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Abstract. This paper describes the binned time-of-flight reconstruc-
tion scheme for incorporating the measured time difference of detected
gamma photon pairs in PET scanners, without list mode processing of
individual events. Events are not summed for every detector crystal pair
(forming a Line Of Response or LOR), but for time bins along LORs, re-
taining time difference information — which can only be measured with
low accuracy — to a reasonable degree. Thus our approach avoids ex-
treme storage and processing requirements, but allows for faster conver-
gence and lower residual error of the reconstructed volume. We describe
how various computation steps of non-time-of-flight reconstruction must
be adjusted to accommodate for the binned time information.

1 Introduction

In emission tomography we need to find the spatial density of radioactive tracer
materials [6]. The tracer material undergoes radioactive decay, producing a
positron, which, upon meeting an electron, annihilates. A photon pair is emitted
into (nearly) opposing directions. The photons may undergo scattering in the
measured volume, absorption, scattering in the detector crystals, where they can
be finally detected. Thus, tomography reconstruction is the inverse problem of
particle transport calculation in scattering and absorbing media, which requires
the iteration of particle transport calculations and corrective back projections.
In Time-of-Flight (TOF) reconstructions, we exploit the measured time dif-
ference of the two coinciding hits detected in each Line of Response (LOR).
Traditionally, this required that detection events are handled individually [4],
which is known as list mode reconstruction. List mode reconstruction algorithms
require an input which is proportional to the number of detected events in size,
and the running times are in the order of hours at least [5]. In our binned re-
construction approach, time of flight data of individual events are aggregated in
bins, where a LOR is decomposed into Nyop bins. This can be seen as creating
histograms of TOF measurements in each LOR. This will increase the input
data size only by a factor of the number of the bins per LOR, and the overhead
above non-TOF reconstruction will be manageable. The accuracy of time mea-
surement in PET scanners is around 300 picoseconds, corresponding to a spatial
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variance of 90 mm. Assuming Gaussian noise, this measurement error makes the
estimator of the event location a wide bell curve, which can be approximated
with small additional error using quadrangles.

The time difference of photon impact events must be considered a signed
quantity to avoid ambiguity. The sign depends on the choice of primary and
secondary detector modules, thus we need to uphold a convention on where a
LOR starts or ends. It is straightforward to choose the detector with lower index
as primary and the one with the higher index as secondary.

During measurements, in LORs, we collect (yi,ys,... ,yfVLOR), where y¢ is
the number of hits in LOR L observed in TOF window [t;,t;+1). Generally, the
time binning [¢;, t;+1) may be different in each LOR or may be globally defined. In
practice, we opt to keep it globally the same, as this avoids introducing extra data
or logic, and allows us to effectively perform summation or filtering operations
over the LOR histograms.

The expectation of the number of detected hits in LOR L in time window
[ti, ti+1> is:

tit1
= / /x(v)T(v — L)pr (v, t)dvdt, (1)
t=t; V

where V is the volume of interest, 7 is the system sensitivity describing the
probability density of detecting a pair of photons by LOR L provided that they
were born in point v, and pr(v,t) is the probability density that photons born
in point v arrive in LOR L with time delay ¢.

Discretizing the volume to voxels, i.e. expressing the unknown activity dis-
tribution as a finite function series

Nyozel

z(v) = Y avby(v), (2)

V=1

where x = (21,22,...,%nN,.,.,) are the unknown coefficients and by (v) (V =
1,..., Nyoxel) are basis functions, this can be written as

tit1
Nyoxel o

Jh o~ zv - [ by(v)T (v — L)dv- (vy, t)dt. (3)
Yr Vz::l 1% J v /PL v

t=t;

where vy is the center of voxel V.

Probability density pr(v,t) is assumed to be Gaussian of mean [/c where [
is the distance difference traveled by the two photons and c is the speed of light,
and of constant variance o%. The constant variance is a system parameter that
describes the accuracy of time measurement of the tomograph:

1 —G=ti=lp)/o?

3
2
7T

pr(v,t)

b

2o

where [; and l5 are the distances traveled by two photons.
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Note that in the discretized formula (Equation 3), we need the integral of
this probability density in different time bins:

tit1

pL(’U\/,t)dt = F(ll — lg,ti,ti_;,_l),
t=t;

where will call F' the ToF coefficient.

If the same time bins are used in all LOR, just a pre-computed array (texture)
is needed that encodes the TOF coefficient for each bin as a function of the
distance difference. Instead of a using a texture, values can be computed on-
the-fly using a fast approximation of the cumulative distribution function of the
Gaussian|[1]:

1

erf(t) =~ 1— 5 S (4)
(14 0.278393¢ + 0.230389t2 4 0.000972¢3 + 0.078108¢%)

Equation 3 can also be written in a matrix form:
y' =A"x

where the system response is characterized by a system matriz A® [3],

ALy = /bV(”)T(U — L)dv- F(ly —la, ts, tip1) = Apy - F(lh —la, ts, tig1). (5)
v

which defines the correspondence between voxel intensities x = (1, Z2,..., TN, .,)
and expected LOR bin values y = (71,75, -, 9., ). The meaning of matrix
element AY , is the probability that a photon pair born in a random point dis-
tributed with density by (v) is detected by LOR L in time window [t;,t;11).
Note that the TOF coefficients that modify the system matrix only depend on
the geometry, thus, when the system matrix is factored, only the geometric el-
ements must be corrected with the TOF probabilities. Attenuation, in-detector
scattering, and detector sensitivity will affect all bins along a LOR identically.
The task of the reconstruction is to find voxel intensities of x based on the
measured incidents in TOF bins. The iterative optimization process alternates

forward-projection:
Nyoxel

g =Y Ajyay, (6)
V=1

then back-projection:

/ Tv i ylL
Ty = X —DNior ai Z Z ALy = (7)
Yt ALy 54 YL

in each of the n = 1,2, ... iteration step.
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As F'is a probability density, its integral is 1, thus the precomputed normal-

ization factor
Nror Nror

n= 3D A= > A
i L=1 L=1

is the same as the one used in non-TOF reconstruction.

2 Computation steps with TOF

During the reconstruction process, when the direct contribution is computed
in forward-projection (Equation 6) or when the back-projection is evaluated
(Equation 7), we have to compute the distances between the voxel and the two
detectors. In forward-projection, the contribution computed for the LOR must
be distributed into bins according to their respective probabilities F'. In back-
projection, the same factors should be used to get the correction factor for a
voxel from the per-bin correction ratios y% /7% . While in forward-projection this
requires an effort proportional to the size of the output, which cannot be spared,
in back-projection the evaluation of the sum over the bins is a performance-
critical computation. As the back-projection model is not so crucial in the ac-
curacy of the reconstruction, we can make further concessions. A finite support
approximation of the Gaussian, or even a Dirac-delta can be used to decrease
computational load. In the latter case, which we call zero-order approrimation,
only a single bin of a LOR is considered for a voxel. The back-projection can be
formulated as

Ty Nvror ylL

/ ~ . -
xv ~ ZNLOR A ALV :lji ) (8)

L=1 LV L=1 L

where i is the index of the bin in which the voxel is. Such an approximation is
bound to produce edge artifacts at bin boundaries, as different LOR ratios are
used to compute neighboring voxels in the output data. However, we observed
that these artifacts vanish quickly as the iteration converges. Also, the rate of
convergence in error measures was identical, if not slightly better, with the zero-
order approximation. We present results later in Section 5.1.

In addition to the direct contribution, the reconstruction also uses terms
responsible for scattering and random contributions. Random contribution is
measured without time data, so no TOF information is available for it. Although
it would be possible to compute the TOF distribution also for the scattered
component, this calculation would significantly slow down the reconstruction
and would result in high variance results. Thus, we ignore TOF for both random
and scattered contributions and distribute the events according to simple rules.
Two rules are worth considering:

1. The scattered and random contributions are uniformly partitioned into time
slots.

2. The scattered and random contributions are partitioned into time slots pro-
portionally to the direct contribution.
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3 Binning convention

In order to avoid introducing a dependence on the investigated region of interest
into the measurements, the binning must cover all of the length of the LORs. It
is likely that the measured object will be located in the middle of the LORs, with
sizeable regions devoid of activity near the detectors. Thus, a uniform subdivision
of a LOR into same-size bins is not practical. A non-general, LOR-dependent
subdivision would have its merits: e.g. interleaved binning, where the set of bin
boundaries on all LORs is uniformly distributed, would alleviate any quantiza-
tion artifacts that could arise from binning. However, as we also need to perform
filtering over LORs to compensate for intra-crystal scattering, we argue that a
general scheme for all LORs is more practical. Thus bin intervals are defined in
terms of ¢, the signed time difference of photon detections.

Bins are located symmetrically, mirrored on the midpoint of the LOR (at
t = 0). Please refer to Figure 1 for a depiction. The number and length of the
bins, as well as the variance of time difference measurements, must be specified as
a feature of the measurement setup along with detector geometry specifications.
The first and the last bins are extended to include any remaining parts of LORs,
or even the range outside of detectors, as outlying time difference readings cannot
be excluded.

M Y,
- B
In tofBinLength
YToang,, e tofBinLength wofBinLenath YiofBinNumber
ofBinLeng
LOR
Taagg, .
dt=0
lower index higher index
detector module detector module

Fig. 1. Time-of-flight binning convention.

The input measurement file must specify readings for bins consecutively for
every LOR. When read, the measurements are stored in memory in a similar
manner, the only difference being that instead of the final bin reading, the sum
of readings over the LOR is stored. This allows us to find the total without
summing the bins, and in particular, to quickly identify LORs without activity.
The value of the final bin can be computed quickly when all the bin values of
the measurement are read anyway. Note that this trick should not be used for
any other LOR sets, only the measured data, because it would not allow efficient
vector operations over all bins.
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4 Implementation

Forward-projection samples the volume either along LORs or using volume sam-
pling. For every sample point on the LOR, time difference ¢ must be computed,
and the contribution to bins must be obtained using the TOF coefficients. We
use an approximating function “cerf()” (see Equation 4) for the cumulative dis-
tribution of the Gaussian to evaluate TOF coefficients.

For back-projection the ratio of measured and computed LOR values must
be computed. This can be done for all bins separately. If the measured summed
LOR activity is zero, all bins can be skipped, writing zeros into the result LOR
image. Care must be taken to compute the measured activity value in the final
bin subtracting the rest of the bins from the sum. Voxel-centric back-projection
evaluates all LORs crossing a voxel. The ¢ time difference corresponding to the
voxel location on the LOR must be computed. The correction ratios computed
for all bins must be weighted according to TOF coefficients.

We may use the zero order approximation from the TOF coefficients in back-
projection, as measurements show that the performance gain is enormous while
error measures do not suffer, and artifacts vanish rapidly with an increasing
number of iterations.

5 Results

In this section we list and evaluate measurement results. All reconstructions used
five bins. We used Ordered Subset Expectation Mazimization[2], meaning that
only a subset of LORs were used in every iteration, taking six iterations to cover
all of them. Such six iteration are called an OSEM cycle.

5.1 Zero order approximation in back-projection

As discussed in Section 2, processing TOF data impacts the performance of back-
projection heavily, but our zero-order approximation can sidestep this. Table 1
offers a visual comparison of artifact during the reconstruction on the human IQ
dataset. Initial artifact vanish very fast with only a OSEM cycles.

In Table 2 we compare the L2 and CC error measures describing the con-
vergence of the reconstruction with and without the zero-order approximation.
When observing convergence with the iteration count, the zero-order method
does not perform any worse. While accurate computation slows down back-
projection by a factor of the number of bins per LOR, the zero-order approxi-
mation only adds a smaller constant overhead.

5.2 Comparison of TOF and non-TOF reconstruction

We compare reconstructions using binned TOF data against reconstructions of
conventional measurements without such binning. Where GATE simulated mea-
surements were available, we used them with appropriate settings, a bin size of
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1 OSEM cycle. 2 OSEM cycles 3 OSEM cycles

Table 1. Comparison of reconstructed volumes for the first few iterations using and
not using the zero order approximation (upper row) and full Gaussian (lower row) in
the TOF back-projection.
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Table 2. Comparison of zero order approximation in the back-projection kernel vs.
applying the formulaic Gaussian. Convergence with iteration count is even slightly
better and execution times are drastically reduced.
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300 mm and time difference measurement variance also of 300 mm. Where refer-
ence projections were reconstructed (meaning that the input data was computed
using our own forward-projector from the reference volume), we set the bin size
to 80 mm in order to make the best use of temporal data in the activity region of
the human IQ phantom. The variance was set to 160 mm. Thus, these can be con-
sidered to be idealistic TOF settings with little activity measurement noise. We
used the zero order approximation in the back projection. Note the edge artifact
along the circular arc in the middle of low-iteration count TOF-reconstructed
volumes, and how it disappears in later iterations.

Table 3 presents result for geometry-only reconstruction, while in Table 4
results using the full reconstruction model can be seen. As only the geometric
part of the system matrix is influenced by TOF in our model, gains are much
more visible in the geometry only case, and are somewhat obscured by overhead
of simulating physical phenomena. It can be concluded that TOF reconstructions
consistently achieve lower errors in a converged state, and also faster convergence
before that. Even if we account for the slower iterations, and chart errors versus
reconstruction time (not including normalization array computation, which is
independent of TOF) convergence is still superior. Interestingly, in case of noisy
measurements, TOF reconstruction also increased stability, avoiding oscillation
around the converged result. Visually, and also visibility in the line profiles, TOF
reconstructions achieve clearer empty regions and more pronounced high-activity
spots in the same number of iterations.

6 Conclusions

We have shown a binned approach to time-of-flight PET reconstruction, which
does not require a list mode approach, but allows for an implementation which
can even be faster than non-TOF reconstruction in reaching the same level of er-
ror. This way, even tomographs which feature lower time measurement resolution
can take advantage of TOF information with little overhead.

More research is needed to verify how the method operated on actual mea-
surements with worse characteristics, and how the better visual quality and lower
error would contribute to the diagnostic value of the reconstruction.
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Table 4. Full reconstruction model (using reference projection). Time bins are 5 x
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