Computer Graphics
Camera Control

Laszld Szécsi szecsi@iit.bme.hu
AIT



First Person Camera

e camera attached to avatar
* not at the same position (would only see its inside), but moving with it
* in effect it is like a game object that has the avatar as its parent

* the camera’s view matrix is composed of the avatar’s model matrix and its
local pose matrix computed with its relative orientation and position (and
then inverted)



Third Person Camera

* yvaw, pitch, roll unknown

* but we know the look-at point
* i.e. the avatar’s position

* the world-space base vectors of the camera are found using the
camera position and look-at point

* the view matrix is assembled directly using these vectors



View transformation:

base directions from lookat point
k—e
[k —e|

ahead

W = il =

generic upwards

W x h

@ x ki
right

D

|
=~

up



View transformation:
matrix from base directions and eye position

W = 7’ = ——-= O=10XwW
generic upwards |k — e @ x h
ahead right camera up




View transformation:
matrix from base directions and eye position

R k—e R W x h o
W = = ——= D=10NXW
generic upwards [k — e @ x h
ahead right camera up
. - -\ -1
ux uy uy O] [1 0 0 O \
Ux (o v, O O 1 0 0
—wx —wy —-wz, 0 (0 0 1 O
0 0 0 1 |ex ey e 1]

i;camera — 17'wor1dV



Generic up direction in the world

PerspectiveCamera.worldUp = new Vec3(9, 1, 0);



Base directions

this.right.setVectorProduct(
this.ahead,

.worldUp );
this.right.normalize();

this.up.setVectorProduct(this.right, this.ahead);




Compute view matrix

this.viewMatrix.set(
this.right.x , this.right.y , this.right.z , 0,

this.up.x , this.up.y , this.up.z , 0,

-this.ahead.x , -this.ahead.y , -this.ahead.z , 0,

0 , © , 0 , 1).
translate(this.position).
invert();

this.viewProjMatrix.set(this.viewMatrix).mul(this.projMatrix);



