈ T ·∆x(n)+ ⟨x∗V ⟩ · (∆b−∆f)

where

∆f = ĀT · ⟨ yL

ỹ2
L
⟩ ·∆F ·x

is the error due to the forward projection estimation, and

∆b = ∆B̄T · y
ỹ

is the error due to the back projection estimation.

The limiting value will be different from x∗ due to the
errors of forward and back projections:

∆x(∞) =

(
AT · ⟨ yL

ỹ2
L
⟩ ·A

)−1

· (∆b−∆f) . (7)

According to this formula, matrix
(

AT · ⟨ yL
ỹ2

L
⟩ ·A

)−1
ex-

presses error accumulation, i.e. how the error made in a sin-
gle step is scaled up during iteration. If the execution of a
forward and then a back projection for a point source, i.e.
multiplying with matrix AT ·A is far from the identity, or
many LORs have small or even zero measured value yL, then
error accumulation can be prohibitively large even if the er-
ror of a single step is acceptable.

2.2. Random approximation

The error accumulation problem of deterministic approxi-
mations can be attacked by applying Monte Carlo quadrature
to re-compute projections, because an unbiased Monte Carlo
quadrature causes a random error of zero mean, so errors
made in different iteration steps can hopefully compensate
each other. In this case, projector matrices F(n) and B̄(n) are
realizations of random variables and have a different value
in each iteration step. Note that as we have to re-compute
the matrix elements anyway, the costs of repeating the previ-
ous computation or obtaining a statistically independent new
estimation are the same.

If projections are computed with unbiased estimators,

then the expectations of the random projection matrices will
be equal to the exact ones:

E [F] = A, E
[
B̄
]
= Ā.

Using random approximation instead of the deterministic
approximation of expectation of LOR value ỹL, we obtain
a random variable ŷL that only approximates the expected
value. This random variable depends on the random num-
bers used to compute the MC estimate, thus it can change in
every iteration step6. This random and varying error makes
the iteration not convergent but the iterated value will fluctu-
ate around the exact solution. To get an accurate reconstruc-
tion, the center of the fluctuation should be identical or close
to the real solution and its amplitude should be small when
actual estimate x is close to fixed point x∗.

2.2.1. Center of the fluctuation

The center of the fluctuation is the real solution if iterating
from the fixed point, the expectation of executing a forward
and a back projection for the real solution is still the real
solution, i.e.

E
[
B̄T · y

F ·x

]
= ĀT · y

A ·x .

Unfortunately, this requirement is not met even by unbiased
projectors.

If the forward projector and the back projector are statis-
tically independent, then the expectation of their product is
the product of their expectations:

E
[
B̄T · y

F ·x

]
= E

[
B̄T

]
·E

[ y
F ·x

]
= ĀT ·E

[ y
F ·x

]
. (8)

Note that the second factor is generally not equal to y
A·x

since the forward projection result is in the denominator,
thus its non-linear, reciprocal function determines the expec-
tation value:

E
[ y

F ·x

]
̸= y

E [F] ·x =
y

A ·x .

To examine this for a single element of the vector, let us
consider the expectation of the ratio of measured and com-
puted hits, yL/ŷL. According to the relation of harmonic and
arithmetic means, or equivalently to the Jensen’s inequality
taking into account that 1/ŷL is a convex function, we obtain:

E
[

yL

ŷL

]
≥ yL

E [ŷL]
=

yL

ỹL
. (9)

This inequality states that yL/ỹL has a random estimator of
positive bias9. An intuitive graphical interpretation of this
result is shown by Fig. 1. Here we assume that the iteration
is already close to the fixed point, so different estimates are
around the expected detector hit corresponding to the maxi-
mum likelihood. Note that the division in the back projection
may amplify forward projection error causing large fluctua-
tions, especially when ỹL is close to zero.
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Figure 1: Expected LOR hit number ỹL is approximated by
random samples ŷL, which have mean ỹL. These random
samples are shown on the horizontal axis. Back projection
computes ratio yL/ŷL to obtain voxel updates, which is a
non-linear, convex function, resulting in voxel values that
may be much higher than the correct value yL/ỹL. These
overshooting samples are responsible for a positive bias and
occasionally cause a large random increase in the voxel
value.

This bias can be tolerated if the forward projector has low
variance, thus the generated values ŷL are in a small inter-
val where the application of a non-linear reciprocal function
can be well approximated by a linear one. Another approach
is the modification of the ML-EM scheme in order to cor-
rect the distorted sample distributions to restore unbiased-
ness even after the application of the reciprocal function9.

If the forward projector and back projector are not sta-
tistically independent even the factorization of Equ. 8 fails
in addition to the problem of non-linear operations. From
the point of view of having the random process oscillating
around the real solution, we can conclude that the forward
projector and the back projector should preferably be inde-
pendent and the forward projector should have small vari-
ance.

2.2.2. Amplitude of the fluctuation

The second requirement of accurate reconstruction in addi-
tion to the correct center of the fluctuation is that the fluc-
tuation should have small amplitude, i.e. the variance of ap-
plying a complete iteration step is small, especially when the
process is close to the fixed point.

To get small variance, the following factors need to be
taken into account. The forward projector should be of small
variance especially where the LOR value is small, because
this LOR value will be the denominator in the back pro-
jection formula. The slope of the 1/ỹL function is −1/ỹ2

L,
which scales up the variance of the forward projector espe-
cially when ỹL gets close to zero.

The variance of the back projector is included in the vari-
ance of the result without any amplification. As the back

projector matrix elements are in the numerator and the for-
ward projector matrix elements in the denominator, the vari-
ance can also be reduced if they are made correlated. When,
due to the random approximation of the forward projector
a matrix element is overestimated, and thus the correspond-
ing LOR value in the denominator gets greater than needed,
the modified voxel value can be made more accurate by si-
multaneously increasing the matrix element in the numera-
tor, which represents the back projector. So, from the point
of view of the oscillation, it seems advantageous to use the
same projector for back projection as used for forward pro-
jection of the same iteration step. Establishing such a corre-
lation is easy if the same algorithm is used to compute the
forward projection and the back projection, only the seed
of the random number generation should be set to the same
value before back projection as was set before forward pro-
jection of this iteration step.

2.2.3. Optimal randomization

Analyzing the mean and the variance of a single ML-EM
step involving random projectors, we noted that the accuracy
of forward projection is more crucial than that of the back
projection, but for the independence or correlation of for-
ward and back projectors, unbiasedness and low variance re-
sulted in different requirements. Unbiasedness requires sta-
tistically independent forward and back projectors, but low
variance due to error compensation needs correlated forward
and back projectors.

Matrix elements are integrals of Equ. 2 where the inte-
grand is a product of source intensity x(⃗v) and scanner sensi-
tivity T (⃗v → L) and integration happens in path space where
a “point” corresponds to a path of particles from the emis-
sion to the absorption in the detectors. The variance of the
MC quadrature depends on the number and distribution of
the samples and on the variation of the integrand10, 7. There
are many possibilities to generate sample paths, which differ
in the direction of path building and also in whether roughly
the same number of samples is used for each LOR integral,
or the sampling process prefers some LORs to others and
allocates most of the samples to the preferred ones.

If natural phenomena are directly simulated, then anni-
hilation points are sampled proportionally to their emission
density, each sample path is generated with its real probabil-
ity and can cause a single hit, thus the number of samples
in LORs will be proportional to the expected values that are
computed. This method is called voxel driven8. This means
that different LORs will be calculated with a similar absolute
error. However, when roughly the same number of samples
are allocated for each LOR, their error depends just on the
variation of their corresponding integral. If the variation is
proportional to the integrand, then different LORs are com-
puted with the same relative error. This approach is called
LOR driven.

Whether it is worth trading more bias for less variance,
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i.e. using correlated projectors rather than independent ones,
depends on the level of fluctuation. This level can be very
high when low contribution LORs are estimated with similar
absolute error than high contribution LORs. In the extreme
case it can happen that a LOR value is approximated by zero
in forward projection, which results in an infinite fluctua-
tion unless the matrix elements corresponding to this LOR
are also zero in back projection. Thus, voxel driven methods
seem to be better with correlated projectors, but LOR driven
approaches prefer lower bias provided by independent pro-
jectors.

3. Photon tracing

In Photon Tracing, first annihilation point v⃗ is sampled, then
the paths of the two annihilation photons are generated mim-
icking the free path length and scattering in the real mate-
rial. If annihilation points are sampled proportional to the
activity3, 2, then we have a voxel driven approach. A voxel
driven approach initiates

NV =
xV NPT

∑Nvoxel
V ′=1 x′V

number of photons from voxel V where NPT is the total num-
ber of paths initiated from all photons. When the same

NV =
NPT

Nvoxel

annihilation sample points are allocated to each voxel, then
the method is LOR driven.

The paths of the two annihilation photons are obtained
with scanner sensitivity T (⃗v → L). To do this, an initial
direction is drawn from uniform distribution. Two photons
are started from the annihilation point and their free paths
are sampled to find the photon–material interaction points.
At scattering, a new direction is generated mimicking the
Klein–Nishina formula, and the photon energy is adjusted
according to the Compton law. When one of the photons
leaves the detector or its energy drops below the discrimi-
nation threshold, the photon pair is lost and no LOR is con-
tributed. If photons hit the detector surfaces of LOR L, the
simulation of this path is terminated and the affected SM el-
ement ALV is given a contribution equal to 1/NV .

Photon tracing, as MC methods in general, results in ran-
dom SM elements, i.e. projections. The MC simulation is
repeated in forward and back projections in each iteration
step. The correlation or independence between the forward
and back projections can be controlled by whether or not
the seed of the pseudo random number generator is reset be-
tween these projections. As stated, the accuracy of forward
projection is more important, therefore we propose two tech-
niques to increase the accuracy of forward projections with-
out increasing the number of samples, i.e. computation time.

4. Statistical filtering

Recall that the classical ML-EM scheme works with two val-
ues in a LOR, the measured value yL and its mean ỹL com-
puted from the actual activity estimate. The expected value
is a scalar determined by the activity, the measured value
is a realization of a random variable of Poisson distribution
having mean ỹL. Based on the concept of maximum likeli-
hood estimation, the activity estimate is found so that the
joint probability of measured values given the expectations
obtained from the activity has a maximum.

This classical view should be altered and we should accept
the fact that expectation ỹL cannot be accurately computed,
we can only get random samples ŷL approximating the ex-
pectation. When a LOR is processed we have two random
samples, measured value yL and random estimate ŷL of its
expectation. Fluctuations of the activity can be suppressed if
those estimates ŷL that are unacceptable outliers are replaced
by some robust estimate.

To detect whether the pair of measured value yL and ex-
pected value approximation ŷL is acceptable or an outlier, we
should check whether yL could be a reasonable realization of
a Poisson distributed random process of mean ŷL.

Given an observation yL, the confidence interval for mean
ỹL with confidence level 1 − α is given by the following
fairly sharp approximation1, 11:

F(yL)≤ ỹL ≤ F(yL +1)

where

F(yL) = yL

(
1− 1

9yL
−

zα/2

3
√

yL

)
and zα/2 is the standard normal deviate with upper tail inte-
gral α/2. It means that when our approximation of the ex-
pected value satisfies inequality

ŷL < yL

(
1− 1

9yL
−

zα/2

3
√

yL

)
,

then we cannot be confident in this approximation and there-
fore we correct it. We set zα/2 = 2.1 because it guarantees
that ŷL = 0 is outside the confidence interval if measured
value yL ≥ 1. This corresponds to 98% percent confidence.

When the current expected value approximation is out of
the confidence interval, we should replace it with an accept-
able value or completely ignore this LOR in this iteration
step. We first try to substitute value ŷL by the average of
the approximations of this LOR in previous iteration cycles.
Note that when the algorithm is close to the converged state,
the expected LOR hit does not change too much, so aver-
aging the previous estimates helps decrease the variance of
the estimator by trading variance to a small bias. We accept
the average when it is in the confidence interval. If even the
average is out of the confidence interval, then this LOR is
skipped during back projection.
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5. LOR space blurring

The result of forward projection is the random estimation
of LOR hits ŷL, which is usually an unbiased estimate hav-
ing higher variance. As stated, low variance LOR values are
essential especially when the expectation is close to zero.
Thus, it is worth trading some bias for reduced variance. We
can assume that neighboring LORs get similar number of
hits, thus variance can be reduced by 4D spatial blurring,
which means that each LOR value is replaced by the aver-
age of neighboring LOR values. We used 3×3 size uniform
blurring kernel.

6. Results

We examine a simple flat-land problem describing a 2D PET
where NLOR = 2115 and Nvoxel = 1024 (Fig. 2). The rea-
son of the application of the flat-land model is that the 2D
planar case makes the SM of reasonable size so the pro-
posed methods can be compared to ground truth solutions
when the SM is pre-computed and re-used in iteration steps
(recall that this is not possible in fully 3D PET because of
the prohibiting size). In order to test scattering in the flat-
land model, the Compton law and the Klein-Nishina phase
function should be converted to be consistent with the planar
case. This means that we use only the scattering angle θ and
assume that photons remain in the flat-land even after scat-
tering. In 3D, a uniform random rotation around the original
direction is also involved, which is now replaced by a ran-
dom mirroring of 0.5 probability, i.e. by a random decision
whether or not θ is multiplied by −1.

Figure 2: 2D tomograph model: The detector ring contains
90 detector crystals and each of them is of size 2.2 in voxel
units and participates in 47 LORs connecting this crystal
to crystals being in the opposite half circle, thus the total
number of LORs is 90×47/2 = 2115. The voxel array to be
reconstructed is in the middle of the ring and has 32× 32
resolution, i.e. 1024 voxels. The ground truth voxel array
has three hot squares of activity densities 1, 4, and 16 and of
sizes 82, 42, and 22.

The reference activity is a simple function defined by
three hot rectangles of Fig. 2. The measured values are ob-
tained by sampling Poisson distributed random variables set-

ting their means to the product of the SM and the reference
activity (right of Fig. 2).
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Figure 3: L2 errors of a voxel driven direct MC method. We
used 104 samples in all cases.

The L2 error curves are shown by Figs. 3 and 4 for voxel
driven and LOR driven methods, respectively, and Figs. 5
and 6 show the reconstructed volumes. As in the case of
the given tomograph model where all events are captured
and of this non uniform phantom the voxel driven method is
more efficient, we used 104 MC samples in the voxel driven
method and 3 ·105 samples for the LOR driven method. The
reference matrix is obtained by 2 ·106 LOR driven samples.
The measurement is simulated with 5 ·104 samples.

Deterministic iteration, where the same matrix is used in
all forward and back projections, has unacceptably poor ac-
curacy if the number of samples is not particularly high. For
voxel driven sampling, Correlated projectors provide better
solution than Independent projectors. Independent projec-
tors are significantly improved by either statistical filtering
or blurring, but only blurring helps Correlated projectors.

In case of LOR driven sampling, Correlated projectors are
almost as bad as Deterministic projectors due to the added
bias and blurring helps but filtering does not. Independent
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Reference Deterministic Independent Correlated

Filtered Independent Filtered Coherent Blurred Independent Blurred Coherent

Figure 5: Reconstructions of the voxel driven method.
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Figure 6: Reconstructions of the LOR driven method.
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Figure 4: L2 errors of a LOR driven direct MC method. We
used 3 ·105 samples in all cases.

projectors are much better here and their high fluctuation is
successfully reduced by both filtering and blurring.

7. Conclusions

This paper examined why it is worth using MC estimates
to compute forward and back projections in iterative PET
reconstruction. We also analyzed the questions whether for-
ward and back projections should be statistically indepen-
dent or correlated and proposed two techniques to improve
the accuracy. These techniques are basically filtering, but
statistical filtering operates in the time domain while blur-
ring in the spatial LOR domain.

We concluded that voxel driven methods are worth com-
bining with correlated sampling but LOR driven methods
with independent projections. In the future, we examine how
the benefits of both approaches can be obtained. Addition-
ally, we also develop more sophisticated LOR blurring meth-
ods and instead of applying the same kernel for all contribu-
tions, we plan to increase the kernel size depending on the
number of scattering events occurred on the photon path.
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