EUROGRAPHICS 2012 / C. Andujar, E. Puppo

Short Paper

Real-Time Metaball Ray Casting with Fragment Lists

L. Szécsi and D. I11és

TU Budapest

Abstract

In this paper we describe a method for rendering particle-based medium representations. The algorithm builds
per-pixel lists of relevant metaballs, then incrementally constructs a piecewise polynomial approximation of
summed metaball densities along rays, and finds intersections with the isosurface using those. This new approach
scales well for a high number of particles, it can handle local extremities of depth complexity robustly, and it does
not suffer from the inaccuracies and limitations of screen-space filtering approximation methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Metaballs [NHK*85, Bli82] are widely used to visualize
the results of particle simulations, from hydrodynamics to
molecular modeling. Such simulations, even with hundreds
of thousands of particles, can now be performed in real-time,
and therefore an efficient visualization method is needed.

Each metaball has a density function, and a set of meta-
balls represents a smooth surface as an isosurface of the
density field. The isosurface is mainly visualized by poly-
gonization (the marching cubes algorithm [LC87]), ray cast-
ing [NN94, Bol10], or approximated by screen-space filter-
ing of a solid estimating surface [vdLGS09]. The marching
cubes algorithm can suffer from voxelization artifacts for
low resolution grids, or be extremely computation and mem-
ory intensive when using high resolution. Ray casting pro-
duces high quality smooth surfaces, but the ray—isosurface
intersection test is also very expensive to perform. Finally,
screen-space filtering can produce visually acceptable re-
sults in real-time under controlled conditions, but it is not
useful when close-ups or other exact details are required —
as in molecule visualization.

We propose a fast ray casting method to render metaballs
on the GPU (Figure 1). The approach is similar to that of
Kanamori et al. [KSNO8], gathering metaballs along rays,
and maintaining relevant density information as we process
them. However, we replace depth peeling (which is multi-
pass, and allows limited depth complexity) with gathering
per-pixel fragment lists in a single pass. Also, we use a piece-
wise cubic approximation of the density function, which al-

(© The Eurographics Association 2012.

N

y ”
N7

Figure 1: Close-up of a scene with 100,000 metaballs ren-
dered using cel shading at 13 FPS.

lows for faster intersection computation, replacing Bezier
clipping. These points also make the main contributions of
the paper. Otherwise, all considerations by Kanamori et al.
concerning related work apply. The resulting method scales
well with the number of metaballs, allowing real-time visu-
alization of massive particle simulations.

2. The metaball model

The density function p; for metaball j is a function of r,
the distance from the metaball center pj, and monotonically
decreases with r. For M metaballs, the shape of the curved

L. Szécsi & D. Illés / Real-Time Metaball Ray Casting with Fragment Lists

surface at density value L is defined by the points x satisfying
M—1

P =Y pi(fx—pjf) ~L=0. M
Jj=0

where p(x) is called the total density. Although Gaussian
and hyperbolic kernel density functions can also be used in
theory, they are impractical for computations as all terms of
the summation in Equation 1 are non-zero. Instead, p ; is usu-
ally defined to have finite support R;, with p;(r) = 0 where
r > R;. Within » < R;, p;(r) is typically given in polyno-
mial form, which is not only easy to evaluate, but it can be
chosen to meet continuity criteria. One of the most widely
used density functions is the elegant fifth-degree version by
Perlin [Per02] which ensures tangential continuity. The six-
degree polynomial proposed by Wyvill et al. [WMW86] can
be written as a function of 2, meaning that taking a square
root for the vector norm computation in Equation 1 is not
necessary, and p(x) itself is piecewise polynomial.

A
)

isosurface

[}
)
=
5
o

[effective radiusf—

Ry

@re radius
e—):
eyeli|view direct@\

— —

A 7(s)

|
~ 72(s)
AN
>

Figure 2: Nomenclature for metaballs and their density
functions along a ray.

Figure 2 explains the nomenclature. We call R; the effec-
tive radius of metaball j, and the sphere of centre p; and
radius R; is the effective sphere. The radius for which the
density function equals L is the core radius. The core sphere
of this radius is always contained within the isosurface. If we
wish to visualize this implicit surface using ray casting, we
need to be able to find the intersection of the isosurface and
aray. Let the ray equation be

y(s) =e+sv,

where e is the eye position and v is the viewing direction.
Substituting this into Equation 1 gives:

M—1
p(y(s)) = Zb pj(le+sv—p;|) - L
=

Let us introduce Y(s) = p(y(s)) for the total density as a
function of the ray parameter. Let y;(s) be the jth term in
the sum, which is an individual kernel density, also as the
function of the ray parameter.

3. Polynomial approximation

If p j can be written as a function of 2, Y(s) will be piecewise
polynomial. The fact that such a choice of a density function
is possible is an important motivation for using a piecewise
polynomial approximation t(s) for y(s). We construct t(s) as
a sum of T;(s) individual piecewise polynomial approxima-
tions of v;(s) metaball density functions. Further on in this
discussion, we are going to assume piecewise cubic T;(s),
and we provide a method for their construction from den-
sity kernel functions p;(r). However, it is easy to extend our
method to higher degrees, and it is also possible to use exact
polynomials for appropriately chosen density functions. The
use of cubics introduces subtle, temporally coherent, view-
dependent distortion, but it allows for simpler implementa-
tion and faster evaluation.

H e\ Pi
i\pi 2,
o= P
(pj—e) &,
A
i(s)
\
%)

=

» o
m; — Q; m; my+Q;

Figure 3: Effective interval computation and third order
spline approximation of the density function.

The original v;(s) is non-zero wherever the ray intersects
its effective sphere (Figure 3). For the midpoint of the inter-
sected interval, the ray parameter m; can be computed as

m;=(p;—e)-v,

and the half-length of the intersected segment (using the
Pythagorean theorem) is

0= /R~ (Ioj ¢l 3).

We call the interval [m; —Q;j,m;+ Q;] the effective inter-
val. For all practical, smooth density functions, the values
and derivatives of y;(s) are zero at the endpoints of the ef-
fective interval (also shown in Figure 3). The derivative is
also zero at the midpoint. We construct t;(s) by fitting a
third-order spline on these characteristic points and tangents.
This results in two cubic segments in [m.,- —Qj,mj] and

[mj,mj+Q;] . Thus, with s as (s37s27s7 1),

0 if s ¢ [mj—Qj.m;+0Qj],
Ti(s) = s~uj. if s € [mj—Qj,mj),
1.
; ifs e [m]‘,mj"‘Qj},
where the formulae for the coefficients can be found by al-
gebraically solving the system of equations written for the

values and the derivatives. This can also be seen as a linear
reparametrization of the smoothstep function.

(© The Eurographics Association 2012.

L. Szécsi & D. 1liés / Real-Time Metaball Ray Casting with Fragment Lists

4. Ray decomposition

As 1(s) is the sum of piecewise cubics, it is piecewise cu-
bic itself, with all end- and midpoints of effective intervals
as subdomain separators. Let us denote these points in in-
creasing order by s;, with i = 1...n, where n is the number
of such points, and prepend sg = O to this ordered list.

v(s)=1(s)=s-w; ifs;<s<siy1|i€{0,...,n—1},

where w; are the polynomial coefficient vectors. In every
subdomain, the density function can be derived from a given
set of metaballs. Our goal is to identify all these subdomains,
compute the approximating polynomials, and solve it for in-
tersection with the isosurface.

Along the ray, the coefficients of T(s) change at every sub-
domain separator. The change of coefficients Aw; at s; can be
deduced from the cubic coefficients as

o 105 o +Bi ifs; =mj= 0,
W; = 3 —20 lfsi—mj7
Qj (Xifﬁi ifsizijer,

with oy = (—2,6s;,—6s7,257) ", Bi = Q;(0,3, —6s;,3s7) .

If the eye is not within the effective sphere of any meta-
ball, wg = 0. Otherwise, the cubics of the intervals that con-
tain the eye have to be summed. Coefficients for subsequent
subdomains can simply be found by applying the changes

W, = W;_| +Aw;.

5. The proposed method

Gathering a list of fragments for image pixels is pos-
sible with Shader Model 5 hardware, as it has been
demonstrated in the Order-Independent Transparency (OIT)
method [Eve01]. In the OIT method the fragments are gath-
ered so that they can be sorted by depth to evaluate alpha-
blending-like transparency. We use similar fragment lists to
process intersected metaballs.

The algorithm consists of the following phases:

Sorting: We sort metaballs according to their effective dis-
tance (Hp j—e | —R j) from the camera, ascending.

Lay down depth: We render solid scene and metaball core
depth into a core depth texture, which will later be used
to cull more distant, non-contributing metaballs. The ge-
ometry rendered for core spheres is a covering billboard
or some more fitting polygonal enclosing object (we did
not find a significant performance difference). The pixel
shader discards pixels in which the sphere is not inter-
sected. Z-buffering is used, cores are rendered front-to-
back for performance.

Gathering: We render the effective spheres of metaballs,
gathering their IDs into per pixel linked lists, maintained
in a read/write GPU buffer. Effective spheres are rendered

(© The Eurographics Association 2012.

with the same technique as core spheres in the previous
phase. The intersected effective interval is clipped against
the core depth. Finally, the metaball ID is prepended to
the linked list that belongs to the pixel. Metaballs are ren-
dered back-to-front, thus the created lists are ordered by
increasing effective distance.

Ray casting: We render a full-viewport quad. For every
pixel, the lists are expanded to end- and midpoint records,
which are sorted and used to evaluate ray—isosurface in-
tersection. This process is detailed in Section 6.

Shading: The normal of the isosurface at the intersection
point x is computed as —Vp(x), iterating over the meta-
balls gathered for the pixel. Then, the shading formula is
evaluated to get the pixel color.

6. Ray casting

In every pixel, we need to assemble an ordered list of end-
and midpoints of effective intervals of all intersected meta-
balls, storing distances s; and coefficient changes Aw;. The
fact that metaballs are already sorted by effective depth helps
minimize local shader memory usage and sorting overhead,
because it allows us to process partial subdomain lists. For
every pixel, the shader performs the following steps:

1. The polynomial coefficient vector w, which is a running
variable, is initialized to zero.
2. For every metaball in the list:

a. The effective sphere is intersected with the ray
through the pixel. Separator records (s;, Aw;) for end-
and midpoints are inserted into a list ordered by depth.
This list is short and it is stored in a fixed-sized local-
memory array.

b. Safe separator records are those separators in the list,
which are within the effective distance of the next, yet
unprocessed metaball (in the safe zone). As metaballs
are ordered, separators of further effective spheres
cannot precede the safe ones. For these safe sepa-
rators, the polynomial coefficients are updated, and
the intersection within subdomains is evaluated. The
polynomial coefficients are maintained in the running
variable w, adding Aw; as the separators are pro-
cessed. The intersection computation only requires the
solution of a cubic, where the practically exclusive
monotonous case can easily be identified and very ef-
fectively handled. The processed separators are dis-
carded from the ordered list. If no metaballs are left,
we can evaluate all remaining subdomains.

3. When an intersection was found, we compute the normal
and shading.

We store the elements of the ordered list in a local-
memory array in reverse order. Elements are removed sim-
ply by decreasing the element count. For every intersected
sphere we need to insert three records in known order, mean-
ing records of a lesser distance have to be moved only once.

L. Szécsi & D. Illés / Real-Time Metaball Ray Casting with Fragment Lists

Figure 4: Frames of a mud simulation reaching 200,000 metaballs. Frame rates are 25 FPS, 13 FPS, and 6 FPS.

The fixed-size local memory array may be insufficient to
hold separators from too many overlapping spheres, forcing
us to process non-safe separators. This creates a trade-off
between performance and the amount of overlapping we can
handle robustly. Note that there is no limit on screen-space
depth complexity, merely on the number of effective spheres
a world-space point can belong to. As intersection records
can be kept small, bounds in typical particle simulation sce-
narios are easily met.

7. Results and conclusion

Our approach was implemented in C++, using Direct3D11
and HLSL shaders. We ran our tests on a PC with an Intel
Quad 2.40 GHz CPU and an NVIDIA GeForce GTX 560 Ti
graphics card. According to our measurements the method
runs real-time even for tens of thousands of metaballs (Ta-
ble 7, Figure 4), and it can achieve interactive framerates for
1,600,000 particles. Our test scenes were simulated in Next
Limit’s RealFlow.

Metaballs | FPS | Sort | Depth | Gather | Cast
50,000 25 8 2 6 24
100,000 13 15 5 15 42
200,000 6 32 12 36 80
800,000 2 165 65 191 84

1,600,000 1 350 131 402 108

Table 1: Overall frame rate and phase execution times in
msecs at 1024 x 768, full viewport coverage. Sort includes
CPU-GPU data transfer, Cast includes shading.

The cost of the ray casting phase, which used to be the
bottleneck in earlier algorithms, becomes fairly constant af-
ter a number of metaballs. The O(M) complexity of render-
ing all particles and the O (M log M) cost of sorting take over
at large numbers. We can conclude that our approach scales
well for massive amounts of particles, with parallelized sort-
ing and Potentially Visible Set solutions being the broadest
avenues for further improvement. We also wish to investi-

gate applicability to computing multiple intersections along
rays, allowing for translucent shading.

Frame rates are similar to those of approximate im-
age space techniques [vdLGS09] (22 vs 20-50 FPS, 64K
metaballs), but with increasing metaball counts the image
processing cost would likely be amortized. Compared to
Kanamori et al. [KSNO8], there is a speedup factor of 2 on
equivalent hardware (6 vs 3 FPS, 200K metaballs).

This work was supported by OTKA K-719922 and
101527, and TAMOP-4.2.1/B-09/1/KMR-2010-0002.

References

[Bli82] BLINN J.: A generalization of algebraic surface drawing.
ACM Transactions on Graphics (TOG) 1, 3 (1982), 235-256. 1

[Bol10] BOLLA N.: High Quality Rendering of Large Point-based
Surfaces. Master’s thesis, International Institute of Information
Technology, Hyderabad-500 032, INDIA, 2010. 1

[EveOl1] EVERITT C.: Interactive order-independent trans-
parency. White paper, nVIDIA 2, 6 (2001), 7. 3

[KSNO8] KANAMORI Y., SZEGO Z., NISHITA T.: GPU-based
fast ray casting for a large number of metaballs. In Computer
Graphics Forum (2008), vol. 27, pp. 351-360. 1, 4

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. In ACM Siggraph
Computer Graphics (1987), vol. 21, ACM, pp. 163-169. 1

[NHK*85] NISHIMURA H., HIRAI M., KAWAI T., KAWATA T.,
SHIRAKAWA I., OMURA K.: Object modeling by distribution
function and a method of image generation. The Transactions

of the Institute of Electronics and Communication Engineers of
Japan 68, Part 4 (1985), 718-725. 1

[NN94] NisHITA T., NAKAMAE E.: A method for displaying
metaballs by using bézier clipping. In Computer Graphics Forum
(1994), vol. 13, Wiley Online Library, pp. 271-280. 1

[Per02] PERLIN K.: Improving noise. In ACM Transactions on
Graphics (TOG) (2002), vol. 21, ACM, pp. 681-682. 2

[vdLGS09] VAN DER LAAN W., GREEN S., SAINZ M.: Screen
space fluid rendering with curvature flow. In Proceedings of the

2009 Symposium on Interactive 3D Graphics and Games (2009),
ACM, pp. 91-98. 1, 4

[WMWS86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
structure for soft objects. The visual computer 2, 4 (1986), 227—
234.2

(© The Eurographics Association 2012.

