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Chapter 1

Introduction

In real-time graphics, three-dimensional objects are mostly modeled with polygons or
parametric surfaces. Besides, we define the optical properties of the modeled surface
like color, transparency, reflection and refraction coefficients, etc.Renderingcalculates
the projections of these surfaces onto the image plane. Thisconventional approach is
referred to assurface rendering.

Contrarily, volume renderingcan be applied for direct visualization of three-di-
mensional scalar and vector fields. The main difference between surface and volume
renderings is that no explicit geometry of these fields is given that could be easily
visualized.

Volume rendering techniques were originally developed foreffective visualization
of measured data and simulation results. The typical scopesof volume visualization
are medical applications (such as computer tomography, magnetic resonance imaging,
positron emission tomography, and three-dimensional ultrasound), computational fluid
dynamics, rendering geological and seismical data, visualization of abstract mathemat-
ical results or financial calculations.

In this document implementation details of a parallel volume rendering application
is presented. This application uses static object-space distribution of the data among
the rendering nodes and parallel compositing to get the finalresults.

In the second chapter of this document, the algorithmic background of the3D tex-
ture mapping volume renderingmethod is introduced. The third chapter gives a short
introduction to parallel rendering techniques, it describes the parallelization approach
and the details of the implementation for HP-SVA graphics clusters. Chapter 4 presents
the installation and usage instructions for the mentioned platform. In Chapter 5 the
structure of the code is summarized. The generated images and the measured frame
rates are reported in the last chapter.
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Chapter 2

Algorithmic Background

Figure 2.1: Voxels of a volumetric data sampled on a regular grid.

According to the current practice, volumetric data are generally sampled on a reg-
ular grid. In this way, the volume can be imagined as the set ofsmall cubes (voxels1)
as illustrated in Figure 2.1.

Although, the model of voxels with extent is very expressive, intrinsically, voxels
are discrete samples of a continuous three-dimensional signal:

fi, j ,k = f (xi, j ,k), f (x) ∈R,x ∈R
3

Theoretically, from these samples the original signal can be exactly reconstructed if the
sampling frequency is greater than twice the signal bandwidth using an ideal low-pass
filter. Unfortunatelly, the ideal low-pass filter has infinite support in spatial domain.
Therefore, in practice the reconstruction is performed using only the close neighbor
voxels of a sample point. For instance,box filters, bilinear (2D texture), ortrilinear
filters (3D texture) can be used for this purpose. In practical volume rendering appli-
cations, the most popular reconstruction filter is the trilinear filter, since it represents
a reasonable trade-off between the quality and the rendering speed and it is natively
supported by recent consumer graphics hardware which enables interpolated texture
reads addressed “between” the previously stored voxels.

The volume visualization techniques can be classified into two different approaches.

1. In the first group of methods the volumetric data are first converted into a set of
polygonal iso-surfaces (e.g. using theMarching Cubesalgorithm [19]) and sub-
sequently rendered with surface rendering hardware. This approach is referred to

1voxel is a portmanteau of the words volumetric and element just like pixel = picture + element
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asindirect volume rendering. The most important disadvantage of this method is
that the computationally expensive preprocessing step hasto be repeated when-
ever the isosurface is modified.

2. On the other hand, volumetric data can be directly rendered without an inter-
mediate conversion step. This is calleddirect volume rendering. There are four
fundamentally different approaches for direct volume rendering [24].

(a) Image-ordermethods calculate the color of each pixel separately.Ray cast-
ing [17] follows the inverse way of the light from the eye of the observer
back to a light source.

(b) In contrast,object-ordermethods calculate the projection of each voxel.
Splatting[31] represents the volume as an array of overlapping basis func-
tions, e.g. Gaussian kernels with amplitudes scaled by the voxel values.
The image is then generated by projecting these basis functions to the
screen.

(c) Shear-warp factorization[14] had been originally proposed as a fast soft-
ware implementation of direct volume rendering.

(d) The texture mappingmethod exploits the resampling functionality of the
texturing hardware on graphics cards. The resampling of thevolume is
performed by rendering several overlapping polygons. As most of the re-
cent consumer graphics cards support 3D texture mapping, this approach
has become one of the most popular volume-rendering techniques.

Ray casting, which can produce the highest quality of rendered images, has been
implemented on different parallel architectures using either image-space or object-
space partitioning [15, 20, 21, 1, 28, 30]. Similarly, the classical object-order splat-
ting technique has also been adapted to multiprocessor environments [3, 10, 18]. The
shear-warp algorithm was parallelized on an SGI system [13]. The most important
drawback of 3D texture mapping is that due to limited texturememory large-scale vol-
ume data cannot be rendered without swapping sub-volumes between the main mem-
ory and the local texture memory [6]. In this case, the bottleneck is the bandwidth of
data transferring rather than the performance of the GPU. Therefore, implementations
for parallel architectures have been proposed by several researchers to overcome this
limitation [11, 22, 5].

This document summarizes the implementation aspects of thetexture mapping
method parallelized on an I/O connected, message driven distributed memory archi-
tecture: the HP SVA graphics cluster.

2.1 Volume Rendering Equation

The fundamental element in volume rendering is thevolume rendering integralthat de-
scribes the light transport within the volume. For our volume rendering application we
used the simplified, single-scattering optical model [23] assumes that a certain light ray
only scatters once before leaving the volume. The single-scattering model computes
the amount of light coming from ray directionr in lengthL to the image surface point
x:

Iλ (x, r) =

∫ L

0
Cλ (s)µ(s)e−

∫ s
0 µ(t)dtds, (2.1)
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Figure 2.2: Calculating and compositing volume layers intexture mapping volume
rendering

whereC(s)µ(s) denotes theemitted, transmitted, or reflected intensityfrom a sample
point of distances in the direction ofr. This intensity is then attenuated by the material
betweens and the image plane. The atternuation if governed byµ(t) which is the
differential absorption coefficient. This calculation has to be performed for the whole
ray.

Since Equation (2.1) cannot be evaluated analytically for the general case [23],
in practical volume rendering algorithms the integral should be approximated using a
discrete Riemann sum with a sample distance∆s:

I(x, r) =
L/∆s

∑
i=0

C(si)µ(si)∆s
i−1

∏
j=0

e−µ(sj )∆s (2.2)

By approximating the exponential term with the first two terms of its Taylor series
expansion we get thediscretized volume rendering equation(DVRI):

I(x, r) =
L/∆s

∑
i=0

C(si)α(si)
i−1

∏
j=0

(1−α(sj)), (2.3)

whereC(si) is emitted or reflected intensity of the discrete volume element si and
α(si) = µ(sj)∆s is its opacity. Opacity is the discretized version of the absorption
coefficient, which fits well to the architecture of the graphics hardware which handles
an additional alpha channel besides the R, G, B color channels.

The accumulated intensity on image surface pointx in pixel (u,v) can be calculated
using Equation (2.3) where the ray is directed from the eye through the center of the
pixel. This ray casting approach evaluates the sums of one after another. However,
these sums can be evaluated in parallel calculating the intermediate images fori =
1,2, . . . ,L/∆s:

C
(

Si+1(u,v)
)

= C
(

Li(u,v)
)

α
(

Li(u,v)
)

+C
(

Si(u,v)
)

(

1−α
(

Li(u,v)
)

)

, (2.4)

whereSi is the compound of intensity and opacity composited taking layersL0, L1, . . . ,
Li in sequence (see Figure 2.2). NotationLi stands for thelayersto be composited and
Si indicates thecompositedcolor and opacity. In this way the rendering of the volume
can be calculated byC

(

SL/∆s(u,v)
)

.
Equation (2.4) describes the back to front compositing technique frequently applied

in texture mappingvolume rendering techniques:

Ci+1 = αC+(1−α)Ci (2.5)
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(a) image-aligned slicing polygons

(b) rendering volume slices

Figure 2.3: Proxy geometry for 3D texture mapping volume rendering

which is referred to as theoveroperator. In OpenGL, it can be set using

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

2.2 Single-Node Implementation

The main steps of a hardware accelerated 3D texture volume rendering algorithm can
be summarized as follows.

1. The volume data isloaded into a 3D texture. This is done once for a particular
volume. When the application uses the 3D texturing capabilities of the graphics
hardware, viewport-aligned slices can be rendered and the trilinear interpolation
is done by the hardware.

2. Thepoint of viewand theview directionare calculated from the modelview ma-
trix.

3. A series of polygons are computed cutting the volume perpendicularly to the
viewing direction in order to define layers introduced in Equation (2.4). This
is calledproxy geometrythat allows using surface rendering hardware for direct
volume rendering (see Figure 2.3). The vertices of these cutting polygons are the
intersection points of the bounding box of the volume and theseries of planes
perpendicular to the direction of view. The distance between the planes equals
with the sampling distance (∆s) that usually matches the voxel dimensions of the
volumetric data.
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4. Each slice isrendered as a textured polygon, from back to front. Alpha blending
operation with over operator (Equation (2.5)) is performedfor each slice.

5. As the viewpoint or the direction of view change, theslicing polygons are re-
computedbefore rendering a new frame.

2.2.1 Fast Proxy Geometry Calculation

When calculating proxy geometry the vertices of the generated polygons must be
ordered either in clockwise or in counterclockwise order toform a valid non-self-
intersecting shape. Since the number of vertices varies from zero to six, the intersection
calculation can be terminated after six intersection pointis found. Using an additional
integer this ordering procedure can be fastened. If the plane intersects theith edge of
the bounding cube theith bit is set of this integer. Finally, the proper ordering ofthe
vertices can be retrieved using a single fetch from aprecalculated lookup table. This
table is indexed by a 12-bit mask where each bit is consideredas a boolean variable
that indicates intersection with an edge of the bounding box.

Therefore, the computational cost of a polygon is 6. . . 12 intersection calculation
and an additional array read.

2.2.2 3D Texture Limits

The recent graphics cards have a maximal value for 3D textureresolutions which is
typically 512. So the size of the largest data block that can be handled at once is
512×512×512 which means that maximum 128 Megabytes of data can be handled
using 1 byte/voxel data type. However, the amount of the graphics memory in these
hardware elements are higher2 than this value.

To overcome this limitation, the data is partitioned into blocks handled as sepa-
rate 3D textures and rendered sequentially. However, fitting these blocks together is
not trivial, since multiple samples should be avoided at theborders. In order to eval-
uate the interpolation in the border of the blocks, the bounding voxels of the neighbor
blocks should be added to each block (Figure 2.4). But, in this way the multiplicated
voxels would be composited twice or more in the final image. Therefore, the texture
coordinates originally defined in[0,1]3 should be cut in the

[

1
R

,1−
1
R

)

×

[

1
S
,1−

1
S

)

×

[

1
T

,1−
1
T

)

(2.6)

half-closed half-opened interval, whereR×S×T is the size of the block in voxels.
This can be performed in the fragment shader (see later in Listing 2.2).

2.2.3 Transfer Function

In practice, it usually not worth using the resampled data directly for shading. Ap-
plying an appropriate function can enhance the features of the data and provide more
meaningful and more impressive images by mapping data values to optical properties
(RGB+A color and opacity channels). This mapping function is called thetransfer
functionof the visualization.

2typically 256 MB - 1 GB in the first half of 2007
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Figure 2.4: Sharing voxels between neighbor volume blocks

Such function for volumes storing scalar value can be thepseudo-coloring. A
pseudo-color image is derived from a grayscale image by mapping each pixel value
to a color. A typical example is the encoding of altitude in cartographic maps using
hypsometric tints in relief maps, where negative values (below sea level) are usually
represented by shades of blue, and positive values by greensand browns.

2.2.4 GPU Implementation

Texture-mapping techniques were developed to fit well to thearchitecture of graphics
hardware. It is straightforward to implement the clipping of the texture coordinates
and the shading as shader programs. Note that no texture coordinate generation is
necessary on CPU when using a GPU with programmable pipelinesince the object
space coordinates can be copied as texture coordinates in the vertex shader. Converting
to clipping coordinates are performed as usual (see Listing2.1).

struct VertIn {
float4 pos : POSITION;

};

struct VertOut {
float4 pos : POSITION;
float4 tcoord0 : TEXCOORD0;

};

VertOut main(
VertIn IN,
uniform float4x4 modelViewProj

)
{

VertOut OUT;
OUT.pos = mul(modelViewProj, IN.pos);// Calculate object coordinates in clipping space
OUT.tcoord0 = IN.pos;// Use object space position as texture coordinates

return OUT;
}

Listing 2.1: Vertex shader for texture mapping volume rendering
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Listing 2.2 shows a pseudo-color transfer function implemented in the fragment
shader that maps the density values from[0,1] to [0,1]4 of the RGBA space. The color
is calculated using the HSI→ RGB transformation, where the Hue equals the density to
be mapped while both the Saturation and the Intensity are fixed constants. The opacity
value is calculated as the power of the density using a tunable exponent. With higher
exponent, the low-density samples can be removed and only the high density structure
is visualized, which is usually the skeleton structure of the data.
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float3 hsi2rgb (float H, float S, float I ) {
float r , g, b;
float PI = 3.14159;

if (H < 1.0/3.0) {
b = (1−S)/3;
r = (1+S∗cos(2∗PI∗H)/cos(PI/3−2∗PI∗H))/3.0;
g = 1 − (b + r ) ;

} else if (H < 2.0/3.0) {
H = H − 1.0/3.0;
r = (1−S)/3;
g = (1+S∗cos(2∗PI∗H)/cos(PI/3−2∗PI∗H))/3.0;
b = 1 − (r+g);

} else {
H = H − 2.0/3.0;
g = (1−S)/3;
b = (1+S∗cos(2∗PI∗H)/cos(PI/3−2∗PI∗H))/3.0;
r = 1 − (g+b);

}

return float3 ( I ∗ r , I ∗ g, I ∗ b) ;
}

// Note angle : 0.0−>1.0
float rotate (float value , float angle ) {

value += angle ;
return value − floor (value ) ;

}

struct fragIn {
float3 tcoord0 : TEXCOORD0;

};

float4 main(fragIn IN,
uniform sampler3D texture ,
uniform float colorRotation ,
uniform float alphaExponent,
uniform float3 voxelSize ) : COLOR{

// Clip texture coordinates to avoid multiple sampling
// on the borders
if (IN.tcoord0 .x< voxelSize.x || IN.tcoord0 .y< voxelSize.y ||

IN.tcoord0 .z< voxelSize.z || IN.tcoord0 .x>= 1.0−voxelSize.x||
IN.tcoord0 .y>= 1.0−voxelSize.y|| IN.tcoord0 .z>= 1.0−voxelSize.z)

discard ;

// Resample density at the sample point
float tcol = tex3D( texture , IN.tcoord0 ) . r ;

// Apply transfer function
// Color : maximal saturation and intensity
float3 color = hsi2rgb ( rotate ( tcol , colorRotation ) , 1.0, 1.0) ;
// Alpha is the power of the sampled density
float alpha = pow(tcol , alphaExponent);

return float4 ( color , alpha) ;
}

Listing 2.2: Pseudo-color transfer function in a fragment shader (HSI→RGB
transformation)



Chapter 3

Parallel Implementation

The process of rendering using recent consumer graphics hardware can be divided into
two main stages. Thegeometry processingoperates on the polygon vertices and the
rasterizationtransforms these polygons into corresponding 2-dimensional points on
the screen and fill in the transformed 2-dimensional triangles as appropriate. These
operations are performed sequentially in a well defined order calledrendering pipeline
that introducesfunctional parallelization[4].

On the other hand, parallelization can either mean distributed handling of data and
sharing them between GPUs, graphics cards, and computing nodes. Load balancing
becomes very important when using this approach calleddata parallelization.

Rendering methods involved in data parallelism can be classified based on the
graphics pipeline. In this way, the parallelization of the rendering can be defined as
a data distribution and data sorting problem [25]. Sorting can be performed (1) in the
beginning of the pipeline, (2) between the geometry processing and the rasterization
step, and (3) at the end of the pipeline, after the rasterization. The location of the sort-
ing fundamentally determines the required hardware architecture and communication
infrastructure.

The sort-first approach splits the image into non-overlapping pieces and assigns
the incoming primitives to the designated renderers based on the positions of the prim-
itives in the camera frame. The benefit of this method is the low communication cost.
However, it is difficult to create good load balancing. For example, when using a pro-
grammable pipeline the shaders can dynamically modify the positions of the vertices.
Therefore, it is difficult to calculate which pixels will be affected by a polygon before
feeding the primitives into the local pipelines [26] [9].

In case of asort-middleparallelization the screen is also split into non-overlapping
pieces. However, the primitives are transformed into screen coordinates on the host
when they were generated, they are clipped, and then redistributed for rasterization. In
case of software renderers this is a “natural” break point inthe pipeline between the
geometry processing and the rasterization. However, the pipelines of modern graphics
cards cannot be broken to retrieve the primitives. Thus, this method cannot be applied
for hardware accelerated rendering [12].

Thesort-lastmethod transmits the primitives through the local rendering pipelines
and defers sorting after rasterization. In this case, one fraction of processes (renderers)
are assigned to different subsets of primitives. The other type of processes (compos-
itors) are assigned to areas of pixels in the output image. This method assures more
treatable load balancing, but its network communication ishigher than in the previous

13
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Figure 3.1: Classification of parallel rendering methods based on thegraphics pipeline
and thesimultaneously processed entities

two approaches. This disadvantage can be moderated when only the modified sub-
image of the screen is transmitted to the compositors (sparse merging).

Another classification scheme of data-parallel rendering methods is actually based
on the type of data simultaneously processed (i.e. the entities that enter and the en-
tities that leave the conceptual, global pipeline). Single-threaded software renderers
take graphics primitives one after another and the pixels corresponding to these prim-
itives are also processed sequentially. In contrast, recent graphics cards have multiple
graphics pipelines, therefore more vertices and pixels canbe processed at the same
time. This is calledpixel-parallel rendering. Pixel-based parallelization can also be
performed when the upper and the lower parts of the screen arerendered by different
GPUs (like in NVIDIA SLI Technology) or when multiple graphics cards are used for
creating tiles of the overall output image. In general this is calledscreen-space decom-
position. On the other hand, when the data is divided in an initialization step, multiple
subsets of graphics primitives can be processed at the same time. This is calledobject-
space decomposition.

Using screen-space decomposition the image fragments can be easily joined, how-
ever object-parallel rendering needs the combination of the subsets of pixels corre-
sponding to different objects, which is calledimage compositing. This is a simple
procedure, which involves processing of pixel attributes.

Originally alpha colors were introduced as a pixel coveragemodel for compositing
digital images [29]. The higher opacity (alpha value) the voxel has, the more it domi-
nates the final pixel color. Besides opacity-based compositing, spatial covering can be
also carried out comparing depth values, when a subset of theZ-buffer is transmitted
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with the color values [2]. In this case the closest pixel is visible on the final image.
Since these calculations have to be done for all pixels, the compositing could be-

come a bottleneck for the overall rendering system and may make it unsuitable for
interactive applications. However, when the compositing is also done in parallel,in-
teractive compositingis possible. There are several approaches providing parallel im-
age compositing on multiprocessor architectures including direct send[8, 27],parallel
pipeline[16], andbinary swap[21]. These algorithms are not detailed in this report.
Nevertheless, the message passing library introduced in Section 3.2 implements the
parallel pipeline algorithm.

Nowadays, there are two significant trends for interactive parallel rendering. One
of them based on the sort-first approachvirtually merges multiple graphics cardsand
provides asingle conceptual graphics pipeline. In this way the incoming primitives
are redirected to the corresponding rendering node right after their definitions. The
benefit of this approach is that applications with originally non-parallel design can be
executed in a distributed environment without source code modification or moreover
without recompilation. The other solution uses thesort-last methodwith object-space
data distributionand image compositing. The drawback of this method is that larger
modifications or redesign are required for existing applications, however the advantage
is that the load balance is more predictable and designable.Since this later approach
is more favorable in volume rendering methods when the amount of data dramatically
determines the overall performance, the sort-last method was used.

3.1 Parallelization Approach

For the 3D texture mapping algorithm introduced in Section 2.2, object-space par-
allelization is more favorable than screen-space partitioning. The reason is twofold.
First, the amount of data determines the number of slicing planes and in this way the
number of texture fetches that mainly affects the overall performance. On the other
hand, the memory capacity of the graphics cards are limited hence, the data must be
partitioned in any way.

With object-space data distribution the load is approximately proportional to the
size of the data block. Approximately, this is because a block closer to the camera has
a larger image than the far ones so the number of texture fetches is higher. However,
handling dynamic sized volume blocks needs continuous texture updating which is
expensive.

The network traffic can be reduced when only the pixels withinthe axis-aligned
bounding rectangle of the projection of the volume block aretransferred. When the
application is interactive and the orientation is not fixed,the average size of this rect-
angular area can be minimized whendiagonals of the volume blocksare the shortest.

Alpha blending compositing operator (over) should be set inthe sort-last composit-
ing. To avoid multiple sampling at the borders of the volume block the same scheme
clipping should be applied as presented in Section 2.2.2.

3.2 HP Parallel Compositing Library

The HP Parallel Compositing Library (ParaComp)is a sort-last parallel composit-
ing API suitable forhybrid object-space screen-space decomposition. The API was



16 CHAPTER 3. PARALLEL IMPLEMENTATION
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Figure 3.2: The operation of theHP Parallel Compositing Library

originally developed by Computational Engineering International (CEI) to make its
products run efficiently in a distributed environments. Thelatest version is based on
the abstract Parallel Image Compositing API (PICA) designed by Lawrence Livermore
National Lab, HP, and Chromium team.

ParaComp is amessage passinglibrary for graphics clusters enabling users to take
advantage of the performance scalability of clusters with network-based pixel com-
positing without understanding its inner structure and operation. The library makes it
possible for multiple graphics nodes in a cluster to collectively produce images, thus
significantly larger data sets can be processed and larger images can be created than on
any individual graphics hardware by distributing the load over multiple nodes.

However, there is no explicit data distribution so no load balancing is done by the
API. The philosophy of the designers is keeping the API as thin as possible. Therefore,
only a global frameis defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset of the frame. ParaComp
controls the operation of the nodes based on their request; it takes the results of their
renderings and generates the needed composited images (seeFigure 3.2). According
to the nomenclature of the API a sub-image contribution is called frameletand the
received image area is called theoutput. These framelets and the outputs can overlap
each other without any restriction to their origin or destination nodes. The attributes of
a framelet are the following:

• horizontal and vertical position in the global frame;

• width and height of the framelet in pixels;

• thedata sourcewhich can be both the system memory and the frame buffer; and

• thedepth order of the framelets which is needed by non-commutative composit-
ing operators like alpha blending.

The size of the output does not necessarily equal the size of the global frame. For
example, each tile can be connected to a separate node in a multi-tile display. The
attributes of an output are:

• horizontal and vertical position in the global frame;

• width and height of the output in pixels; and

• thepixel data to be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP ParallelCompositing Library [7].
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Installation and Usage of the
Parallel 3D Texture Mapping
Volume Renderer

The 3D texture volume rendering application was implemented based on a very thin
graphics library called Minimalist OpenGL Environment. This library was designed to
handle the common issues of the development of a visualization application with the
possibly maximal code reusability. This library has a parallel extension that eases the
implementation of a parallel visualization application.

4.1 Installation

Both source and prebuilt versions of the application and thelibrary can be found on the
web site of the project1.

4.1.1 Library dependencies

The following libraries are required by the volume rendering application:

• mingle: Minimalist OpenGL Environment library (version 0.11)

• mingle-parallel: the Parallel Rendering extension of MinGLE (version 0.11)

• paracomp: Hewlett Packard implementation of the Parallel Compositing API
(version 1.0-beta1 or later)

• devil: Developer’s Image Library (version 1.6.7)

• glew: OpenGL Extension Wrangler library (version 1.3.4 or later)

• Cg andCgGL : NVIDIA Cg library

• gl: library implementing OpenGL API

• glu: OpenGL Utility Library

1http://amon.ik.bme.hu/texturevr/

17
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• glut: OpenGL Utility Toolkit

There are prebuilt packages for HP XC V3.2 RC1 platform for AMD64 architec-
ture on the web site of the project for Developer’s Image Library, OpenGL Extension
Wrangler, Cg, CgGL, MinGLE, and MinGLE-parallel libraries. If one of them is miss-
ing from the target system, it can be installed in the usual way using therpm package
manager program:

# rpm -i devil-1.6.7-1.x86_64.rpm

# rpm -i devil-devel-1.6.7-1.x86_64.rpm

# rpm -i glew-1.3.4-1.x86_64.rpm

# rpm -i glew-devel-1.3.4-1.x86_64.rpm

# rpm -i Cg-1.5.x86_64.rpm

# rpm -i mingle-0.11-1.x86_64.rpm

# rpm -i mingle-devel-0.11-1.x86_64.rpm

# rpm -i mingle-parallel-0.11-1.x86_64.rpm

# rpm -i mingle-parallel-devel-0.11-1.x86_64.rpm

TheXXX-devel-YYY.rpmpackages are only needed when the volume renderer ap-
plication is built from sources. Otherwise, only the sharedlibraries are to be installed.

The other libraries like the Parallel Compositing library,the standard C/C++ li-
braries, and the OpenGL libraries are platform specific and have to be installed based
on the actual software stack.

4.1.2 RPM Package

The 3D texture volume renderer (texturevr) can be also installed from a prebuilt
RPM2 package in the same way:

# rpm -i texturevr-0.1-1.x86_64.rpm

4.1.3 Building from Sources

The build system of the volume rendering application application is based on GNU
Autotools. So, it can be built with the usual procedure:

$ ./configure --with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

Since the only implemented parallel rendering support is the HP Parallel Composit-
ing Library, it must be enabled. On a 64-bit HP XC platform theadditional path values
are the following:

• <additional include directory> = /opt/paracomp/include

• <additional library directory> = /opt/paracomp/lib64

MinGLE and MinGLE-parallel libraries can be also built fromsources as follows.
2Red Hat Package Manager
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Building MinGLE from Sources

The build system of Minimalist OpenGL Environment library is also based on GNU
Autotools:

$ ./configure

$ make

$ sudo make install

Currently MinGLE supports only the GLUT windowing system. Hence, OpenGL
headers and GLUT headers are needed. MinGLE is customizable, each feature can be
disabled in the following way in the configuration step:

$ ./configure --disable-glew \

--disable-devil \

--disable-freetype

However, please note that the volume renderer uses OpenGL extensions, therefore
OpenGL Extension Wrangler support should not be disabled. Please also note that
the application has a graphical user interface that requires font rendering, so Devel-
oper’s Image Library is also needed. Nevertheless, FreeType support can be disabled
if necessary, since the fonts are read from precalculated image files.

Building MinGLE-parallel from Sources

The parallel extension can be built and installed with the following configuration op-
tions:

$ ./configure \

--with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

The meaning of the path options is the same as the volume rendering application.

4.2 Usage

The volume renderer can be executed in non-parallel mode or in parallel mode using
the SVA subsystem of the visualization XC clusters. The userinterface of the program
is simple; the navigation can be performed and the shader parameters can be set using
the mouse device. The data to be visualized have to be a raw data file (containing only
the data without extra format headers in the file). The data attributes can be described
in an additional text file (see Section 4.2.5).

4.2.1 Stand-Alone Execution

After installingtexturevr, it can be started with thetexturevr command instand-
alone(non-parallel) mode, which the following command:
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Figure 4.1: Elements of the user interface of the volume renderer

$ texturevr <volume-descriptor-file>

In this command thevolume descriptorfile is a text file that stores additional prop-
erties of the data set. This is a flexible solution to integrate different raw data sets into
this visualization system. For more details on the structure of this file see Section 4.2.5.

Please note that this non-parallel rendering mode cannot beapplied for visualiza-
tion of large data sets. To find the maximum size the amount of graphics memory
should be considered, which typically varies from 256 MB to 1GB for recent graphics
cards.

4.2.2 SVA Startup Script

A SLURM3 startup script is provided to usetexturevr for parallel rendering. It can
be invoked with the following command:

$ texturevr-hpxc.sh -r|--render <renderers> --volume <descriptor-file>

The startup script has two parameters that should be set. Thefirst one (--render)
tells SLURM the number ofadditional render nodesto be allocated. The later one
(--volume) sets the volume descriptor file, just like with the stand-alone version.

4.2.3 User Interface

The user interface of the volume renderer is rather simple (see Figure 4.1). There is
a frame rate indicator(a) on the right side which displays the frame rates for the last
second. There are three other widgets in the center of the user interface:

• a checkbox for toggling on/off thepseudo-colortransfer function (b),

• a slider for rotating thehue offsetfor pseudo-coloring (c), and

3SLURM is an abbreviation for Simple Linux Utility for Resource Management. It is an open-source
resource manager designed for Linux clusters of all sizes. This software solution is used for HP-XC clusters.
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• another slider for setting thealpha exponent(d).

The opacity (alpha) value is calculated asdexp, whered is the resampled density
value in the data andexp is the alpha exponent that can be tuned by the user interac-
tively.

The navigation can be performed using the mouse in the following way:

• the left buttoncan be used forrotating the scene,

• theright buttonis for zooming, and

• themiddle buttoncan be used fortranslatingthe scene.

The following hotkeys are defined:

•

�

�

�

�
Esc quits from the program,

•

�

�

�

�
Tab toggles the user interface,

•

�

�

�

�
Ctrl +

�

�

�

�
P creates a screen shot, and

•

�

�

�

�
Ctrl +

�

�

�

�
R starts/stops recording a frame sequence that can be used forcre-

ating videos.

4.2.4 Test Volumes

We used the following data sets for presenting the application.The Visible Human Data
Setcan be downloaded from the web site of the U.S. National Library of Medicine4.
Theastrophysical data setwas created at the McMaster University5. Thehydrodynam-
ical data setwas provided by the Hewlett-Packard. The other data sets areclassical
volume rendering testing data sets. Thepresent, theChristmas tree, and thestag bee-
tle data sets were created at the Vienna University of Technology6. The preprocessed
version of these data sets that can be visualized with this volume rendering application
can be downloaded from our data server7.

4.2.5 Volume Descriptor File

The volume descriptor file has two main sections. In the first one, there are name-value
pairs for setting different parameters like resolution, physical size, and voxel type. In
the second part the data files are listed in a sequence. The list of parameters is the
following:

• width, height, anddepth describe the dimensions of the volumetric data, i.e.
the number of voxels in each dimension,

• voxeltype specifies the data type of the volumetric data. Currently thefollow-
ing values are accepted:

– unsigned-char sets byte/voxel data type,

4http://www.nlm.nih.gov/research/visible/visible human.html
5http://www.mcmaster.ca/
6http://www.cg.tuwien.ac.at/
7http://visdata.ik.bme.hu/
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# Resolution
width=1024
height=1024
depth=1024

# Voxel type
voxeltype=unsigned−char

# Physical size
sizex=1.0
sizey=1.0
sizez =1.0

# Data files
# values from 0 to 255
den1020.10033.01−unsigned−char
den1020.10033.02−unsigned−char
den1020.10033.03−unsigned−char
den1020.10033.04−unsigned−char
den1020.10033.05−unsigned−char
den1020.10033.06−unsigned−char
den1020.10033.07−unsigned−char
den1020.10033.08−unsigned−char

Listing 4.1: Sample Volume Descriptor File (McMaster University’s astrophysical data
set, unsigned char data type)

– unsigned-short sets word/voxel data type,

– float-msb sets IEEE 754 float/voxel data type;

• sizex, sizey, andsizez sets the sizes of the bounding box.

See Listing 4.1 for a sample descriptor file. The volume descriptor files for the
Visible Human and the McMaster University’s data sets can bealso downloaded from
our data server.
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Program Structure

The main parts of the 3D texture volume renderer applicationare the following:

• there is a specificscene rendererlike presented in Listing A.1 (see Appendix A)
in order to fit to the MinGLE system,

• there are specific classes responsible forvolume data loadingandvolume chop-
ping into desired sized blocks,

• proxy geometrycalculation is accelerated using a previously calculated lookup
table,

• the shader handling and 3D texture handling are performed in designated
classes,

• theCg shader sourcesare in text files, and finally

• aGUI sheet is responsible for tuning the shader parameters.

5.1 Scene Renderer

The scene renderer is responsible for rendering the volume.This class inherits from
the MinGLE::WindowListener class that can be added to the listener queue of a
MinGLE::Window. The scene renderer class does not perform any rendering itself
it only calls therender() method of the volume object.

MinGLE::WindowListener

SceneRenderer

Figure 5.1: Inheritance diagram for the scene renderer

Files:SceneRenderer.[h|cpp]
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5.1.1 Volume Object

The volume object is an administrative class referencing the proxy geometry, thevol-
ume dataprovider, the corresponding3D texture, and the appliedshaderobjects. In
order to overcome the 3D texture size limit of the graphics hardware the abstract
Volume class is implemented in two ways.SimpleVolume can render one volume
block. VolumeSet is a set ofSimpleVolumes. When a volume set is called it renders
all of its simple volumes in back to front order.

Volume

SimpleVolume VolumeSet

Figure 5.2: Inheritance diagram for the volume class

Files:SceneRenderer.[h|cpp]

5.1.2 Volume Chopping

VolumeChopper is a class that can produce volume blocks. It supports two chopping
operations:

• it can partition a volume to N pieces with equal number of voxels and minimal
diameters, and

• a volume can be chopped to smaller parts in order to satisfy the texture size
limitation.

Files:SceneRenderer.[h|cpp]

5.1.3 Volumetric Data

In the current implementation only regular sampled volumesare supported. For ef-
ficiency, the class responsible for volumetric data loadingis a template class. It is
parameterized with multiple types (unsigned char, float etc.); the type of the volume
loader is chosen in run time based on the volume descriptor file.

VolumeData

RegularSampledVolumeData

RegularSampledVolumeDataTpl

T:typename

Figure 5.3: Inheritance diagram for the volumetric data

Files:VolumeData.[h|cpp]
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5.1.4 Proxy Geometry

This implementation of the TextureVR enables using multiple type of proxy geome-
tries. In current version, the most popular box bounded geometry is implemented with
parallel slicing polygons and constant sampling distance.

ProxyGeometry

BoxGeometry SlicingPlaneGeometry

SlicingPlaneBoxGeometry

Figure 5.4: Inheritance diagram for the proxy geometry

Files:ProxyGeometry.[h|cpp]

5.1.5 3D Texturing

Similarly to the volumetric data loading, the 3D texture class is a template class as well
that is parameterized with the type of the data and the corresponding OpenGL texture
format constant.

Texture3D

Texture3DTpl

T:typename
TEXTYPE:int

Figure 5.5: Inheritance diagram for the 3D texturing class

Files:Texture3D.[h|cpp]

5.1.6 GPU Shaders

Two small wrapper classes are defined for easing interactionbetween the host C++ code
and the Cg shader code. These classes are then inherited for the specific purposes of
the texture mapping volume rendering. For instance, theTextureVRFragmentShader

class contains the parameters of the pseudo color transfer function.
Files:Shaders.[h|cpp]

5.2 GUI Renderer

GuiRenderer class manages the user interactions described in Section 4.2.3.
Files:GuiRenderer.[h|cpp]
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Shader

PROFILETYPE:CGGLenum

FragmentShaderVertexShader

TextureVRFragmentShaderTextureVRVertexShader

Figure 5.6: Inheritance diagram for the GPU shader classes

GuiRenderer

MinGLE::GuiSheet

MinGLE::WindowListener

Figure 5.7: Inheritance diagram for the GUI renderer

5.3 Extending the application

The application can be easily modified for two purposes.

1. Data loader classes (RegularSampledVolumeData and
RegularSampledVolumeDataTpl<T>) have to be modified to support other
data formats for cases when the raw data support is not applicable.

2. To define different shaders, the Cg shader code has to be implemented, a new
subclass of theFragmentShader or theVertexShader class has to be derived
for handling parameter interchange between the host code the shader code and
optionally a new GUI sheet can be derived from theMinGLE::GuiSheet class.

The overall class diagram is illustrated in Figure 5.8.
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Chapter 6

Results

In this section execution results are presented for a five-node HP SVA cluster. Each
node had a dual-core AMD Opteron 246 processor and NVIDIA Quadro FX3450
graphics cards. The software environment was HP XC V3.2 RC1.Because of the
incompatibility of the ParaComp implementation and the XC software stack only Gi-
gabit Ethernet interconnection was available.

Screen shots of the execution are presented in Figures 6.2-6.6. The lobster, the
engine, the frog, the head, the present, the Christmas tree,and the stag beetle illustrated
in Figures 6.2-6.3 are de facto standard data sets in volume graphics. Each pixel has 2
bytes of grey tone. Figure 6.4 presents renderings of a floating point CFD data source.
High resolution data sets with 8-bit depth are illustrated in Figures 6.5-6.6:The Visible
Human Male Frozen CT Data Setwhich is a medical data set created from a CT scan
of a real human and an astrophysical simulation generated bythe McMaster University
to simulate the formation of the large-scale structure of the Universe.

Frame rates for a 1024×768 viewport are presented in Table 6.1. The number of
nodes was increased from 1 to 4 where it was possible. For the stagbeetle and Visible
Human data set, the lower limit was 2 since the capacity of thetexture memory was 256
MB for each nodes. For the same reason the astrophysical dataset could be visualized
only on four nodes and could not be used for scalability measurements. A rendering
node was used for displaying therefore the final output when using one-node case the
parallel compositing library was not used.

data set size type data 1 node 2 nodes 3 nodes 4 nodes

lobster 1202
×34 16-bit ≈1 MB 35.9 33.64 34.46 24.99

engine 2562
×110 16-bit 14 MB 9.55 11.5 17.64 23.46

frog 500×470×136 16-bit 61 MB 7.69 10.06 12.23 15.8
head 2562

×159 16-bit 20 MB 5.94 8.57 14.62 15.5
present 4922

×442 16-bit 205 MB 1.74 2.57 3.67 4.44
xmas tree 512×499×512 16-bit 250 MB 1.4 2.46 3.34 4.53
beetle 8322

×494 16-bit 653 MB N/A 2.12 3.49 4.17
hydro 5123 float 512 MB N/A 1.63 2.87 3.45
VHP 5122

×1877 8-bit 470 MB N/A 0.62 2.16 2.07
McMaster 10243 8-bit 1 GB N/A N/A N/A 0.71

Table 6.1: Frame rates and scalability (N/A indicates insufficient memory for the se-
lected settings)
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(a) lobster (crot = 0.08,exp= 0.90)

(b) engine (crot = 0.15,exp= 7.19) (c) engine (crot = 0.15,exp= 2.52)

(d) frog (grey) (crot = 0.5,exp= 4.34) (e) frog (color) (crot = 0.5,exp= 4.34)

Figure 6.1: Rendering results for the lobster, the engine, and the frog data sets
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(a) head (grey) (crot = 0.5,exp= 1.7) (b) head (color) (crot = 0.5,exp= 1.7)

(c) present (crot = 0.71,exp= 1.19) (d) present (crot = 0.71,exp= 2.21)

Figure 6.2: Rendering results for the head and the present data sets
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(a) xmas tree (crot = 0.21,exp= 1.38)

(b) xmas tree closeup (crot = 0.21,exp= 1.38)

(c) beetle (crot = 0.79,exp= 1.55) (d) beetle (crot = 0.79,exp= 2.79)

Figure 6.3: Rendering results for the chrismas tree and the stag beetle data sets
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(a) hydro (grey) (crot = 0.5,exp= 5.00) (b) hydro (color) (crot = 0.5,exp= 5.00)

(c) hydro (crot = 0.11,exp= 0.56) (d) hydro (crot = 0.11,exp= 3.59)

(e) hydro (crot = 0.11,exp= 6.27) (f) hydro (crot = 0.11,exp= 10.00)

Figure 6.4: Rendering results for the hydrodynamical data set
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(a) VHP (grey) (crot = 0.5,exp= 1.62)

(b) VHP (color) (crot = 0.5,exp= 1.62)

Figure 6.5: Rendering results for The Visible Human data set



34 CHAPTER 6. RESULTS

(a) mcmaster (grey) (crot = 0.5,exp= 3.05) (b) mcmaster (color) (crot = 0.5,exp= 3.05)

(c) mcmaster (crot = 0.54,exp= 0.78) (d) mcmaster (crot = 0.54,exp= 2.59)

(e) mcmaster (crot = 0.54,exp= 5.06) (f) mcmaster (crot = 0.54,exp= 7.78)

Figure 6.6: Rendering results for the McMaster University’s astrophysical data set



Appendix A

MinGLE: Minimalist OpenGL
Environment

The aim of this library is twofold. First, it forms athin object-orientedwindow
and event handlingwrapper layerfor GLUT, GLX, SDL and Windows systems. On
the other hand, it contains basic helpers for some general common tasks involved in
OpenGL based graphics applications, like camera handling and navigation, basic ma-
trix operations, initializing OpenGL extensions, image handling, font rendering and
simple user interface support, etc. Some of these features are implemented in-place
and some of them use existing libraries. The overall goal is to provide platform inde-
pendent aid for the very common tasks. A general API is defined, but at the moment
only the GLUT platform is supported.

To get an impression of this library see the source code of a simple “Hello World!”
application that renders a classic teapot object presentedin Listing A.1. First, the
singleton System object should be initialized. Next, a window is created to which
several window listeners are added:

• our listener that overrides theonRender()method to render the teapot,

• a simple navigator that rotates, scales, and translates thescene based on the
mouse interaction, and

• an application key handler that handles common keys for quitting, creating screen
shots, and recording a frame sequence.

#include <mingle.h>
using namespaceMinGLE;

#include <GL/glut.h>
#include <iostream>

// Custom window listener that does the rendering
class SceneRenderer :public WindowListener{

protected:
// This method is called when to render
virtual bool onRender(){

// Render a teapot using GLUT
glutSolidTeapot (0.5) ;
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return true ;
}

};

int main(int argc , char ∗∗argv) {
// Initializing the rendering system
System:: initialize (&argc, argv) ;

// Creating a window
Window∗win = System::createWindow();

// Registering the window listener
win−>registerWindowListener(new SceneRenderer());

// Adding a navigator
ExaminerNavigator∗navigator =new ExaminerNavigator();
win−>registerWindowListener(navigator);

// Adding key handler
ApplicationKeyHandler∗keyHandler =new ApplicationKeyHandler();
win−>registerWindowListener(keyHandler);

// Setting up OpenGL
glEnable(GLDEPTH TEST);
glShadeModel(GLSMOOTH);
glHint (GL PERSPECTIVECORRECTIONHINT, GL NICEST);

GLfloat position [] ={ 3.0f , 3.0f , 3.0f , 1.0f};
GLfloat diffuse [] ={ 0.8f , 0.8f , 0.8 f , 1.0f};
GLfloat specular [] ={1.0f , 1.0f , 1.0 f , 1.0f};
glEnable(GLLIGHTING);
glEnable(GLLIGHT0);
glLightfv (GL LIGHT0, GL POSITION, position);
glLightfv (GL LIGHT0, GL DIFFUSE, diffuse);
glLightfv (GL LIGHT0, GL SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return 0;
}

Listing A.1: Hello World! application using MinGLE

A.1 MinGLE Parallel: Parallel Extension for MinGLE

The parallel extension of MinGLE provides general support for sort-last parallel ren-
dering in applications based on MinGLE. Itsets up compositing contexts, adds framelets,
receives outputs, andtransmits window eventsto each application instance running in
parallel.

The parallelized version of the previous program is presented in Listing A.2. For
simplicity neither the teapot nor the screen is divided, butwhen more rendering nodes
are added the programs renders more colored teapots appear along a circle line. All
generated mouse and keyboard events are automatically transferred to the slave nodes
that receive these events as if they would have been generated by real user interaction.
The overall feeling of the user is that one application is running that renders several
teapots.
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#include <mingle.h>
#include <mingle−parallel.h>
using namespaceMinGLE;

#include <GL/glut.h>
#include <iostream>

#include <math.h>

class SceneRenderer :public WindowListener{
protected:

int mThisRenderer, mRendererCount;
double mPosition [3];

public :
SceneRenderer(int thisRenderer ,int rendererCount ) :

mThisRenderer(thisRenderer ) , mRendererCount(rendererCount){
// Setting up position of the object
mPosition[0] = 0.5∗ :: cos(2.0∗M PI/mRendererCount∗mThisRenderer);
mPosition[1] = 0.0;
mPosition[2] = 0.5∗ :: sin (2.0∗M PI/mRendererCount∗mThisRenderer);

}

virtual bool onRender(){
glMatrixMode(GL MODELVIEW MATRIX);
glPushMatrix () ;
glTranslatef (mPosition [0], mPosition [1], mPosition [2]) ;

// Drawing teapot with unique color
int i = mThisRenderer+1;
glColor4f ( ( i&1) ? 1.0 : 0.0,

( i&2) ? 1.0 : 0.0,
( i&4) ? 1.0 : 0.0,
1.0/mRendererCount∗ i) ;

glutSolidTeapot (0.1) ;
glPopMatrix() ;

return true ;
}

};

int main(int argc , char ∗∗argv) {
// Initializing the rendering system with parallel support
System:: initialize (&argc, argv) ;
ParallelRenderingSupport :: initialize (&argc, argv) ;

// Creating a window
Window∗win = System::createWindow();
win−>setRenderMode(Window::RENDERWHEN IDLE);

// Adding parallel rendering support to the window
// Master/ slave mode is auto−detected using the command line arguments
ParallelRenderingSupport :: addParallelSupport (win);

// Adding key handler
win−>registerWindowListener(new ApplicationKeyHandler());

// Registering scene renderer
SceneRenderer∗sceneRenderer =new SceneRenderer(

ParallelRenderingSupport :: getThisRenderer (win),
ParallelRenderingSupport :: getRendererCount(win)
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) ;
win−>registerWindowListener(sceneRenderer);

// Add navigator
win−>registerWindowListener(new ExaminerNavigator());

// Setting up OpenGL
glEnable(GLDEPTH TEST);
glShadeModel(GLSMOOTH);
glHint (GL PERSPECTIVECORRECTIONHINT, GL NICEST);

GLfloat lightPosition [] ={ 3.0f , 3.0 f , 3.0f , 1.0f};
GLfloat diffuse [] ={ 0.8f , 0.8f , 0.8 f , 1.0f};
GLfloat specular [] ={1.0f , 1.0f , 1.0 f , 1.0f};
glEnable(GLLIGHTING);
glEnable(GLLIGHT0);
glEnable(GLCOLOR MATERIAL);
glLightfv (GL LIGHT0, GL POSITION, lightPosition);
glLightfv (GL LIGHT0, GL DIFFUSE, diffuse);
glLightfv (GL LIGHT0, GL SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return 0;
}

Listing A.2: Hello World! application using MinGLE-parallel

For implementing distributed applications a general API isdefined, but at currently
only the ParaComp library is supported. The applications based on the parallel exten-
sion library contains both the master and the slave parts of the visualization program.
When writing the code this master-slave differentiation ishidden by the underneath
MinGLE-parallel library. However, the application has to be executed in two different
modes in order to exploit the benefits of parallel rendering power:

application <sessionid> <master> <slave1> <slave2> ... <slaveN>

for master mode, and

application <sessionid> <slave_i>

for slave mode. Note that using an application startup script the overall distributed
startup can be done in one step, too. See Section 4.2.2 for thestartup script of Tex-
tureVR designed for SVA and ParaComp.
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