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Abstract—In tomography reconstruction, the relationship be-
tween the finite-element representation of the objective function
and the expected number of hits in detectors — or in other words,
the particle transport — is described by the system matrix.
With the evolution of high-performance hardware, precise on-
the-fly estimation of the system matrix becomes more and more
feasible, which allows the use of patient-dependent data and
makes it unnecessary to deal with the compression of enormous
matrices. On-the-fly system matrix generation requires the online
approximation of high dimensional integrals, which is usually
attacked by Monte Carlo quadrature and importance sampling.
Determining the number of samples used by the estimators
belongs to the classical tradeoff problem between accuracy and
computational time. However, the approximation error mainly
comes from the measurement noise and high frequency compo-
nents of the measured object that cannot be captured using a
given sample density. In this paper, we propose the application
of filtered sampling for the forward projection step of iterative
ML-EM based PET reconstruction to decrease the variance of
the integrand and thus to reduce the error of integral estimation
for a given set of samples. The input of the forward projection is
filtered using a low-pass filter, which reduces noise and increases
the probability that samples do not miss high frequency peaks
— e.g. a point source. The iteration thus converges to a modified
fixed point, from which the original function can be extracted
by applying the same filter. The presented model is built into the
TeraTomoTM system.

I. INTRODUCTION

In iterative positron emission tomography (PET) forward
and back projections alternate. Forward projection models the
physics of the system by computing the expected number of
simultaneous γ-photon hits in detector pairs (a.k.a. Line Of
Responses or LORs), ỹL, from the current estimation of the
radiotracer density x(v⃗), while back projection corrects the
current estimation based on the ratio of the measured yL and
computed LOR-hits ỹL.

The expected hits for a given LOR L is:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv⃗ (1)

where V is the volume of interest, x(v⃗) is the radiotracer
density function and T (v⃗ → L) is the system sensitivity
denoting the probability that a positron born in v⃗ causes a
γ-photon pair hit in LOR L.

The output of the reconstruction method is the tracer density
function x(v⃗), which is approximated in a finite function series
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with Budapest University of Technology and Economics (e-mail: szir-
may@iit.bme.hu).

form:

x(v⃗) =

Nvoxel∑
V=1

xV bV (v⃗), (2)

where x = (x1, x2, . . . , xNvoxel
) are unknown coefficients and

bV (v⃗) (V = 1, . . . , Nvoxel) are basis functions, which are
typically defined on a voxel grid.

The application of finite elements replaces the continuous
problem by a discrete one:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

Nvoxel∑
V=1

ALV xV (3)

where ALV is the system matrix:

ALV =

∫
V

bV (v⃗)T (v⃗ → L)dv. (4)

The ML-EM scheme searches tracer density coefficients
x1, . . . , xNvoxel

that maximize the probability of measurement
results y1, . . . , yNLOR

by an iterative algorithm started from
a uniform tracer density or an initial estimate. Taking into
account that the measured hits follow a Poisson distribution,
after each forward projection, the ML-EM scheme executes a
back projection correcting the voxel estimates x(n)

V of iteration
step n by scaling factors sV obtained from the ratios of
measured and computed LOR values [9]:

x
(n+1)
V = x

(n)
V · sV , where sV =

∑
L ALV

yL

ỹL∑
L ALV

. (5)

Fig. 1. The reconstruction as a control loop. Forward projection F takes the
actual voxel values x

(n)
V and computes the expectation of LOR events ỹL.

Back projection B calculates a correction ratio sV for every voxel from the
expected LOR events ỹL and the measured LOR hits yL.

The reconstruction process can also be interpreted as a
control loop (Fig. 1), including forward projection

ỹL = F(x) =

Nvoxel∑
V=1

ALV xV

and back projection

sV = B(ỹL) =
∑

L ALV
yL

ỹL∑
L ALV

.



This loop is stabilized when x(n+1) = x(n), that is when
scaling factors sV are 1, which means that this loop solves
the following equation for x:

B(F(x)) = 1. (6)

System sensitivity T (v⃗ → L) and consequently system
matrix elements ALV are high dimensional integrals since they
aggregate all particle paths started at the positron generation
and connecting the sequence of particle–matter interaction
points by line segments. In the simplest physical model, where
positron range and photon scattering are ignored, and detector
crystals are assumed to be ideally black, the expected number
of hits in LOR L is:

ỹL =

∫
V

∫
Ω

x(v⃗)T (v⃗, ω⃗ → L)dv⃗
dω

2π

where Ω is the directional hemisphere, and T (v⃗, ω⃗ → L)
is 1 if the line of place vector v⃗ and direction ω intersects
the two detector surfaces and zero otherwise. The position of
annihilation v⃗ can be defined by three scalar coordinates, while
the direction by two, making this integral five dimensional.

If positron range and photon scattering are also considered,
every potential particle–matter interaction point increases the
dimension of the integration domain by three, quickly lead-
ing to very high dimensional integrals. A classic method to
approximate high dimensional integrals is the Monte Carlo
quadrature [11]. It has the advantage that the number of its
sample points required to reduce the integration error below a
threshold does not grow with the dimension of the integration
domain unlike in classical deterministic quadrature rules where
the required sample number grows exponentially with the
dimension of the domain. The computation time of Monte
Carlo quadrature is proportional to the number of samples, so
it should be as small as possible.

For a given number of samples, the error of Monte Carlo
quadrature depends on the distribution of sample points, and
the variation of the integrand divided by the sample density.
To obtain a better sample distribution, different methods such
as importance sampling and low discrepancy sampling were
proposed [12]. In the followings, we propose a method to
reduce the variation of the integrand.

II. METHODS

Filtered sampling [1] replaces the integrand by another
function that has a similar integral but smaller variation, then
its integral can be estimated more precisely from discrete
samples (Fig. 2). Reducing the variation means the filtering
of high frequency fluctuations by a low-pass filter. This filter
should eliminate frequencies beyond the limit corresponding to
the density of the sample points. On the other hand, it should
only minimally modify the integral.

To see how this pre-filtering affects the reconstruction, let
us consider the control loop of ML-EM iteration (Fig. 1)
and include filtering operator G before forward projection F
(Fig. 3). Filtering operator G maps the iteration result xV to
filtered voxel value x̂V . The modified system stabilizes when
the scaling factors sV are 1, thus we get

sV = B(F(x̂)) = B(F(G(x))) = 1.

Fig. 2. Filtered sampling reduces the approximation error of the integral
quadrature by reducing the variance of the integrand.

Fig. 3. The reconstruction loop of filtered sampling. Forward-projection F
computes the expected LOR hits ỹL from the filtered voxel values x̂V that are
computed as by applying filter G to the result of previous iteration x(n). Back
projector B calculates the scaling factor sV for each voxel, i.e. it obtains the
product of the ratios yL/ỹL of the measured and computed LOR hits with
the transpose of the system matrix and divides the results by the column sums
of the system matrix.

Note that this is the same equation for x̂ as the original one
(equation 6) for x, thus considering x̂ to be the output of the
control system, the modified system behaves similarly to the
original one. In the modified system we always have two tracer
density estimates xV and x̂V , that are related as x̂ = G(x). In
addition to solution x̂, we also get a sharpened reconstruction
x = G−1(x̂).

Note that filtering only affects the input of the forward
projection step, the correction made by back projection is
applied to the unfiltered estimate of the radiotracer density
x(n) (see Fig. 3).

As a low pass filter G, we experimented with the Gaussian
and the Bilateral filters [14]. The advantage of the Gaussian
filter is that it can be defined by its mean and standard
deviation, and the mean is conveniently set to zero while the
standard deviation is set according to the noise that needs to
be suppressed. However, as shown in Fig. 10 and Fig. 11,



Noisy edge Gaussian filtered edge Bilateral filtered edge

Fig. 4. Effect of different filters on a noisy edge. In addition to damping
high frequency noise, Gaussian filter also introduces blurring. Bilateral filter,
on the other hand, filters noise while keeping sharp transitions of the data.

Gaussian filtering thickens object boundaries. A possible ex-
planation is that edges are not bandlimited signals and have
high frequency components beyond the Nyquist limit and
the reasonable range of the numerical precision. These high
frequency components are eliminated by the Gaussian but
cannot be reproduced by its inverse.

Bilateral filters, on the other hand, preserve edges and object
boundaries when their parameters are appropriately set. In
the most commonly used case, the weights of these filters
are products of two Gaussians: one is defined in the spatial
domain, the other is in the intensity domain. More specifically,
Bilateral filter B is defined as

B(v̂, σd, σr) =

∫
Gσd

(||v⃗ − v̂||)Gσr (x(v⃗)− x(v̂))x(v⃗)dv⃗∫
Gσd

(||v⃗ − v̂||)Gσr (x(v⃗)− x(v̂))dv⃗

with v̂ denoting the center voxel of the neighborhood and Gσ

denoting the one dimensional Gaussian function of standard
deviation σ:

Gσ(t) =
1√
2πσ

exp

(
− t2

2σ2

)
.

The intensity-dependent Gaussian weight ensures that neigh-
boring voxels placed on the same side of a step-like signal as
the centering voxel v̂ get higher weights while voxels from the
other side of the edge give less contribution to the filter output,
better preserving the edge. The amount of blur is controlled by
spatial variance parameter σd, while the amount of detail kept
is determined by intensity variance parameter σr. However, the
appropriate value of σr is less straightforward to find, since it
is given in intensity space which is object dependent.

The optimal spatial parameter for both filters can be ob-
tained from the probability density function (PDF) of the
samples used by forward projection (Fig. 5), thus, the filter size
may vary through the reconstructed volume. Forward projector
operators can be classified into voxel driven (a.k.a input driven
or direct Monte Carlo) or LOR driven (a.k.a output driven
or adjoint Monte Carlo) algorithms. Voxel driven methods in
most cases sample the volume proportionally to the intensity,
which directly generates the PDF in each iteration. LOR driven
approaches, on the other hand, usually aim for uniform sample
density in LOR-space (a.k.a sinogram-space or image-space),
which means that the sample density in voxel-space is approxi-
mately the same in every iteration, and the corresponding PDF
can be approximated in a preprocessing step.

MIP-mapping can substantially improve the performance
of filters having voxel-dependent kernel size on a parallel

Fig. 5. Spatially varying filtering based on the sampling PDF. Low sampling
density cannot capture high variance details, thus, a strong blur is used to
decrease the variance of the integrand. When the sampling density is high
enough, there is no need to eliminate high frequency details.

Fig. 6. 3D Gaussian-pyramid and MIP-mapping. Lower resolution variants
of the volume are created by gradually down-sampling with a Gaussian
filter. Spatially varying filtering is executed by sampling the resolution level
corresponding to the required amount of blur.

architecture such as the GPU [1]. The first step of MIP-
mapping is to build a Gaussian pyramid [8], that is, gradual
down-sampling of the original three dimensional voxel array
by a factor of 2, by iteratively applying the Gaussian filter
(Fig. 6). The upper levels of the pyramid thus correspond
to the lower resolution variant of the original volume where
the higher frequency details are properly eliminated. After
this pre-processing, MIP-mapping executes spatially varying
filtering by sampling the volume of the resolution level corre-
sponding to the required level of blurring (Fig. 6). The MIP-
map level can be a non-integer scalar pointing between two
neighbouring levels of the pyramid. In this case, the final
output is the interpolated value of the samples taken from
these two levels.

The optimal filter size may be smaller than the voxel size
meaning that the local sampling density can already capture



the highest frequency details in the data allowed by the finite
element representation. As a consequence, if the time budget
given for the reconstruction allows a sufficient sample density
(e.g. the maximal distance between samples is smaller than the
voxel size throughout the volume of interest), filtered sampling
provides no benefits.

III. RECONSTRUCTION METHOD

Our reconstruction method is an OSEM/ML-EM based
adjoint Monte Carlo approach. We favor LOR driven, i.e.
output driven forward projections since output driven algo-
rithms are more suitable for GPU implementation. In the case
of small animal PET where scattering in the material is of
less importance, the sampling density of our forward projector
is mainly determined by the geometric phase estimating the
direct contribution. Thus, in the followings, we describe this
component in details. It will be clarified that the algorithm
has nearly uniform sampling density in LOR space, making
a point-source the worst-case input by wasting most of the
samples on nearly zero intensities.

Considering only the geometry, a LOR can be affected
only if its detectors are seen at directions ω⃗ and −ω⃗ from
emission point v⃗. It also means that emission point v⃗ and
direction ω⃗ unambiguously identify detector hit points z⃗1 and
z⃗2, or alternatively, from detector hit points z⃗1 and z⃗2, we can
determine those emission points v⃗ and direction ω⃗, which can
contribute.

To establish a LOR-driven approach, we modify our view
point from the emission points and directions to detector
points, and using the correspondence between them, the de-
tector response is expressed as an integral over the detector
surfaces.

Fig. 7. Computation of the Jacobian of the change of variables. The differ-
ential solid angle at which dz1 detector surface and dz2 detector surface are
simultaneously seen from emission point v⃗ is dω = dz1 cos θz⃗1/|z⃗1 − v⃗|2 =
dz2 cos θz⃗2/|z⃗2 − v⃗|2. The differential solid angle at which dz2 is seen from
point z⃗1 is dω2 = dz2 cos θz⃗2/|z⃗2 − z⃗1|2 = dA/|z⃗1 − v⃗|2. Finally, the
differential volume intersected by lines of z⃗1 and z⃗2 is dv = dldA, where
dl is the length of the line segment intersecting dv, and dA is the surface
area that is perpendicular to the line.

According to Fig. 7, the Jacobian of the change of integra-
tion variables is:

dωdv =
cos θz⃗1 cos θz⃗2
|z⃗1 − z⃗2|2

dldz1dz2

where θz⃗1 and θz⃗2 are the angles between the surface normals
and the line connecting points z⃗1 and z⃗2 on the two detectors,

respectively. With this, the LOR integral can be expressed as
a triple integral over the two detector surfaces D1 and D2 of
the given LOR and over the line connecting two points z⃗1 and
z⃗2 belonging to the two detectors:

ỹL =

∫
D1

∫
D2

cos θz⃗1 cos θz⃗2
2π|z⃗1 − z⃗2|2

 z⃗2∫
z⃗1

x(⃗l)dl

 dz2dz1. (7)

LOR driven methods are also called ray based since they
identify voxels that may contribute to a LOR by casting one
or more rays between two points on the LOR detectors. For
the approximation of the line integral along a ray, we may
use ray marching, Siddon’s algorithm [10], Joseph’s method
[3], or distance based techniques [7]. Siddon’s method and
Joseph’s method assume piece-wise constant basis functions,
which can be extended to piece-wise tri-linear basis [13]. Ray
marching, on the other hand, is appropriate for any basis
function selection. Ray marching takes constant length steps
along the ray and samples the activity and the material density
at finite number of sample points. The first sample location is
jittered randomly to guarantee unbiased estimate for the line
integral.

Equation (7) can be estimated by taking Ndetline uniformly
distributed point pairs, (z⃗

(i)
1 , z⃗

(i)
2 ) on the two detectors, and

selecting Nmarch equidistant points l⃗ij along each line segment
(z⃗

(i)
1 , z⃗

(i)
2 ) (Fig. 7):

ỹL ≈ D1D2

2πNdetline

Ndetline∑
i=1

cos θ
z⃗
(i)
1

cos θ
z⃗
(i)
2

|z⃗(i)1 − z⃗
(i)
2 |2

Nmarch∑
j=1

x(⃗lij)∆li

 .

This formula is the Monte Carlo estimator of the expected
LOR hits taking discrete point samples l⃗ij in the voxel domain.
In order to get a high accuracy estimate, the domain of
each basis function that is relevant for this LOR should
be sufficiently densely sampled, which would lead to very
high sample numbers. However, if the average number of
samples in each basis function is about one or less, this
estimate has non-negligible variance especially if the activity
has high frequency variations. The proposed filtering scheme
can be used to smooth these variations before the Monte Carlo
sampling.

IV. RESULTS

The proposed method is integrated into the TeraTomoTM

system [4]. The filtering step has been implemented in
CUDA [6] and it has been executed on an NVIDIA GeForce
480 GFX GPU. Due to the high arithmetic performance and
bandwidth of the GPU, the execution time of the filtering step
is negligible comparing to the projection operators even for
higher resolution volumes. Thus, our proposed method has
practically no overhead.

To demonstrate the positive effects of using filtered sam-
pling, we modeled Mediso’s nanoScan-PET/CT [5], which
has 12 detector modules consisting of 81 × 39 crystals of
size 1.122 × 13 mm3 and simulated a noisy measurement of
a Derenzo-like phantom where the simulation corresponds to
a 10 second measurement, and a point-source phantom with



GATE [2]. In both cases, we reconstructed the measured values
with and without filtered sampling. We used only Ndetline = 1
and Nmarch = 36 samples in both cases and set standard
deviation σ of the Gaussian to 2 (Fig. 10). Note that by
using the presented filtering method, approximately the same
image quality could be achieved as obtained with 8 times more
samples by the original method.
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Fig. 8. Cross Correlation errors for different filtering kernel widths when
the Derenzo is reconstructed at double, i.e. 288× 288× 256 resolution

no filter σ = 0.3

60 iterations 60 iterations

σ = 0.5 σ = 1.5

6× correction

Fig. 9. The effect of the filtering between forward and back projections
using different filter kernels when the Derenzo is reconstructed at double, i.e.
288× 288× 256 resolution. We computed 100 iterations. As the no-filtering
and filtering with σ = 0.3 reconstructions diverge, their images are shown
after 60 iterations. The σ = 0.5 reconstruction also deteriorates and should
be scaled by a factor of 6.

To demonstrate that filtering allows to increase the reso-
lution without the need of significantly more samples, we
reconstructed a higher activity Derenzo at 288 × 288 × 256
resolution as well without increasing the number of samples
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Fig. 11. Line profile for the Derenzo phantom of Fig. 10. Note that filtered
sampling using the Gaussian filter makes the rods narrower while the bilateral
filter better preserves their thickness.

no filter Gaussian prefilter

Fig. 12. Reconstruction of the linearity-homogeneity phantom simulated by
GATE.

(Fig. 8 and Fig. 9). At such high resolution, the Gaussian
clearly demonstrates its potential since without using it, the
iteration process does not converge.

Fig. 12 and Fig. 13 show the results for the GATE-simulated
linearity homogeneity phantom (corresponding to a 2 second
measurement), consisting of eight homogeneous cubes having
different activity levels. Gaussian filtering greatly reduces
the noise coming from the low-dose simulation and the low
sampling rate while also stabilizing convergence.

V. CONCLUSION

This paper proposed a filtering method to decrease the
variance of the integrand of the high dimensional integrals
in the forward projection step of an iterative ML-EM al-
gorithm. We proposed the application of low-pass filtering
before the forward projections, while back projection still
corrects the original unfiltered voxel array. We have proven
that this approach does not compromise the reconstruction and
preserves the stability even if high resolution voxel arrays are
reconstructed with a low number of Monte Carlo sampling.
All steps are implemented on the GPU where the added
computational cost of filtering is negligible with respect to
forward and back projection calculations.



I. a.) no filter I. b.) no filter, 8x sampling I. c.) Gauss prefilter I. d.) bilateral prefilter I. e.) Reference

II. a.) no filter II. b.) no filter, 8x sampling II. c.) Gauss prefilter II. d.) bilateral prefilter II. e.) Reference

Fig. 10. Effects of filtered sampling. The upper row of images shows the reconstructions of a Derenzo-like phantom and the bottom row shows the
reconstructions of a point source. Note that using filtered sampling results in a similar image quality to a reconstruction using 8 times more samples. The
hole artifact of the point source reconstruction in II. a.) arises from the low sampling density, forward projection misses the neighborhood of the point source
in several iterations which has a lower probability if the point source is blurred by filtered sampling. Also note that by using Gaussian filter, the boundaries
of the object are somewhat thickened, which is not present for the bilateral filter.

Fig. 13. Error curves of the reconstruction of the linearity-homogeneity
phantom simulated by GATE.
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