
Eighth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2016

Hierarchical Volumetric Fusion of Depth Images for SLAM

László Szirmay-Kalos, Balázs Tóth, and Tamás Umenhoffer

Budapest University of Technology and Economics, Hungary

Abstract
With a moving depth camera 3D objects and scenes can be scanned. The scanning algorithm merges depth images
into a common volumetric model that stores the distance field in voxels, and simultaneously tracks the camera
based on the already built model. To maintain high resolution while fitting the model to the GPU memory, hier-
archical volumetric representation is needed. The paper presents a GPU implementation of a hierarchical fusion
approach. When fusing depth images into a 3D volumetric model, a crucial task is to mark macro-cells as empty
or as intersected by the noisy surface represented by the depth image. This paper proposes a simple marking al-
gorithm for the GPU implementation of hierarchical volumetric fusion. The method is based on multi-level DDA
ray-casting. The GPU implementation is of scattering type, but we also show a solution to avoid atomic writes,
which improves performance.

1. Introduction

Depth cameras like Kinect measure the distance of points
visible in different pixels. The information of a pixel in-
cludes the estimate where the surface is intersected by a ray
going through the pixel and also that the volume is empty
between the camera and the intersected point along the ray.
The distance values are noisy due to the inherent noise of
the depth camera, which often measures the time of flight of
the light or the phase of the returned infrared signal. Mov-
ing the camera around the object or in the scene, geometric
information of different noisy images can be fused together
into a smooth 3D model. Additionally, the temporary result
of the fused data can be used to find where the camera is
moved, executing Simultaneous Localization And Mapping
(SLAM). A famous approach to depth image fusion is the
Curless-Levoy algorithm 3 that results in a distance field of
the reconstructed surface. The discretized distance field is
represented in a voxel grid. As a uniform grid would either
have poor resolution or overflow the GPU memory, hierar-
chical representation is preferred where higher level macro-
cells are decomposed to smaller cells and finally to voxels
only if the surface intersects the cell 2. Scene objects can be
extracted from the volumetric representation as finding the
zero level surface of this distance field. The output can be
a point cloud generated by the intersection of the zero level
surface and the lattice edges of the grid, or a triangle mesh
obtained with the marching cubes algorithm 6, 9.

If the camera does not move, the Curless-Levoy algorithm
estimates a Truncated Signed Distance Function (TSDF)
representing the signed distance between the surface and the
grid point along the ray defined by the current pixel. The
signed distance is positive in front of the surface and nega-
tive behind it. To avoid the interference of surfaces on op-
posite sides and realizing that farther away from the surface
the distance value is unreliable since nearer surface may be
found in another direction, the signed distance function is
truncated. If a point is outside of the truncation interval and
its signed distance is positive, it belongs to the empty region
between the camera and the surface. If the camera moves,
then the same arithmetic mean is used to update distance
values. As it is shown in 3, this corresponds to the recon-
struction of the isosurface with minimal squared error where
the weighting depends on how long the surface is seen re-
cently from different angles.

2. Previous work

With the application of active sensors larger indoor scenes
can be scanned at interactive frame rates 4, 8. KinectFusion
5, 7 is a real-time GPU implementation of the Curless-Levoy
volumetric fusion algorithm. To keep high resolution with-
out extensive memory requirements the volume may be par-
tially streamed out or in the GPU memory 16, or a hierarchi-
cal representation can be used. In Scalable KinectFusion a
three level hierarchy is maintained 2.



Szirmay-Kalos, Tóth, Umenhoffer / Hierarchical Volumetric Fusion of Depth Images for SLAM

3. The new method

We use a two-level hierarchy to represent the TSDF vol-
ume. The higher level grid is called macro-voxel array. A
macro-voxel cell may or may not be subdivided depending
on whether the surface intersects the macro-voxel. In case
of subdivision, a 8× 8× 8 resolution micro-voxel array is
assigned to the macro-voxel cell.

Figure 1: Algorithm pipeline

The algorithm iteratively executes the following main ker-
nels (Figure 1):

1. Mark: Find macro-cells that are empty or affected by the
current depth image.

2. Subdivide: Assign a micro-voxel block to marked macro-
cells that have not been subdivided yet.

3. Fusion: Find micro-voxels of marked macro-cells that are
empty or affected by the current depth image and fuse, i.e.
average their stored TSDF value with the TSDF obtained
from the current depth image.

4. Rendering: Execute ray casting to render the current es-
timate of the surface from the current camera also com-
puting the surface normals.

5. Get depth image: Read the new depth image from a possi-
bly moving camera and compute the normals of the back
projected depth image.

6. Camera tracking: Based on the rendered surface and nor-
mal vectors and the measured distance values, compute
the new camera position and orientation with the Iterated
Closest Point (ICP) algorithm 5.

The memory layout supporting the two-level hierarchy is
shown by Figure 2. A macro-voxel is represented by a 32
bit long descriptor that contains the 21 bit long micro-voxel
array address (poolIdx) or it is -1 if the macro-voxel is not
subdivided. Other bits encode whether the current depth im-
age intersects the macro-cell (isNearSurface) and it is seen
from the camera (isSeen). Variable emptyCounter stores how
many times the macro-voxel was found empty before it has
been subdivided.

The free micro-voxel blocks are taken from a list (FreeL-
ist). A micro-voxel is represented by a 32 bit long descriptor
where 24 bits represent the TSDF and 8 bits the weight.

Figure 2: Organization of the GPU memory that stores the
two-level TSDF volume

3.1. Macro-cell marking

Step 1 determines whether higher level macro-cells are inter-
sected by the surface. In classical volumetric fusion the cen-
ter of the voxel is projected on the window plane of the depth
image to locate the pixel where it is visible from the depth
camera. If the difference of the depth value of this pixel and
the distance of the voxel center from the camera is less than
the truncation distance, the voxel is affected, otherwise it is
assumed not to be intersected by the currently visible sur-
face. Clearly, this method works only if the voxels are small
and they are projected to a single pixel, otherwise sampling
artifacts may show up. Higher level macro-cells are obvi-
ously not small enough, so a more precise test is needed.
The method of Scalable KinectFusion 2 solves this problem
by projecting the hexagons of each voxel onto the window
plane and conservatively rasterizing the projected polygon
to identify the pixels where depth comparison is needed. If
rasterization is done in parallel, then an additional reduction
is needed to make the final conclusion for the hexagons, i.e.
for the whole cell. Although this is a output-driven, i.e. gath-
ering type algorithm 12, 11, but is quite complex and its thread
divergence is high since different cells may be projected to
highly varying number of pixels. Another drawback of the
output-driven approach is that we should explicitly ignore
those voxels that cannot be projected onto the window by a
culling method.

To address the problems of the marking method of Scal-
able KinectFusion, we propose an input-driven, i.e. scat-
tering type approach, which automatically ignores invisible
cells, easy to implement, and its thread divergence is small.
Due to its scattering type, different threads can write the
same memory locations, but this problem can be handled



Szirmay-Kalos, Tóth, Umenhoffer / Hierarchical Volumetric Fusion of Depth Images for SLAM

without atomic writes in this special case. Moreover, if a
one-frame delay is acceptable, the computational cost of the
method is practically zero since it can be done together with
the ray-casting step of the iteration, which is needed by the
ICP anyway.

Figure 3: The proposed macro-voxel marking algorithm.
Initially all cells are set to unseen, i.e. not empty and not
intersected. Threads are assigned to rays and execute multi-
level DDA on the higher level macro-voxel grid starting
at the cell closest to the camera. Before finding a macro-
voxel overlapped by the truncation interval, macro-voxels
are marked as empty. When the truncation interval overlaps
with the cell, the macro-voxel is marked as intersected.

The marking method updates two flags, one indicating
emptiness, the other intersection. Initially both flags are
cleared. The marking process assigns a GPU thread to every
pixel of the depth image. The thread takes the depth value
of the camera in this pixel and forms an interval, where the
minimum is the depth value minus the truncation distance,
and the maximum is the depth value plus the truncation dis-
tance. The thread executes a multi-level DDA based voxel
traversal method 1 to identify those higher level cells that
are intersected by this ray. Until the ray parameter at the exit
point of the cell is lower than the minimum value, the vis-
ited cells are marked as empty (Figure 3). In empty cells
there are no visible surfaces, so truncated signed values are
updated accordingly. Cells where the entry-exit interval of
the ray parameter overlaps with the truncation interval are
possibly intersected by the noisy surface.

As different rays may intersect the same macro-cell, dif-
ferent threads may update the flags of the same cell, caus-
ing write collisions and usually necessitating atomic writes,
which are slow. However, in this special case, atomic oper-
ations can be saved. The descriptor of a cell are shown by
Figure 4, where the two flags are put into two bytes of the
descriptor word, thus each of them can be accessed without
modifying the other flag. If needed, a thread sets a flag inde-
pendently of its previous value, and all other bits of the byte
are constant during the execution of this thread. So the result
is independent of the order how threads access these bytes.

Figure 4: A single macro-voxel is represented by a 32 bit
word containing the index of the block of child-voxels, the
flags of intersection and emptiness, and also a counter show-
ing how many times the complete macro-cell was found
empty. Note that the flags of intersection and emptiness are
put in different bytes, so they can be modified independently.

When threads are complete, both flags may be still cleared,
which means that this macro-cell is not affected. If the in-
tersected flag is set, the surface intersects this macro-cell re-
gardless of the state of the empty flag. If only the empty flag
is set, the macro-cell does not contain surface and its chil-
dren are either empty or not seen.

The discussed marking process is used to identify macro-
cells to be empty or intersected, while low level voxels
are still processed by projecting their center onto the im-
age plane. Thus, our algorithm identifies those macro-cells
where low level processing is necessary. Note that in Step 2
called Rendering, a ray-casting needs to be executed anyway
to track the camera by ICP, thus the identification of affected
cells can be merged with this step reducing the additional
cost of marking to almost zero. However, rendering happens
with the old camera position and orientation while the fusion
should use the updated camera parameters. As our algorithm
marks only macro-cells, the one frame delay does not result
in inaccuracies, but it can happen that voxels of a macro-cell
are not updated in a frame or are tried to be updated when it
is not necessary. Such a loss of a single frame update is tol-
erable and can happen due to the noise of the depth camera
as well.

3.2. Fusion

For fusion, we use the classical method but only for the
micro-voxels of subdivided macro-cells. The center of the
micro-voxel is projected on the window plane of the depth
image to locate the pixel where it is visible from the depth
camera. If the difference of the depth value of this pixel and
the distance of the voxel center from the camera is less than
the truncation distance, the voxel is affected, otherwise it is
assumed not to be intersected by the currently visible sur-
face. For the affected micro-voxels, the weighted average of
their stored TSDF value and the TSDF obtained from the
current depth image is computed, and simultaneously the
weight is incremented.

3.3. Rendering

The rendering method is a hierarchical DDA method 10, 13

that switches to micro-voxel steps only for subdivided



Szirmay-Kalos, Tóth, Umenhoffer / Hierarchical Volumetric Fusion of Depth Images for SLAM

macro-cells. In each cell, the ray parameter of the exit point
is generated by a single addition. To reduce noise, the vol-
ume can also be filtered before rendering 15, 14.

3.4. Camera tracking

The camera tracking method is incremental, if the camera
parameters are known in the previous frame, just the rota-
tion and translation between the current and previous frames
should be computed, and this new transformation is concate-
nated to the camera transformation of the previous frame.
If we could identify a set of corresponding point pairs on
two images, then we could find that rotation and translation
which would align the two point clouds making the distance
of the new point cloud and the transformation of the previous
point cloud close to zero. This is an optimization problem,
which can be solved iteratively.

To find possibly corresponding pairs, we exploit the fact
that just a little time has elapsed between two frames, so a
point remains in the same pixel with high probability 5. This
is not always true, so outliers must be detected and rejected.
So we take the distance field and generate a point cloud from
the camera of the previous frame. Then we take the current
depth map and back project it to obtain a point cloud in the
new camera coordinate system. The camera transformation
between the current and previous frames is expected to align
the two point clouds. Alignment is detected when back pro-
jected points are on the zero level surface of the distance field
and also that the normal vectors of the back projected mesh
at these points are similar to the normal vectors of the zero
level surface. If either the distance or the normal vector dif-
ference is very large, then probably two non-corresponding
points are taken, so they are rejected as outliers. Otherwise,
we consider this pair as corresponding and use them while
minimizing the total distance of the two point clouds.

Figure 5: Modified ICP algorithm applied in volumetric fu-
sion

4. Results

This system is implemented in CUDA. Figure 6 compares
reconstructions of a telephone from Kinect 2 depth im-

ages using the Microsoft KinectFusion and our hierarchi-
cal method when allowing the same amount of GPU mem-
ory. Due to the hierarchical representation, voxel edge length
could be reduced from 8 mm to 1 mm. Both algorithms run
at real time on NVIDIA 690 GT GPUs.

Figure 6: Comparison of the commercial version of Kinect-
Fusion (upper) and the proposed algorithm (lower) when the
two methods allocate the same amount of GPU memory.

Figure 7: Scanned objects.



Szirmay-Kalos, Tóth, Umenhoffer / Hierarchical Volumetric Fusion of Depth Images for SLAM

5. Conclusions

This paper presented a 3D volumetric fusion system that
stores the TSDF field in a two-level hierarchical voxel grid.
The input of the system is a real-time sequence of depth im-
ages of a moving camera, the output is the reconstructed 3D
surface generated as the level surface os the computed dis-
tance field. The camera is tracked based on the temporary
estimate of the scene. We discussed GPU-friendly methods
how to select those cells that are affected by the current depth
image. The algorithm provides high resolution reconstruc-
tions in real-time.

6. Acknowledgements

This work has been supported by OTKA K–104476 and
VKSZ-14 SCOPIA projects.

References

1. J. Amanatides and A. Woo. A fast voxel traversal algo-
rithm for ray tracing. In Proceedings of Eurographics
’87, pages 3–10, 1987.

2. Jiawen Chen, Dennis Bautembach, and Shahram Izadi.
Scalable real-time volumetric surface reconstruction.
ACM Transactions on Graphics (TOG), 32(4):113,
2013.

3. Brian Curless and Marc Levoy. A volumetric method
for building complex models from range images.
In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, pages 303–312, New York, NY, USA,
1996. ACM.

4. Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng
Ren, and Dieter Fox. Rgb-d mapping: Using depth
cameras for dense 3d modeling of indoor environments.
In In the 12th International Symposium on Experimen-
tal Robotics (ISER. Citeseer, 2010.

5. Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew
Davison, and Andrew Fitzgibbon. Kinectfusion: Real-
time 3d reconstruction and interaction using a moving
depth camera. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technol-
ogy, UIST ’11, pages 559–568, New York, NY, USA,
2011. ACM.

6. M. Levoy. Display of surfaces from ct data. IEEE Com-
puter Graphics and Application, 8:29–37, 1988.

7. Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison,
Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. Kinectfusion: Real-time dense sur-
face mapping and tracking. In Mixed and augmented

reality (ISMAR), 2011 10th IEEE international sympo-
sium on, pages 127–136. IEEE, 2011.

8. Jörg Stückler and Sven Behnke. Multi-resolution sur-
fel maps for efficient dense 3d modeling and tracking.
Journal of Visual Communication and Image Represen-
tation, 25(1):137–147, 2014.

9. L. Szirmay-Kalos. Számítógépes grafika. Computer-
Books, Budapest, 1999.

10. L. Szirmay-Kalos, V. Havran, B. Benedek, and
L. Szécsi. On the efficiency of ray-shooting accelera-
tion schemes. In Proc. Spring Conference on Computer
Graphics (SCCG), pages 97–106, 2002.

11. L. Szirmay-Kalos and L. Szécsi. General pur-
pose computing on graphics processing units.
In A. Iványi, editor, Algorithms of Informatics,
pages 1451–1495. MondArt Kiadó, Budapest, 2010.
http://sirkan.iit.bme.hu/s̃zirmay/gpgpu.pdf.

12. L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based
Techniques for Global Illumination Effects. Morgan
and Claypool Publishers, San Rafael, USA, 2008.

13. László Szirmay-Kalos, György. Antal, and Ferenc
Csonka. Háromdimenziós grafika, animáció és játék-
fejlesztés. ComputerBooks, Budapest, 2003.

14. László Szirmay-Kalos, Milán Magdics, and Balázs
Tóth. Volume enhancement with externally controlled
anisotropic diffusion. The Visual Computer, pages 1–
12, 2016.

15. László Szirmay-Kalos. Filtering and gradient estima-
tion for distance fields by quadratic regression. Period-
ica Polytechnica Electrical Engineering and Computer
Science, 59(4):175–180, 2015.

16. Thomas Whelan, Michael Kaess, Maurice Fallon, Hor-
dur Johannsson, John Leonard, and John McDonald.
Kintinuous: Spatially extended kinectfusion. 2012.


