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Abstract. This paper proposes an algorithm for correcting Partial Vol-
ume Effect in Positron Emission Tomography (PET) images, using reg-
istered Computed Tomography (CT) data to enhance the blurred PET
image. The algorithm is based on a forward-and-backward anisotropic
heat equation solver, deblurring the PET image along CT gradients. A
forward diffusion force is also utilized to stabilize the process where nec-
essary. The algorithm retains average original PET intensity avoiding
the introduction of negative PET values, a crucial property in clinical
uses. We implemented the algorithm for GPU and tested it with real
measured PET/CT data.

1 Introduction

Positron Emission Tomography (PET) has the potential to produce quantita-
tively accurate measurements of tracer concentrations in vivo [15]. However, it
has a limited spatial resolution and the reconstructions are blurred and rather
noisy if radiation dose should be limited, which is always the case in clinical
practice [14]. The direct consequence of limited resolution is the loss of signal for
structures partially occupying the Point-Spread Function (PSF) of the scanner,
i.e., with dimensions smaller than about 2-3 times its FWHM [11]. This effect
is usually referred to as Partial Volume Effect (PVE).

PET/CT systems allow simultaneous acquisition of PET and CT data. Hence
the idea arises to enhance the blurry PET image with CT information. The main
assumption is that tissue boundaries appearing in both images enables correction
relying on anatomical data. This assumption seems realistic as different tissue
types have different density (thus different intensity in CT scan), and also the
radiotracer density depends on the tissue type. Therefore on the boundaries of
different tissues, it is assumed that both CT and PET values change and thus
CT and PET boundaries are co-located.

There are multiple approaches to correct PVE [2, 13, 5, 12, 3, 1, 15], although
they usually require some a priori information about the scanner, or pose imprac-
tical assumptions. Popular methods that incorporate high-resolution anatomical
information in the PET image are based on a multi-resolution image fusion ap-
proach, assuming that the gray levels in the high-resolution image must be posi-
tively correlated with those of the functional image to be corrected for PVE [15].
As pointed out in our earlier work, this assumption may be implausible [8].
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The rest of the article is organized in the following way: first, Section 2
presents a short introduction to diffusion processes, particularly anisotropic dif-
fusion along with previous works. Then, in Section 3 we propose our backward
diffusion process, followed by the discussion of our stabilization method, and
the combination of the two processes. Later, we discuss medical criteria and a
modification to our algorithm in Section 3.3. Finally implementation details and
results are presented and conclusions are drawn.

2 Anisotropic Diffusion

Partial Differential Equations have been widely studied and applied in the field
of image processing in the past decades. A particular application area is image
denoising and enhancement. The simplest denoising diffusion process [7] solves
the heat equation in the form

∂x

∂t
= ∇2x (1)

where x is an N -dimensional scalar function over the image domain. Solving this
equation is equivalent to a convolution with a Gaussian kernel, and thus it filters
the image uniformly. This uniformity causes unnecessary loss of information in
addition to noise removal [17, Ch. 1.2]

To overcome this limitation, an edge-preserving non-linear diffusion process
was first introduced by Perona and Malik [10]. Here, the diffusion process is con-
trolled by a diffusion coefficient. They chose this coefficient a decreasing function
of the image gradient, slowing down the smoothing near edges. The Perona-Malik
equation is

∂x

∂t
= ∇ · (g (∥∇x∥)∇x) (2)

with a monotone decreasing diffusivity function g (s), such as

g (s) =
1

1 +
(
s
λ

)2 . (3)

A further extension of the diffusion process applies a tensor which controls
the flux of the process instead of a scalar-valued diffusivity coefficient. In certain
applications it would be desirable to bias the flux towards the orientation of
interesting features, avoiding the removal of these. The equation becomes then

∂x

∂t
= ∇ · (D · ∇x) , (4)

with the diffusion tensor D, a positive definite symmetric matrix. The Perona-
Malik process can be extended to reduce noise near edges without destroying
them. The diffusion tensor is chosen in a way that it prefers diffusion along
edges to diffusion perpendicular to them.

Diffusion processes can also be used for image deblurring and enhancement.
A method proposed by Gilboa et al. [6] simultaneously sharpens and denoises
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the image while locally varying the diffusion coefficient. Their algorithm switches
between a backward and a forward diffusion process based on the image gradient.
The backward process is basically solving the heat equation (Eq. 2) backwards
in time, simply having a negative diffusion coefficient. As the forward diffusion
process is a convolution with a Gaussian kernel, similarly the backward diffusion
can be described as a deconvolution operation. The process can be imagined as
pushing PET values upward along “slopes”, emphasizing gradients. As pointed
out in their work, this backward diffusion process is highly unstable, and they
use a custom diffusivity function to overcome this, combining a forward and a
backward diffusion force in a single process.

3 Proposed Method

Our main objective is to sharpen the blurry PET image, enhancing the edges
present in it, by using the registered anatomical data. Therefore, we use a back-
ward diffusion process stabilized with a forward process. Our method works
in arbitrary dimensions, but as medical data is usually in 3D, we present the
implementation only in 3D.

3.1 The Backward Process

For the edge-enhancement we use an anisotropic backward diffusion process.
To introduce high-frequency anatomical (CT) information in the PET image,
we bias the sharpening process by CT edges. To do so, we define our diffusion
tensor based on CT gradients. Let ∇ŷ = ∇y

∥∇y∥ , then we define the tensor as

Dŷ =⟩∇ŷ,∇ŷ⟨= ∇ŷT · ∇ŷ,

where y is the anatomical gray-value function, and ⟩·, ·⟨ is the outer product in
the Euclidean space. This dyadic tensor has eigenvalues λ1 = 1 with correspond-
ing eigenvector parallel to the CT gradient, and λ2 = λ3 = 0 with corresponding
eigenvectors perpendicular to the CT gradient. This tensor is then used in Eq. 4.
Here, PET gradients parallel to CT gradients are preferred, so the sharpening
process enhances them more effectively. This way, PET intensity flows through
CT gradients, creating PET edges along the CT ones. However, as there is no
force to compensate the sharpening effect, PET values converge into extremi-
ties disregarding actual tissue boundaries. This can be seen intuitively, as slopes
become steeper, the same amount of activity confines to a smaller region deter-
mined by PET distribution and not CT edges.

3.2 Stabilization

Our goal is to enhance tissue boundaries instead of just sharpening the PET
image, and to approximate original positron activity in those regions. Therefore,
a stabilization force is required to slow down or reverse the enhancement process
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if PET regions shrink below tissue boundaries. In order to stabilize the backward
diffusion process, we combine the sharpening process with a forward one. Hence,
two opposing forces are applied, a sharpening backward diffusion along CT edges,
and a simple forward diffusion force to stabilize PET regions.

We combine the two forces in one process by a linear combination of their
corresponding tensors. The forward diffusion has the identity matrix as its tensor
(resulting in Eq. 1). We determine the strength of the two forces by local features
explained in this section. Our combined process now has the form

∂x

∂t
= ∇ ·

(
(λŷDŷ + λII) · ∇x

)
. (5)

This combination benefits from both the edge-enhancement and region-stabilizing
processes, leading to improved PET regions along tissue boundaries.

To create PET edges along tissue boundaries, we aim to create PET gradi-
ents co-located with CT ones. Therefore, we classify local features based on the
gradients’ magnitudes. Intuitive analysis shows four primary cases:

– High PET gradient magnitude with high CT gradient magnitude. In this case,
PET edges are already strong along CT ones, so the algorithm should no
further sharpen the image. Both processes should slow down.

– Low PET gradient magnitude with high CT gradient magnitude. Here, more
sharpening is required to enhance edges, so the backward force should be
emphasized.

– High PET gradient magnitude with low CT gradient magnitude. This occurs
when PET edges are falsely created where no tissue boundary is present.
This may be due to over-sharpening, or reconstruction noise. In this case,
the stabilizing process should have greater emphasis.

– Low PET gradient magnitude with low CT gradient magnitude. Here, the
process should not affect the image, as these conditions are present within
tissues in normal case.

Based on these cases we derive two functions scaling the two opposite force.
To obtain stability and visually satisfying results, these two functions must be
continuous and differentiable over the positive real domain. The scaling function
for the backward process should be monotone increasing in the CT gradient
magnitude and decreasing in the PET gradient magnitude. The scaling function
of the forward process should behave the opposite way. To scale the processes
according to the magnitude of gradients we use a smoothed step function, for
example, sstep (s) := 2

π arctan(s). Then the parameters λŷ and λI in Eq. 5 are
replaced with the functions

fŷ (∥∇x∥, ∥∇y∥) := (1− sstep (∥∇x∥)) sstep (∥∇y∥) ,
fÎ (∥∇x∥, ∥∇y∥) := sstep (∥∇x∥) (1− sstep (∥∇y∥)) .

Notice that the scaling functions have an implicit effect on the diffusivity as
their sum is not always 1, so they control the overall process speed as well as
the ratio of the two forces.
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To control image smoothness, we introduce a parameter to maximize the
value of the forward scale function. With this parameter, we can determine the
ratio of the two force, and thus the extent of PET regions compared to actual
tissue sizes. The larger the forward process scale, the more space is filled with
PET intensity and the smoother the image is. Our system equation becomes

∂x

∂t
= ∇ ·

((
(1− µ) fŷDŷ + µfII

)
· ∇x

)
. (6)

Note that the scaling function parameters are omitted for simplicity.

3.3 Meeting Medical Criteria

PET is a quantitative measurement method, which means image intensities hold
essential information about the tissue being analyzed. Obviously, negative values
are invalid, so they should be avoided. Moreover, local average intensity needs
to be retained as it holds crucial information.

To avoid negative values, we introduce an explicit diffusivity function. Neg-
ative values are a result of over-sharpening as the lower parts of the sharpened
edge become negative. This effect is to be avoided, and thus we slow down and
completely stop the process as values approach the zero boundary. We use a low
value cut-off function to gradually slow down the diffusion processes for small
PET values:

lowcutoff (x) :=

{
x2

1+x2 if x ≥ 0,

0 if x < 0.

It can be easily seen that this function makes the diffusivity smoothly diminish
at low PET values.

It is not enough to simply scale the divergence value in Eq. 6, because it
would not scale symmetrically the diffusion process, leading to incorrect values,
especially regarding local average intensity. So we must scale gradients instead.
As the gradient in a point is affected by the local infinitely small neighborhood
of that point, we must take the PET values of that neighborhood into account.
Taking the minimum of the neighboring PET values clearly suffices to stop the
diffusion process as soon as intensities approach the zero-boundary. As the partial
derivatives are affected by points along each axes, only those must be considered.
So the diffusivity function defined in the N -dimensional image space, at point
i0 becomes

diffity (i0) := lowcutoff

(
min

N∪
n=1

{ξ+n (i0) , ξ
−
n (i0)}

)
,

where

ξ±n (i0) := lim
∆→0,∆ ̸=0

(
x
(
i0 + e±∆

n

))
,
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and e∆n is a vector with e∆n = ∆ in the n-th position, and 0 elsewhere. Inserting
functional d into Eq. 6, the system equation becomes

∂x

∂t
= ∇ ·

(
d
(
(1− µ) fŷDŷ + µfII

)
· ∇x

)
. (7)

This way we have avoided negative values by stopping the diffusion as soon as
PET intensities approach the negative domain.

There is no well-established theory of general non-linear anisotropic diffu-
sion methods, except for some simpler cases [16, 17]. As Weickert [17, pp. 63-64]
pointed out, certain types of anisotropic diffusion processes retain average grey
value. This requires well-posedness, which is not guaranteed in our case. How-
ever, due to the stabilization and similarity to the forward problem based on
divergence-form and the smooth scaling functions, we expect that the average
gray level is not divergent. This is examined empirically in Section 5.

4 Implementation

Our proposed method is implemented and tested in 3D as it is the usual di-
mension of medical data. We solve Eq. 7 using a forward Euler time-marching
scheme, and use central differences spatial differentiation. First, we scale the
PET image to the (presumably) larger CT image size by a simple tri-cubic filter
on the GPU. We iterate until there is no significant change in the image, when we
have approached the steady-state solution well enough. This is measured using
the sum of absolute difference between each subsequent image:

diff
(
xt, xt+1

)
:=
∑
i∈Ω

|xt (i)− xt+1 (i) |,

where xt is the PET image after iteration t (t = 0 gives the initial PET image),
and i ∈ Ω is a point in the image space. When this difference falls below a
threshold, we stop iterating. To determine this threshold independently from
the actual image, we use the first difference, i.e. diff

(
x0, x1

)
as a unit, and

define the stopping condition as

diff
(
xt, xt+1

)
≤ ϵ · diff

(
x0, x1

)
.

Obviously, larger ϵ leads to coarser, less sharpened image.
As for the force functions, in order to maximize their effect we scale gradients

using the mean gradient magnitudes. Defining

MGM(∇x) =
1

∥Ω∥
∑
i∈Ω

∥∇x (i) ∥,

we get

sstep(2) (∇x) :=
2

π
arctan

(
∥∇x∥

MGM(∇x)

)
.
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The CT gradient case is analogous. Clearly, the step function will take 1/2 on
average-size gradients; a normal distribution of gradient magnitudes assumed,
this way our step function maximizes the spread of scaling values.

We have implemented the Euler-scheme on the GPU, using OpenCL and
C++. Voxel intensity calculations are inherently massively parallelizable, and
hence the algorithm can be implemented efficiently.

5 Results

We tested the proposed algorithm using two real measured data. The first one
is a mouse measurement, the CT image size is 217 × 211 × 528, and the PET
image size is 136 × 132 × 330 (Data courtesy of P. Blower, G. Mullen, and
P. Mardsden, Rayne Institute, King’s College, London). We ran our method
for multiple µ and ϵ values. Corresponding line profiles are shown in Fig. 3.
As explained earlier, lower µ values increase sharpness and decrease residual
intensity between tissues, making them more confined. On the other hand, they
introduce more noise. Larger ϵ values cause the process to stop before reaching
maximum sharpness (based on µ). As seen in Fig. 1, too small µ values cause
tissues not to be filled correctly as well as more CT noise added to the image, and
too large µ values leave more intensity spilled out by PVE. Tables 1 and 2 show
running time statistics of the measurements with different µ values. Notice that
the less smooth image is produced, the less time it takes to converge, and the
less the difference from the original image will be due to less sharpening. Also,
running time is much lower than that of the typical PET reconstruction. The
error curve is depicted in Fig. 5. Notice the visible convergence of differences.
Average gray-value is not constant, although it seems converging to an approx.
1.25% change, which is acceptable.

Our other measurement is a Derenzo phantom of rod diameters in 0.7mm –
1.2 mm with CT image size 333 × 333 × 281, and PET image size 173 × 173 ×
146 (image created with Mediso Ltd.’s NanoPET/CT [9]). It is a quite noisy
measurement, but our algorithm can still achieve improvement compared to the
original PET image. As seen in Fig. 4, small µ values lead to noisy results,
but the rods have more significant contour. Fig. 2 shows the original images
and two results. Notice that small rods became more observable. As before, less
sharpening causes the algorithm to converge in fewer iterations.

µ 0.01 0.05 0.1

Time (m:s) 8:27 7:47 5:34

Iter. cnt. 1110 1025 716

Diff 83.32% 63.25% 49.89%

Table 1. Running times of the mouse measurement with different µ values (ϵ = 0.05).
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µ 0.01 0.05 0.1

Time (m:s) 10:09 7:11 6:44

Iter. cnt. 1096 764 713

Diff 61.89% 30.7% 25.92%

Table 2. Running times of the Derenzo measurement with different µ values (ϵ = 0.05).

PET CT µ = 0.1 µ = 0.05 µ = 0.01

Fig. 1. Original PET mouse image, registered CT data, and upgraded images for dif-
ferent µ values, µ = 0.1, µ = 0.05, µ = 0.01 . Data courtesy of P. Blower, G. Mullen,
and P. Mardsden, Rayne Institute, King’s College, London.

6 Conclusion

We proposed an algorithm for Partial Volume Effect correction for PET recon-
struction using registered CT data. Our method is a combination of a backward
anisotropic diffusion and a forward diffusion process. Their combination is based
on local gradient magnitudes. Additional conditions are applied to meet medical
criteria. We implemented our method for GPU-s, and tested it with real-world
examples. Results show that our method effectively sharpens the PET image,
creating edges on tissue boundaries, as well as retaining structural and functional
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Fig. 2.Original PET (top left), CT (top right), and two results (bottom) of the Derenzo
measurement, with µ = 0.1, ϵ = 0.05 (bottom left) and µ = 0.05, ϵ = 0.05 (bottom
right) parameter values. Data courtesy of Mediso Ltd. [9]
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Fig. 3. Line profiles of the mouse measurement for different µ (ϵ = 0.05) (top) and ϵ
(µ = 0.05) (bottom) parameter values.
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Fig. 4. Line profiles of the Derenzo measurement for different µ (ϵ = 0.05) (top) and ϵ
(µ = 0.05) (bottom) parameter values.
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information. Even in quite noisy circumstances, our algorithm can achieve im-
provement over the original PET image. This enhancement procedure is expected
to be part of the PET reconstruction code of the TeraTomoTM program [4].
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