
Fast silhouette and crease edge synthesis with geometry shaders

Balázs Hajagos∗ László Szécsi† Balázs Csébfalvi‡

Budapest University of Technology and Economics

Figure 1: Outline rendering

Abstract

We describe a technique to generate the geometry of silhouette and
crease strokes in geometry shaders. This allows for single-pass,
small-overhead rendering of conventional meshes. We exploit clas-
sic triangle adjacency information, but also introduce crease dif-
ference vectors associated with vertices in order to identify crease
edges.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation;

Keywords: non-photorealistic rendering, stylistic rendering, out-
lines

1 Introduction

Outline visualization is extensively used in a wide range of appli-
cations, from CAD systems to non-photorealistic rendering (NPR).
It can clarify the shape of a complex 3D object or may highlight
essential features. The human visual system processes seen images
by identifying shapes separated by discontinuities. Outline render-
ing provides strong cues for shape separation, substituting for sub-

∗e-mail: badlazzor@gmail.com
†e-mail: szecsi@iit.bme.hu
‡e-mail: cseb@iit.bme.hu

tle and expensively rendered real-world cues like scattered lighting
and shadows, and providing a stronger visual language in stylistic
rendering. Cartoon shading [McCloud 1994], in particular, relies
on edge visualization to convey shape information, in lieu of realis-
tic shading. Hatching [Umenhoffer et al. 2011], which may convey
shape by applying hatch lines following object curvature, is also
combined with outline rendering in most artistic styles.

There are two classes of outlines that need to be drawn, both indi-
cating some kind of perceived discontinuity (see Figure 2). Silhou-
ettes appear at discontinuities in image space, where a continuous
object surface appears to end. For manifold surface models this
can happen only where the surface folds behind itself, meaning that
outlines are located on the border of the visible (camera-facing) and
not visible (back-facing) part of the object surface. The other class
of displayed outlines — called creases — indicate discontinuities
in the surface normals, and they are defined by the topology of the
mesh itself, independent of the view direction or the camera set-
tings.

Figure 2: Crease (left) and silhouette (right) edges.

In stylistic rendering, outline drawings may feature lines other than
silhouettes and creases. Suggestive contours [DeCarlo et al. 2003]
and apparent ridges [Judd et al. 2007] define outlines based on sur-

face curvature characteristics. While these can provide superior
visual cues, especially in absence of additional shading, they are
less fit if we aim at minimal-overhead real-time rendering [DeCarlo
et al. 2004].

We propose a solution that can render outlines with a performance
similar to regular incremental triangle mesh rendering, but meet-
ing quality standards set by offline NPR methods. The particular
contribution of this work is

• a preprocessing algorithm which augments mesh vertices with
crease information, and

• a real-time outline rendering algorithm which

– does not need multiple passes,

– does not use image processing filters,

– renders antialiased, continuous outlines of any width
without seems or folds, and

– provides flicker-free animation.

The goal is to provide a solution which can replace costly edge
detection filters with a more flexible, geometry-aware method in
real-time applications, and offer a faster alternative in stylistic ren-
dering.

2 Previous work

There are two well known approaches to outline rendering as stated
by Isenberg et al. [Isenberg et al. 2003]. The first one works in im-
age space with the use of normal and depth maps [Nienhaus and
Doellner 2003]. Edge pixels — those which lie near discontinuities
in these maps — can be found using edge detection filters. What
level of image-space discontinuity warrants outline edges must be
adjusted by fine-tuning filter parameters and applying mask tex-
tures [Shin 2006]. Object-space consistency of outlines during an-
imations is also subject to those parameters. However, the main
problem with this approach is the excessive texture access band-
width and the absence of real scalability in line features.

The other approach works in world space and generates new trian-
gle strip geometry to visualize the outlines. In this case we do not
need to search on per pixels basis.

Raskar [Raskar 2001] distinguishes front-facing and back-facing
triangles, and augments all of them with cleverly placed quadri-
laterals along their edges. A custom depth-tesing algorithm makes
sure that they are only visible at outlines, valleys and ridges. The
solution does not need any preprocessing, adjacency information or
geometry shaders, but it is prone to z-fighting artifacts and cracks
showing up in wider outlines. Also, valleys and ridges disregard tri-
angle mesh topology, and thus may not coincide with actual creases.
In today’s applications, mesh adjacency information is widely used,
and can be seen as given, thus the brute-force approach of the
method no longer seems justified.

There are two basic ways to define silhouettes on triangle meshes.
The approach by Markosian et al. [1997] operates on the discrete
triangle mesh geometry itself, selecting those edges as silhouette
edges which separate front-facing and back-facing triangles. The
silhouette looks smooth, but it often backtracks in the image plane.
The definition by Hertzmann and Zorin [Hertzmann and Zorin
2000] avoids this problem, as it considers the smooth surface in-
stead of the triangulated one, reconstructing silhouettes from the
vertex normals. For a given vertex a with normal na and vector ca
to the camera, we define the scalar field f (a) = na · ca, extending

f to triangle interiors by linear interpolation. Silhouettes are taken
to be the zeroset of f , yielding clean, closed polylines whose seg-
ments traverse faces in the mesh — rather than following edges, as
in the Markosian method.

Kalnins et al. [2002] presents an impressive toolbox of NPR tech-
niques, including aesthetical, parametrizable outlines. They com-
bine Hertzmann-and-Zorin-style silhouette segments into contin-
uous curves, ensuring artifact-free connections, but incurring an
overhead which makes real-time application less appealing.

We propose a method which can do a similarly good job with both
silhouette and crease outlines in real time — even though we do
not provide arc-length parametrization for the outline curves. The
method works in world space and uses the geometry shader to gen-
erate outline segments. In order to ensure that these segments fit
together perfectly and form artifact-free outlines, we use both ad-
jacency information and crease edge information — which must
be precomuted for a mesh. This algorithm fulfills peformance and
quality requirements posed in various applications, ranging from
games through CAD systems to production rendering.

Self-similar and procedural texturing and deformation of outlines
has also been addressed by previous research [Bénard et al. 2010].
These techniques make it possible to texture and deform arbitrar-
ily parametrized curves in a visually uniform way. Therefore, they
could provide good synergy with our approach.

3 Triangle mesh representation

There are two algorithms making up the method: the preprocess-
ing which augments vertex records with crease edge information,
and the rendering algorithm which can be implemented using a ge-
ometry shader. The preprocessing phase is motivated by the data
needs of the rendering one. In this latter phase, we render the tri-
angle mesh geometry with adjacency information. In the geometry
shader, we need to find both crease and sihouette segments, and
instantiate geometry for displaying them. The shader processing
a triangle primitive can receive data from six vertices: those six
whose indices have been pre-calculated into the index buffer. In a
standard adjacency-aware mesh, these are the three vertices of the
triangle, and those vertices of the neighbouring three triangles that
do not coincide with the first three.

In a manifold triangle mesh, all edges have two adjacent triangles.
As the mesh is represented as a set of triangles, every edge is spec-
ified twice — once for each triangle. Therefore, an edge as defined
by a triangle is called a halfedge. Any of the three halfedges of a tri-
angle might lie on a crease edge. At crease edges, surface normals
are not continuous, meaning that the vertex normals of at least one
of the edge vertices are different for the two triangles. In triangle
mesh models, this is accomplished by duplicating the vertex, cre-
ating two vertex records with identical positions, but different nor-
mals. In fact, we define crease edges topologically, as edges where
the two spatially adjacent triangles do not share two vertex records.
Both halfedges on a crease edge are crease halfedges. Creases sep-
arate meshes into topologically connected triangle groups, called
smoothing groups in modelling. These groups are delimited by
loops of crease halfedges. We allow two such halfedges to coin-
cide: there might be crease edges with the two adjacent triangles
belonging to the same smoothing group. In order to differentiate
vertex records with well-defined normals from geometry corners,
we will refer to the latter explicitly as geometry vertices, and to the
former as topology vertices or just vertices. Apart from those at
creases, vertices and geometry vertices are identical. We use the

term crease vertex for any vertex on a crease edge, even if it does
not have spatially coinciding duplicates.

4 The proposed method

When adjacency data for a triangle mesh is calculated, geometric —
and not topological — connectivity is considered. Where a triangle
has a crease halfedge, the non-coincident vertex of the neighbouring
triangle is stored (see Figure 3). Its other vertices are not recorded,
and not passed on to the geometry shader during rendering. Thus,
in order to be able to identify crease halfedges in a shader, we need
additional information in vertex records.

processed triangle

adjacent triangles

Figure 3: Normals of vertices referenced in triangle adjacency data.

Crease halfedges form continuous strips along crease outlines. The
crease segments output by the geometry shader should fit together
without discontinuities. Therefore, the directions of previous and
next segments must be known. These can also not be discerned
from adjacent vertex data, as adjacent segments can very well run
along non-edge-adjacent triangles. As a topology vertex can have at
most two crease halfedges, it would be straighforward to store their
directions in vertex records. However, as this would unnecessarily
increase record size and slightly impact rendering performace, we
propose a representation that is more lightweight.

One of the crease segments will always be known in the geometry
shader, as one of the triangle’s halfedges. The information stored
in a vertex must allow us to compute the direction of the other,
connecting crease segment. Therefore, we store the difference of
the segment directions, which we call the crease difference. This
is also the bisector on which one segment’s direction must be re-
flected to get the other’s. During preprocessing, we augment all
vertex records with a crease difference element, which consists of
the non-normalized direction difference vector, and a verification
value, which can be computed as the first element of the cross prod-
uct of the segment directions. If the vertex is not part of a crease
halfedge, the verifier is set to 2, and we call the crease difference in-
valid. During rendering, in the geometry shader we can easily tell if
the triangle potentially has a crease halfedge — at least two crease
differences are valid — and we have the directions of previous and
next crease segments simply by adding or subtracting the crease
differences to or from the direction of the crease halfedge. In or-
der to discard those triangle halfedges that connect crease vertices
but are not crease halfedges themselves, we need to perform two
tests. First, the computed adjacent segment direction must be unit
length. Second, its cross product with the halfedge direction has to
produce the verifier. Otherwise, albeit the halfedge runs between
crease outlines, it is not a crease halfedge.

4.1 Preprocessing

In order to compute the crease differences we process all triangles
of the mesh. One option is to use the following mesh traversal
algorithm (depicted in Figure 4):

Figure 4: The search for the crease halfedges.

First, we initialize all crease difference verifiers to 2. Then, for
every triangle of the mesh:

1. If the triangle has a crease halfedge s0, we process both its
vertices. With w as the current vertex, and halfedge s being s0
initially:

(a) If the triangle halfedge z — that shares w with s — is
a crease halfedge, then the crease difference for w is
the direction difference between s0 and z, and we can
proceed to the next vertex.

(b) Otherwise, let s be the opposite halfedge of the former
z, and repeat step 1a for the adjacent triangle which con-
tains halfedge s.

The search definitely stops, because if there is no other crease edge,
the computation will find the opposite halfedge of the initial crease
halfedge.

Alternatively, if the topology information is not available, but we
can customize adjacency generation, then crease difference com-
putation can be integrated into it. For every vertex, an incoming
and an outgoing crease direction has to be maintained. First, ad-
jacency generation finds the topology vertices that belong to the
same geometry vertex (typically called point reps in this context).
Second, all halfedges in the mesh are processed to find matching
pairs, for which endpoint point reps are identical. Whenever such a
pair of halfedges is found, we can check if their endpoint vertices
are different, and therefore they form a crease edge. For crease
edges, their direction must be written into the outgoing and incom-
ing crease direction variables of the start and end vertices, respec-
tively. After the adjacency computation is complete, the difference
of incoming an outgoing directions can simply be computed.

Adjacency computation for a triangle mesh has O(n logn) compu-
tational complexity in the number of triangles. Adding crease dif-
ference computation does not change this in any way, it just adds a
constant factor. Table 4.1 summarizes preprocessing times for dif-
ferent test meshes. The process is actually much faster in practice
than e.g. importing the mesh data from text format.

Name Triangles Adj only (ms) Adj & Crease (ms)
King 8K 16 20

Stanford bunny 16K 32 47
Ming head 32K 172 234

Dragon 50K 265 343
Horse 112K 422 578

Table 1: Preprocessing times

4.2 Crease edge rendering

We render the mesh with geometry shaders processing its trian-
gles. If two vertices in a triangle have valid crease differences,
the halfedge between them is a potential crease halfedge, which
must be extruded into a crease outline segment. We reflect the
halfedge direction onto the crease differences of the end vertices
to get the previous and next segment directions. Then we verify
that the halfedge is a crease halfedge as described in Section 4.

Figure 5: Nomenclature for crease segment directions.

Formally (see Figure 5), if ∆a and ∆b are crease differences at ver-
tices a and b, respectively, then the crease segment directions are:

e→a = a−̂b,

ea→ = e→a +∆a, e→b =−e→a −∆b,

where we use ˆ over an operator to denote normalization of the
result.

previous crease

segment

next crease

segment

processed

halfedge

insets

Figure 6: Crease segment quad construction.

Figure 7: Crease edge geometry rendered in wireframe.

To render the halfedge segment we create a quad with two vertices
at the original halfedge vertices, and two vertices inset (see Fig-
ure 6). The inset vector must bisect the crease halfedges in screen
space, but lie in the plane of the triangle in world space (see Fig-
ure 7). A screen-space-bisecting inset direction da can be found for
a vertex a, using the vector to the camera ca and crease segment
directions e→a and ea→ as

da = e→a×̂ca +̂ ea→×̂ca,

where we use ˆ over an operator to denote normalization of the
result. The cross products compute screen-space crease segment
normals, and the sum computes the bisector. The actual world-
space inset direction ra is then found as the vector perpendicular to
the surface normal na and in the plane of ca and da:

ra = na×̂(ca ×da) .

The actual quad vertex xa which ensures screen space crease width
of k is

xa = a+ kra
|c−a|

ra · e→a
,

where the numerator scales the inset by distance and the denomina-
tor accounts for the angle between the inset and the edge direction.
Such a quad will only cover one side of the crease edge. The other
half is rendered when the adjacent triangle is processed. The quad
can also be textured in the pixel shader, and its edge can be softened
using alpha-blending. The screen space width k is adjustable and
the edge segments will be connected seamlessly.

4.3 Silhouette rendering

Rendering the silhouette outlines is accomplished by implementing
the Hertzmann [Hertzmann 1999] approach in the geometry shader
(see Figure 8). A vertex a is defined to be front-facing if its normal
na points towards the camera, satisfying αa > 0, where αa = na ·ca.
A triangle contains a silhouette segment if exactly one or two of its
vertices are front-facing. In this case the triangle has two edges
intersected by the silhouette. The intersection point yab on the edge
between vertices a and b can be found using linear interpolation.

yab =
αab−αba

αa −αb
.

Figure 8: Creating silhouette edges.

The same process can be repeated for the adjacent triangles known
in the geometry shader, alltogether producing four points on edges.
These define a Catmull-Rom spline which can be vectorized into
a triangle strip of given width. However, there is no guarantee the
curve will not double back in screen space, so it is safer to just
generate a single quad for one triangle, but adjusting its endpoints
to fit the adjacent segments.

5 Depth testing

As crease segment quads are aligned on the surfaces, they can be
subjected to classic, accurate depth testing. However, if surfaces
are not flat, and the outlines are wide in world space, the flat outline
geometry will intersect the object surface. Therefore, a slight bias
should be used, and a smooth fade out is helpful to diminish arti-
facts. These can be accomplished by implementing a custom depth
test in the pixel shader.

Silhouette outline quads cannot be aligned on surfaces. Therefore,
a stronger bias is necessary for rendering them, or, in most cases, it

is even more robust to test against backface depth. Another solution
would be the usage of an ID buffer as in [Bærentzen et al. 2008],
but the sampling of the buffer must be perfect while all tests would
occur on edges.

6 Results and limitations

The algorithm can be easily added to any rendering system. As
the method relies on the geometry shader, combination with other
techniques also exploiting it might not be trivial. Also, we require
exact crease differences, which might not be preserved in case of
mesh deformation or character animation. These cases would re-
quire less lightweight crease edge indicators.

Crease edges on contours appear as half width crease edges, if the
back-facing neighbour does not emit a crease edge quad. If it does,
it is difficult to adjust its endpoints to fit with the quad continuing
the silhouette. As this next edge depends on the viewpoint, it cannot
be pre-calculated, and more complete topology information should
be available for the shader. In the absence of that, the inevitable
overlaps could be hidden by the application of the maximum blend-
ing technique used by Brentzen [Bærentzen et al. 2008]. The algo-
rithm does not grant the flexibility of [Leymarie and Levine 1993]
or [Kalnins et al. 2002] in its current form but delivers properly
outlines images of more populated scenes at high frame rates (Fig-
ure 9) and could be improved. Figures 10, 11, 12, 13, and 14 show
additional results.

In the future we would like to add proper parametrization to the
algorithm and remove the crease-silhouette problem.

Figure 9: Multiple objects rendered at 100 fps.

Figure 10: Close-up rendering.

Figure 11: Wider edges.

Figure 12: Rook with thinner edges.

Figure 13: Ming head outlines.

Figure 14: Raptor model rendered with soft depth testing.

7 Acknowledgements

This work was supported by the project TÁMOP-4.2.2.B-10/1–
2010-0009 and OTKA 101527.

References

BÆRENTZEN, J., NIELSEN, S., GJØL, M., AND LARSEN, B.
2008. Two methods for antialiased wireframe drawing with hid-
den line removal. In Proceedings of the 24th Spring Conference
on Computer Graphics, ACM, 171–177.

BÉNARD, P., COLE, F., GOLOVINSKIY, A., AND FINKELSTEIN,
A. 2010. Self-similar texture for coherent line stylization.
In Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, ACM, 91–97.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
In ACM Transactions on Graphics (TOG), vol. 22, ACM, 848–
855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004.
Interactive rendering of suggestive contours with temporal co-
herence. In Proceedings of the 3rd International Symposium on
Non-photorealistic Animation and Rendering, ACM, 15–145.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 517–526.

HERTZMANN, A. 1999. Introduction to 3d non-photorealistic ren-
dering: Silhouettes and outlines. Non-Photorealistic Rendering.
SIGGRAPH 99.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A de-
veloper’s guide to silhouette algorithms for polygonal models.
Computer Graphics and Applications, IEEE 23, 4, 28–37.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges
for line drawing. In ACM Transactions on Graphics (TOG),
vol. 26, ACM, 19.

KALNINS, R., MARKOSIAN, L., MEIER, B., KOWALSKI, M.,
LEE, J., DAVIDSON, P., WEBB, M., HUGHES, J., AND
FINKELSTEIN, A. 2002. Wysiwyg npr: Drawing strokes directly
on 3d models. ACM Transactions on Graphics 21, 3, 755–762.

LEYMARIE, F., AND LEVINE, M. 1993. Tracking deformable ob-
jects in the plane using an active contour model. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 15, 6, 617–634.

MARKOSIAN, L., KOWALSKI, M., GOLDSTEIN, D., TRYCHIN,
S., HUGHES, J., AND BOURDEV, L. 1997. Real-time non-
photorealistic rendering. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 415–420.

MCCLOUD, S. 1994. Understanding comics. Harper Paperbacks.

NIENHAUS, M., AND DOELLNER, J. 2003. Edge-enhancement-an
algorithm for real-time non-photorealistic rendering. Journal of
WSCG 11, 2.

RASKAR, R. 2001. Hardware support for non-
photorealistic rendering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM, 41–47.

SHIN, J. 2006. A Stylised Cartoon Renderer For Toon Shading Of
3D Character Models. Master’s thesis, University of Canterbury,
UK.

UMENHOFFER, T., SZÉCSI, L., AND SZIRMAY-KALOS, L. 2011.
Hatching for motion picture production. In Computer Graphics
Forum, vol. 30, 533–542.

