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Abstract

Fitting a parametric curve to a set of noisy points by searching for the minimal Euclidean distance is a standard
least squares fitting problem. This approach minimizes the absolute error between the curve and the data points.
However, in certain applications, the relative, rather than the absolute error expresses the quality of the fitting. This
paper examines the possibilities of defining the relative error for function fitting and generalizes the Levenberg-
Marquardt procedure to minimizing it. We present an application aiming at dynamic tomography.

1. Introduction

The curve fitting problem can be summarized
as the following. We have a set of observations
(t1,x1), (t2,%2),...,(tn,xy) and search for a member
of a parametric function family f(p,7) so that error E(p) of
the approximation is minimal. As a member of the function
family is identified by parameter vector p, the minimization
takes place with respect to its elements. Error E has a local
extremum if all partial derivatives forming the gradient
vector is zero:

oE
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This extremum is a minimum, i.e. neither a maximum nor a
saddle point, if Hessian matrix H defined by
O’E
oppopg

=0, P=1,...,Np.
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is positive definite. Error function E can be chosen flexibly,
but we require it to have a local minimum when the fitting
is perfect, i.e. when f(p,#;) = x;. For now on, we use the
shorthand notation of f;(p) = f(p,#).

This paper investigates the problem of curve fitting with
minimal relative error. First, in Section 2 we review the clas-
sical least squares fitting method and show that it minimizes
the absolute error. Section 3 presents our new approach. First
we discuss what relative error may mean in a curve fitting
application, find an appropriate definition, and then gener-
alize the Levenberg-Marquardt algorithm for this scenario.
Finally, we show the application of the proposed method in
dynamic positron emission tomography reconstruction.

2. Least squares fitting

If the sum of squared difference of f; and x;, called Euclidean
distance or L, norm, is used to define E, we need to mini-
mize

N
E(p) = 5 [1f(p) —x|3 = 5 ). (fi(p) —x)”.
7fN)’ and X=

where ||.||2 is the Euclidean norm, f = (f1,...
(t1e.oen).

In least squares fitting, the equation stating that the gradi-
ent is zero becomes:

E afi(p
: =0. 1
,:Zlappf x)=0 (1

In this equation, a data point x; has a contribution that de-
pends on its distance from the curve, thus the absolute error
is used. From another point of view, neither the error mea-
sure nor the optimal fitting alters when we add a constant
value to both the data points and to the fitted function. In-
stead of the L, norm, we can use the general L, norm defined

by
N 1/p
[f(p) — x|, = (Z |fi(p) —x#’) ,

i=1

from which the p = 1 case, called rotal variation or L{ norm,
is also very popular % 7-5:

[£(p —X||172|fz — xil
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These options also focus on the absolute error, but are more
difficult to minimize that of using the Euclidean error.

Equation 1 can also be given an estimation theory based
interpretation. The solution is the maximum likelihood esti-
mation of the expectation of the parameter vector assuming
that data points are of Gaussian distribution with the same
standard deviation 6. From another point of view, in this
type of fitting the noise is assumed to be Gaussian with zero
mean. To prove this, let us consider the probability density

of sampling x;
. £)2
L exp _ = fi)” {’) ,
cV2n 20

thus the probability density of the whole measurement is

N 2
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The log-likelihood function is

pdf(x;) =

N

N
logpdf(xy,...,x Z

et 262
o

where C(0) depends only on the variance of the measured
data and is independent of the parameter vector. Accord-
ing to maximum-likelihood reconstruction, the unknown pa-
rameter vector should be computed to maximize the log-
likelihood, which requires the gradient vector be zero:

N

logpdf(xy,...,xy) B Z afi(p) (fi(p) —x;) = 0.
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Indeed this is the same as Equation 1.

It is worth generalizing the estimation problem to take
into account that different data points x; may be associated
with different standard deviations G;. Repeating the previ-
ous derivation, we can obtain the following requirement for
optimal fitting:

lOg pdf(xl IR afl l — X
app g{ ap P G- )

1

=0,

which leads to weighted least squares fitting where the
weight of the term is inversely proportional to the variance
Giz of a data point.

Depending on the actual form of function f, the equation
of zero gradient is non-linear, so its solution requires nu-
meric techniques. A particularly popular and robust method
is the Levenberg-Marquardt algorithm * 8. Assume we have
an estimate p of the parameter vector in iteration step n. In
the next step, this estimate is refined by adding a hopefully
small vector d to it. First, f is linearized:

Np
P+ )% i(9) + 1, af’

Substituting this into Equation 1, we get:
) WP
Z fl < + fl —x,~> =0.
i=1

Rearranging the terms, we obtain a system of linear equa-
tions for d:

Z(ZM P) 9/i(p ) ZM (- £i()).

=i \S e 9dpg =
or in matrix form
A-d=b @)
where
Z ) g, p) 9fi(p) '
P ) TIC) 0

Note that this matrix is symmetric and positive definite, thus
Equation 7 can be efficiently solved with Cholesky factor-
ization 2.

3. Fitting with minimal relative error

In order to study the relative error, let us assume that f is
strictly positive while sample points can take zero or positive
values. First we should clarify what fitting with relative error
means. Using the analogy of fitting with absolute error, we
say that the fitting process is relative error based if neither
the error measure nor the optimal fitting curve changes if
both the data values and the fitted curve are multiplied by
the same positive value. Similarly to the fitting with absolute
error, there are many possibilities to construct relative error
based fitting.

3.1. Least squares of the relative error

A simple way to introduce relative error based fitting is to
replace the squared absolute difference by the squared dif-
ference of the relative error and 1 in the error function:

E@:;iOﬁbf'

i=1

Note that this option is similar to weighted least squares if
the standard deviation associated with a data point is equal to
the yet unknown function value. The zero gradient equation

is then:
afi(p ( X; ) —Xi _
;am 7®)) 7200)

This equation is partially similar to equation 1 in that the
terms are products of the partial derivatives and the error of
a given sample. However, these terms are also weighted now
with x;/f?(p) while there is no such additional weighting in
the formula of the absolute error. This weighting downscales
the effect of samples that are small while they are supposed
to be large, while emphasizes samples that are larger than
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required. In the extreme case when x; = 0, the sample has
no effect on the parameter fitting process, although it is per-
fectly possible that noise replaces a positive value by zero.
Thus, the least squares of the relative error is not appropriate
for curve fitting.

3.2. Logarithmic plot

Another approach for relative error based fitting is
to “log” the problem and instead of fitting f(p,?)
to (t1,x1),(f2,%2),. .., (tn,xn), we fit log(f(p,t)) to
(t1,log(x1)), (2,10g(x2)), ..., (tn,log(xx)) with minimizing
the squared error:

1

E(p) = 3 X (os(/i(p) ~log(x))"

an

The equation for zero gradient is then

9fi(p) log(fi(p)) —log(xi)
,_Zl e e B

This option has also problems with zero data points, namely,
for these cases f; cannot be positive.

3.3. Poisson-like model

To find a better alternative, we take a reverse direction and
first establish the zero gradient equation, which has the same
structure as equation 1, but the error of a sample is modified
from absolute to relative difference:

4 (i)
L (1= ) 0 @

The error function can be constructed from this by inte-
gration:

Zﬁ —xilog(fi(p)) +C )

where C is an arbitrary constant that is independent of the
parameter vector. It is easy to see that the gradient of this
error function is indeed the left side of equation 3.

This equation can also be given estimation theory inter-
pretation if x; values are integers, when this is the maximum
likelihood estimation of the expectation of random variables
of Poisson distribution. If x; is of Poission distribution, then
its probability is

i

Plx) = 2 exp(— ).

The probability of all data values assuming statistical inde-
pendence is
N fxf

P(x1,...,xN) :Hxl' exp(—fi)-
=1

The log-likelihood function is

log P(x1, .. =C— Zfz xilog(fi)

where C = — YV | log(x;!) is a constant that is independent
of the parameter vector. Note that the maximization of this
is equivalent to the minimization of Equation 4.

The equivalence with the maximum likelihood estimation
assuming Poisson data means that this type of relative error
should be used when data points are integers and follow a
Poisson distribution. However, we can use this fitting crite-
rion also for non-integer data points, which obviously cannot
have Poisson distribution.

To solve this Equation 4 with a Levenberg-Marquardt like
method, we need to linearize, but unlike in the least squares
method where f; is linearized, now the same procedure is
executed for 1/f;:

11 &a1/fip)
filp+d) ~ fi(P)Jer:"l 9po de
1 L)
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After the substitution into Equation 3 and rearrangement,
we obtain:

G (Sofip) x 0fip)) , _ s ofi(p) <xi )
= —— 1.
Q; (1_21 e f3(p) aPQ & opr \fi(p)
(6)
or in matrix form
A-d=b @)

where the matrix of this linear system of equations

afz Xi afl(p)
,;21 aPP f}(p) 9po

is symmetric and positive-definite if data points x; are pos-
itive and positive-semidefinite if data points may be zero,
which can be seen by proving that the following quadratic
form positive with arbitrary vector y:

Ny Np
Y. ) yrAroYo
P=10=1
N Np a Ne 5
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Using the
N
“ —1 apQ P= apP

shorthand notation, we get

Np afl

i=1 =1
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Thus, the efficient Cholesky factorization can also be used
to solve equation 6.
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4. Application to dynamic emission tomography

In dynamic Positron Emission Tomography, we analyse the
dynamic nature of biological processes, like accumulation
and emptying drugs in certain organs. To make the mea-
surement, radioactive material, called radiotracer, is injected
into the body, which spreads into the tissues by diffusion de-
scribed by a compartment model 3 15.14.13 For example, the
solution of the popular two-tissue compartment model leads
to the following time functions that describe the radiotracer
density in a given compartment:

2
Cp,t)=(1-1) ZaiaieXp(_(xil) *Cp(t) + frCu(t),

i=1
(10)
where dynamic properties are defined by parameters p =
(fv,ai1,az,01,07). In this model

F(ay,ay,00,00) = a0 exp(—0ut) + azoip exp(—0i?)

is the impulse response of the compartment system, f, is
the fractional volume of blood, * stands for convolution,
Cp(t) and Cy(t) are the known blood activity function and
the whole blood concentration function, respectively.

Radiotracer molecules are instable isotopes and randomly
decay generating particles that can be detected by the de-
tectors of the tomograph. For example, in Positron Emission
Tomography (PET) 12.11. 1. 10 decays generate positrons that
annihilate with the electrons of the tissue where two opposite
gamma photons are born that conserve energy and momen-
tum. In Single Photon Emission Tomography (SPECT), on
the other hand, photons are emitted by the primary decay.
Detecting photon hits in small time intervals called frames,
the reconstruction process can estimate the number of parti-
cle emissions in certain regions of the body. Since the proba-
bility of the decay of a given radiotracer isotope molecule is
small but there are many of them in a single voxel and their
decay is statistically independent, the number of decays in a
voxel and frame is a random variable of Poisson distribution.
The number of decays can obviously be only non-negative
integers, but the result of the static reconstruction in a frame
may result in an arbitrary non-negative number even frac-
tions. The explanation is partly the numerical inaccuracy and
partly the fact that the reconstruction provides blurred data.
For example, if one voxel has a single decay and its neigh-
bor has no decay, the reconstruction may indicate that the
voxel has 0.8 decays and is neighbor 0.2 decays. Thus, the
inherent noise is Poisson but the fitting process should be

able to handle real values not only integers. This observation
justifies that we need to use a relative error criterion during
fitting.

5. Results

To demonstrate the proposed fitting process, we simulated
the measurement process of a positron emission tomograph,
executed a reconstruction of the simulated measurement,
and fitted the two-tissue compartment model on the re-
constructed activities in different frames. We have consid-
ered three different measurements generating 184, 1620, and
15981 hits in total in all frames and in all detector pairs,
called LORs. Note that the number of LORs is 2115, thus
the first measurement is extremely noisy, the second is mod-
erately noisy, and we can say only for the third measurement
that every detector pair gets at least a few hits.

Figures 1 and 2 show the reconstruction results obtained
by setting 10 and 100 frames, respectively, and using the pro-
posed modified Levenberg-Marquardt scheme for the solu-
tion of the non-linear equation. Note that when setting 10 or
100 frames not only the number of data points but also the
noise level is affected since we distribute the same number
of events. Thus, the 10 frame case is less noisy than the 100
frame case.

For comparison, we have also made the same experiment
with the classical Levenberg-Marquardt algorithm minimiz-
ing the absolute error. The difference between the curves
obtained with minimal absolute and relative errors is quite
small. If absolute error is used, a few larger values may at-
tract the curve significantly, which is not the case when rel-
ative error is minimized.

6. Conclusions

This paper investigated the problem of curve fitting when
relative rather than absolute error is considered. We reviewed
several possibilities to define the curve fitting with relative
error and modified the Levenberg-Marquardt algorithm ac-
cordingly. The fitting process can also be given a proba-
bilistic interpretation, namely, our method is proposed when
Poisson noise corrupts the true data.
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Figure 2: Fitting of for very noisy (upper row), moderately noisy (middle row), and weakly noisy data of 100 points.
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