
Distributed Translucent Volume Rendering
for Hewlett-Packard Scalable Visualization Array

November, 2008

Budapest University of Technology and Economics
Department of Control Engineering and Information Technology

1

Copyright 2008 Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology.
http://www.iit.bme.hu/

Contents

1 Introduction 3

2 Algorithmic background 4
2.1 Volume Rendering Background . 4
2.2 Translucent Volume Rendering Algorithm 5

3 Parallel Implementation 6
3.1 Distributed Translucent Volume Rendering 6
3.2 Implementation Details . 9
3.3 HP Parallel Compositing Library . 11

4 Installation and Usage 13
4.1 Installation . 13

4.1.1 Library dependencies . 13
4.1.2 RPM Package . 14
4.1.3 Building from Sources . 14

4.2 Usage . 14
4.2.1 SVA Startup Script . 14
4.2.2 Configuration File . 15
4.2.3 Volume Descriptor File . 15
4.2.4 User Interface . 16

5 Results 17

2

Chapter 1

Introduction

Translucent volume rendering is a robust and efficient direct volume-rendering tech-
nique for capturing optical effects, like subsurface scattering, translucency, and vol-
umetric shadows. However, due to the limited computing and memory resources of
the recent consumer graphics hardware, high-resolution volume data can still hardly
be interactively visualized by this method. In this document we present the theoretical
aspects and implementation details of a parallelization scheme for translucent volume
rendering. Our method is a three-pass parallel rendering algorithm with parallel com-
positing, based on object-space or camera- space distribution of the data among the
rendering nodes. In the first pass the 2D shadow maps are computed and sent to the
effected nodes. In the second pass the nodes render their associated subvolumes by
sequential translucent volume rendering. The generated framelets are then visualized
by a display node in the third pass.

3

Chapter 2

Algorithmic background

2.1 Volume Rendering Background
Using traditional direct volume visualization, the classical volume-rendering integral
is numerically computed by evaluating finite number of samples along the viewing
rays [3]. Optical properties, like color and opacity are assigned to the samples by
mapping the density and optionally the gradient magnitude with a transfer function.
The color samples are shaded according to the normalized direction of the estimated
gradient, which is treated as a normal of an isosurface. In a nearly homogeneous region,
however, the variation of the densities is presumably due to the noisy data acquisition.
Therefore the gradient estimation yields stochastic normal directions in the originally
homogeneous regions. As there are no well-defined isosurfaces in these regions, the
evaluation of a local shading model is not physically plausible. This problem is usually
avoided by modulating the opacities by the gradient magnitude [3], which enhances the
well defined isosurfaces contained in the volume.

Another drawback of the classical direct volume rendering model is that it relies on
accurately estimated gradient directions. However, the gradient is usually calculated
from quantized density values, so it can represent only a limited number of surface
normals. Furthermore, the ideal gradient estimation cannot be efficiently implemented,
therefore it is only approximated in practical applications. Because of these two rea-
sons, images rendered by the traditional direct volume-rendering approach typically
contain staircase artifacts.

Translucent volume rendering [2], which is based on a fundamentally different op-
tical model, does not rely on estimated gradients at all. In this case, the colors are also
assigned to the samples by a transfer function, but they are not shaded by evaluating
an explicit local shading model. Instead, the color of each sample is multiplied by the
intensity of an attenuated light ray coming from the light source into the given sample
position. Furthermore, with a Gaussian perturbation, this approach can also be used
for a rough approximation of forward scattering. Despite its robustness and optical
modeling potential, the literature on translucent volume rendering is relatively narrow.
Our application is an efficient parallel implementation scheme for translucent volume
rendering of largescale volumetric data sets.

4

5 CHAPTER 2. ALGORITHMIC BACKGROUND

halfway vector

order of

compositing

Figure 2.1: Translucent volume rendering on a single GPU using front-to-back com-
positing.

2.2 Translucent Volume Rendering Algorithm
Translucent volume rendering can be efficiently implemented exploiting the 3D tex-
ture mapping capability of recent graphics cards. Unlike traditional slice-based direct
volume rendering techniques, in this case volumetric shadows are calculated simulta-
neously with the compositing of the resampling slices. In order to avoid the computa-
tion of a 3D shadow map, the slicing is performed perpendicular to the halfway vector
between the viewing direction and the direction of the light source as illustrated in 2.1.

For each pixel covered by the projection of a slice, the intensity of the light has to
be determined, which reaches the intersection point between the slice and the corre-
sponding viewing ray. Therefore each slice is simultaneously projected onto a plane
perpendicular to the direction of the light source. In this way, a 2D shadow map can be
maintained, which corresponds to the current stage of compositing. Whenever a pixel
is processed in the pixel shader it is determined where the corresponding intersection
point is projected onto the current shadow map and its color is modulated accordingly.

The quality of the volumetric shadows can be enhanced with increasing the resolu-
tion of the shadow map. If the angle between the viewing direction V and the direction
of the light source L is less than 90 degrees then the halfway vector H is calculated
as H = (L+V)/2 and a back-to-front compositing should be used. However during the
examination of a data set it is usually preferred to have the light source somewhere near
our viewpoint, so use a light source that has a position fixed relative to the camera. This
way this angle is always greather than 90 degrees and the halfway vector is calculated
as H = (L-V)/2. In this case a front-to-back compositing is performed (see Figure 2.1).

Chapter 3

Parallel Implementation

3.1 Distributed Translucent Volume Rendering
As our major goal is to interactively render large-scale data sets using the translucent
shading model, the basic algorithm is adapted to a parallel computing environment.
The original volumetric data is decomposed into subvolume blocks using axis-aligned
subdivision. These blocks are distributed among the computing nodes. This static data
distribution scheme is more favorable than pixel-level partitioning, because of two rea-
sons. (1) To create an equivalent rendering model, initial shadow maps are needed
to start the rendering of a subset of the volume. This inter-node shadow communica-
tion can be more easily performed using a fixed object-space subdivision rather than
image-space decomposition, which deals with non-axis-aligned connection surfaces.
(2) Furthermore the nodes can efficiently render only subvolumes of moderate resolu-
tion without swapping because of their limited texture memory.

In our approach a three-pass, object-parallel algorithm was used with parallel pipeline
compositing. It performs the following steps:

1. Pass: Each node computes its 2D shadow map and shares it with the effected nodes
for parallel compositing.

2. Pass: After compositing the received 2D shadow maps, each node performs translu-
cent volume rendering as in the basic algorithm. The images of subvolumes are
shared among all nodes.

3. Pass: The portions of the final image are also composited in parallel and sent to the
display node.

The first step is necessary, because each node needs an initial shadow map in order
to start its effective rendering process. This map comes from the composited shadow
maps produced by the nodes associated to the covering subvolumes. Rendering these
maps can be performed very efficiently on the graphics hardware, since only one mul-
tiplication has to be executed per pixel in the pixel shader code. Moreover, the nodes
can simultaneously generate the shadow maps of their corresponding subvolumes, as
illustrated in Figure 3, without waiting for each other. After having the shadow maps
calculated they are shared with the effected nodes for parallel compositing (see Figure
3.1 b.). In the second step, the nodes first have to composite the received images to pro-
duce an initial shadow map for the rendering. Depth information is not required here, as

6

7 CHAPTER 3. PARALLEL IMPLEMENTATION

halfway vector

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

halfway vector

a. b.

halfway vector

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

2
1

3
4

5

c.

Figure 3.1: Distributed translucent volume rendering algorithm: a.:Parallel calculation
of 2D shadow maps on the separate nodes. The numbers represent the different time
steps. b.: Sharing the 2D shadow maps with the effected nodes for parallel compositing.
c.: Parallel translucent volume rendering on the separate nodes. The numbers represent
the different time steps.

only an accumulated light attenuation needs to be evaluated for each pixel. Afterwards
the nodes simultaneously perform the traditional translucent volume rendering for their
assigned subvolumes. The resulting framelets are split up, composited simultaneously,
and the portions are sent to a dedicated node, which is responsible for displaying (see
Figure 3.1 c.). In this third step depth-sorting is necessary before compositing, since
the alpha-blending evaluation is order-dependent.

In cases of small data sets and few rendering nodes it can be more effective if the
full original volumetric data is loaded by each node and a decomposition along the
half way vector is used (see figure 3.2). The main reason behind the performance
gain achieved with this subdivision is that the rendering speed of each node strongly
depends on the render target switch time needed after rendering one slice. Though with
this method the number of rendered pixels on a node does not decrease with increasing
the numbers of rendering nodes, the number of render slices do. Note that in case of a
larger number of rendering nodes (8 or more), the volume can be uniformly subdivided

8 CHAPTER 3. PARALLEL IMPLEMENTATION

along the three main axes and fewer render slices are needed for all nodes and for
arbitrary view directions.

Figure 3.2: Parallel rendering of a volume using subdivision along the halfway vector.
The numbers represent the different time steps. The slices with common color run on
one rendering node.

9 CHAPTER 3. PARALLEL IMPLEMENTATION

3.2 Implementation Details
The volume is rendered with a texture slicing method with slices perpendicular to the
halfway vector. These slices are rendered to a half precision floating point render target
to enable high precision alpha blending. Shadow map rendering is performed the same
way, the only difference is in the view and projection matrices (the shadow map is
rendered from the lights point of view).

struct VS OUT {
float4 position : POSITION;
float3 coord: TEXCOORD0;
float4 lightSpacePos :TEXCOORD1;

};

float4 color ps (VS OUT In,
uniform sampler3D density ,
uniform sampler1D transferCurve ,
uniform sampler2D shadowMap,
uniform float2 halfPixel) :COLOR0

{
if (In .coord.x < 0 || In .coord.x > 1 ||

In .coord.y < 0 || In .coord.y > 1 ||
In .coord.z < 0 || In .coord.z > 1)
discard ;

float4 color = 0;
float d = tex3D(density , In .coord) . r ;
if (d < 0.01)

discard ;

color = tex1D(transferCurve , d) ;

float2 Lpos = In . lightSpacePos .xy / In . lightSpacePos .w;
Lpos = Lpos ∗ 0.5 + 0.5;
Lpos += halfPixel ;
float I = tex2D(shadowMap, Lpos).r;

color . rgb ∗= I ;
color . rgb ∗= color .a;

return color ;
}

Listing 3.1: Front-to-back compositing fragment shader code.

The main idea behind translucent volume rendering is to alternate between shadow
map render target and the final color render target slice by slice. First a slice is ren-
dered to the color buffer then this slice is also rendered to the shadow map using a
multiplicative blending simulating light absorption by the actual slice.

At the beginning the shadow map is initialized to a white color representing the
unoccluded light intensity of the light source. While rendering to the color buffer the
actual value of the shadow map is used to darken the shaded color which simulates
volumetric shadows. After rendering the last slice the shadow map stores the absorbed
light by the whole volume and the color render target stores the final image seen from

10 CHAPTER 3. PARALLEL IMPLEMENTATION

the camera.
In both rendering steps the light absorbtion property of the shaded point should

be determined. The volumetric data is loaded into the texture memory as a 3D density
array. The trilinearly interpolated density values are used for addressing a look-up table
representing the current transfer function. Using this post-classification approach, the
transfer function can be interactively modified on the fly. The four channel transfer
function stores the color and opacity values associated to the density values.

Listing 3.1 shows the fragment shader used while rendering to the color render
target, and Listing 3.2 shows the fragment shader used for shadow map rendering.

struct VS OUT {
float4 position : POSITION;
float3 coord: TEXCOORD0;
float4 lightSpacePos :TEXCOORD1;

};

float4 illum ps (VS OUT In,
uniform sampler3D density ,
uniform sampler1D transferCurve) :COLOR0

{
if (In .coord.x < 0 || In .coord.x > 1 ||

In .coord.y < 0 || In .coord.y > 1 ||
In .coord.z < 0 || In .coord.z > 1)

discard ;

float4 color = 1;
float d = tex3D(density , In .coord) . r ;
color .a = tex1D(transferCurve , d) .a;
return color ;
}

Listing 3.2: Shadow map rendering fragment shader code.

11 CHAPTER 3. PARALLEL IMPLEMENTATION

Renderer1

Renderer2

CompositorA CompositorB CompositorC

G

R

G

R

Redistribute
pixels

D D D

Geometry
processing

Rasterization

Compositing

Display

Figure 3.3: The operation of the HP Parallel Compositing Library

3.3 HP Parallel Compositing Library
The HP Parallel Compositing Library (ParaComp) is a sort-last parallel composit-
ing API suitable for hybrid object-space screen-space decomposition. The API was
originally developed by Computational Engineering International (CEI) to make its
products run efficiently in a distributed environments. The latest version is based on
the abstract Parallel Image Compositing API (PICA) designed by Lawrence Livermore
National Lab, HP, and Chromium team.

ParaComp is a message passing library for graphics clusters enabling users to take
advantage of the performance scalability of clusters with network-based pixel com-
positing without understanding its inner structure and operation. The library makes it
possible for multiple graphics nodes in a cluster to collectively produce images, thus
significantly larger data sets can be processed and larger images can be created than on
any individual graphics hardware by distributing the load over multiple nodes.

However, there is no explicit data distribution so no load balancing is done by the
API. The philosophy of the designers is keeping the API as thin as possible. Therefore,
only a global frame is defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset of the frame. ParaComp
controls the operation of the nodes based on their request; it takes the results of their
renderings and generates the needed composited images (see Figure 3.3). According
to the nomenclature of the API a sub-image contribution is called framelet and the
received image area is called the output. These framelets and the outputs can overlap
each other without any restriction to their origin or destination nodes. The attributes of
a framelet are the following:

• horizontal and vertical position in the global frame;

• width and height of the framelet in pixels;

• the data source which can be both the system memory and the frame buffer; and

• the depth order of the framelets which is needed by non-commutative composit-
ing operators like alpha blending.

The size of the output does not necessarily equal the size of the global frame. For
example, each tile can be connected to a separate node in a multi-tile display. The
attributes of an output are:

• horizontal and vertical position in the global frame;

12 CHAPTER 3. PARALLEL IMPLEMENTATION

• width and height of the output in pixels; and

• the pixel data to be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP Parallel Compositing Library [1].

Chapter 4

Installation and Usage of the
Translucent Volume Rendering
application

This program is the SVA implementation of the translucent volume rendering algo-
rithm. It uses NVidia’s Cg toolkit for rendering and HP’s Paracomp for compositing.

4.1 Installation
Both source and prebuilt versions of the application and the library can be found on the
web site of the project1.

4.1.1 Library dependencies
The following libraries are required by the application:

• paracomp: Hewlett Packard implementation of the Parallel Compositing API
(version 1.0-beta1 or later)

• devil: Developer’s Image Library (version 1.6.7)

• glew: OpenGL Extension Wrangler library (version 1.3.4 or later)

• Cg and CgGL : NVIDIA Cg library

• gl: library implementing OpenGL API

• glut: OpenGL Utility Toolkit

There are prebuilt packages for HP XC V3.2 RC1 platform for AMD64 architec-
ture on the web site of the project for Developer’s Image Library, OpenGL Extension
Wrangler, Cg and CgGL libraries. If one of them is missing from the target system, it
can be installed in the usual way using the rpm package manager program:

1http://amon.ik.bme.hu/translucentvr/

13

14 CHAPTER 4. INSTALLATION AND USAGE

rpm -i devil-1.6.7-1.x86_64.rpm

rpm -i devil-devel-1.6.7-1.x86_64.rpm

rpm -i glew-1.3.4-1.x86_64.rpm

rpm -i glew-devel-1.3.4-1.x86_64.rpm

rpm -i Cg-1.5.x86_64.rpm

The XXX-devel-YYY.rpm packages are only needed when the visualization appli-
cation is built from sources. Otherwise, only the shared libraries are to be installed.

The other libraries like the Parallel Compositing library, the standard C/C++ li-
braries, and the OpenGL libraries are platform specific and have to be installed based
on the actual software stack.

4.1.2 RPM Package
The translucen volume renderer (translucentVR) can be also installed from a prebuilt
RPM2 package in the same way:

rpm -i translucentvr-0.1-1.x86_64.rpm

4.1.3 Building from Sources
The build system of the volume rendering application application is based on CMake.
So, it can be built with the usual procedure:

$ cmake .

$ make

$ sudo make install

4.2 Usage

4.2.1 SVA Startup Script
A SLURM3 startup script is provided to use translucentVR for parallel rendering. It
can be invoked with the following command:

$ translucentVR.sh -r <renderers> -cf <descriptor-file>

The startup script has two parameters that should be set. The first one (-r) tells
SLURM the number of additional render nodes to be allocated. The later one (-cf)
sets the volume descriptor file. The config file describes the path of the volume file
to load, the rgba transfer curve files, render slice count, shadow map resolution and
supports a command to mirror the data set along its z axis (this was required by some

2Red Hat Package Manager
3SLURM is an abbreviation for Simple Linux Utility for Resource Management. It is an open-source

resource manager designed for Linux clusters of all sizes. This software solution is used for HP-XC clusters.

15 CHAPTER 4. INSTALLATION AND USAGE

of our test volumes). If ”-r n” is not given 2 rendering nodes will be set up. If ”-cf file”
is not given the application will terminate.

4.2.2 Configuration File
The config file has the following format:

Volume File Path
Red Channel Transfer Curve File Path
Green Channel Transfer Curve File Path
Blue Channel Transfer Curve File Path
Alpha Channel Transfer Curve File Path
Render Slice Count
Shadow Map Resolution
” flipped ” / ”not flipped ”
”objdiv” / ” halfvecdiv ”

Listing 4.1: Config File Format

Using the above format a sample config file would look like:

/home/DATA/stagbeetle.volume
/home/DATA/BeetleRed.curve
/home/DATA/BeetleGreen.curve
/home/DATA/BeetleBlue.curve
/home/DATA/BeetleAlpha.curve
600
512
flipped
halfvecdiv

Listing 4.2: Sample Config File

4.2.3 Volume Descriptor File
The volume descriptor file has two main sections. In the first one, there are name-value
pairs for setting different parameters like resolution, physical size, and voxel type. In
the second part the data files are listed in a sequence. The list of parameters is the
following:

• width, height, and depth describe the dimensions of the volumetric data, i.e.
the number of voxels in each dimension,

• voxeltype specifies the data type of the volumetric data. Currently the follow-
ing values are accepted:

– unsigned-char sets byte/voxel data type,
– unsigned-short sets word/voxel data type,
– float-msb sets IEEE 754 float/voxel data type;

• sizex, sizey, and sizez sets the sizes of the bounding box.

See Listing 4.3 for a sample descriptor file. The volume descriptor files for the
Visible Human and the McMaster University’s data sets can be also downloaded from
our data server.

16 CHAPTER 4. INSTALLATION AND USAGE

Resolution
width=256
height=256
depth=159

Physical size
sizex=1
sizey=1
sizez=0.621

Voxel type
voxeltype=unsigned−char

Data files
kopf

Listing 4.3: Sample Volume Descriptor File

4.2.4 User Interface
The virtual camera can be rotated around the examined volume by holding the left
mouse button and moving the mouse. The camera can be moved closer or further with
the ”W” and ”S” keys. Pressing SPACE will show or hide the transfer curves.

The transfer curves can be adjusted with the mouse. Clicking on them will select the
closest control point or create a new control point if no point exists nearby. Selected
control points can me moved by holding the left mouse button and dragging the mouse.
Selected control points can be deleted with the right mouse button.

The actual transfer curves can be saved into files by pressing ”P”, and the last saved
curves can be loaded with the ”L” key.

Chapter 5

Results

For our experiments we used a Hewlett-Packard’s Scalable Visualization Array consist-
ing of four computing nodes. Each node has a dual-core AMD Opteron 246 processor,
an nVidia 8800GTX graphics controller, and an InfiniBand network adapter.

Table 5.1 shows our results. We can conclude that distributed rendering is more
effective in case of larger data sets. In case of the Head data set two node gives worse
performance as the single computer implementation because of the network overhead,
while using three render nodes this overhead becomes less significant.

In case of larger data sets - where more render slices are needed - distributed render-
ing unambiguously shows its benefits. The Head and Beetle data sets were subdivided
along the halfway vector while in case of the Human data set static object space subdi-
vision was used.

Figure 5.1, 5.2, 5.3 and 5.4 show our rendering results for some test data sets.

Data Set Resolution 1 node 2 node 3 node
Head 256×256×159 36 FPS 33 FPS 37 FPS
Beetle 416×416×247 20 FPS 22 FPS 29 FPS
Human 512×512×1877 5 FPS 7.7 FPS 10.5 FPS

Table 5.1: Performance results.

17

18 CHAPTER 5. RESULTS

Figure 5.1: The Stagbeetle data set rendered with translucent volume rendering.

19 CHAPTER 5. RESULTS

Figure 5.2: The Head data set rendered with translucent volume rendering.

20 CHAPTER 5. RESULTS

Figure 5.3: The Visible Human data set rendered with translucent volume rendering.

21 CHAPTER 5. RESULTS

Figure 5.4: The Engine Block data set rendered with translucent volume rendering.

Bibliography

[1] HEWLETT PACKARD. HP Scalable Visualization Array Parallel Compositing Library Reference Guide,
2007.

[2] KNISS, J., PREMOZE, S., HANSEN, C., AND EBERT, D. Interactive translucent volume rendering and
procedural modeling. In Proceedings of IEEE Visualization (2002), pp. 109–116.

[3] LEVOY, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications 8, 3
(1988), 29–37.

22

