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Chapter 1

Introduction

In real-time graphics, three-dimensional objects are iposvdeled with polygons or
parametric surfaces. Besides, we define the optical piepart the modeled surface
like color, transparency, reflection and refraction cogfits, etc Renderingcalculates
the projections of these surfaces onto the image plane. cbimgentional approach is
referred to asurface rendering

Contrarily, volume renderingcan be applied for direct visualization of three-di-
mensional scalar and vector fields. The main difference déetvsurface and volume
renderings is that no explicit geometry of these fields isgithat could be easily
visualized.

Volume rendering techniques were originally developeceféective visualization
of measured data and simulation results. The typical scopeslume visualization
are medical applications (such as computer tomographynetagesonance imaging,
positron emission tomography, and three-dimensionasdinnd), computational fluid
dynamics, rendering geological and seismical data, vizatadn of abstract mathemat-
ical results or financial calculations.

In this document implementation details of a parallel vadurandering application
is presented. This application uses static object-spatakdition of the data among
the rendering nodes and parallel compositing to get the fazailts.

In the second chapter of this document, the algorithmic ¢emtknd of the3D tex-
ture mapping volume renderingethod is introduced. The third chapter gives a short
introduction to parallel rendering techniques, it desesithe parallelization approach
and the details of the implementation for HP-SVA graphicstdrs. Chapter 4 presents
the installation and usage instructions for the mentiorlatfggm. In Chapter 5 the
structure of the code is summarized. The generated imagketharmeasured frame
rates are reported in the last chapter.



Chapter 2

Algorithmic Background

Figure 2.1: Voxels of a volumetric data sampled on a reguidr g

According to the current practice, volumetric data are galhesampled on a reg-
ular grid. In this way, the volume can be imagined as the setrafll cubes\oxels)
as illustrated in Figure 2.1.

Although, the model of voxels with extent is very expressiagrinsically, voxels
are discrete samples of a continuous three-dimensionalsig

fijk=f(Xjx, f(x)eR,xeR?

Theoretically, from these samples the original signal caaxactly reconstructed if the
sampling frequency is greater than twice the signal banttiwiding an ideal low-pass
filter. Unfortunatelly, the ideal low-pass filter has infeisupport in spatial domain.
Therefore, in practice the reconstruction is performedgisinly the close neighbor
voxels of a sample point. For instandmx filters bilinear (2D texture), ortrilinear
filters (3D texture) can be used for this purpose. In practical veluendering appli-
cations, the most popular reconstruction filter is therteidir filter, since it represents
a reasonable trade-off between the quality and the rergisgeed and it is natively
supported by recent consumer graphics hardware which enatierpolated texture

reads addressed “between” the previously stored voxels.
The volume visualization techniques can be classified mtadifferent approaches.

1. In the first group of methods the volumetric data are firsiveoted into a set of
polygonal iso-surfaces (e.g. using tdarching Cubeslgorithm [19]) and sub-
sequently rendered with surface rendering hardware. Pipisoach is referred to

lvoxel is a portmanteau of the words volumetric and elemesttlike pixel = picture + element

5
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asindirect volume renderingl he most important disadvantage of this method is
that the computationally expensive preprocessing stepoas repeated when-
ever the isosurface is modified.

2. On the other hand, volumetric data can be directly remtesehout an inter-
mediate conversion step. This is cal@idect volume renderingThere are four
fundamentally different approaches for direct volume esirdy [24].

(a) Image-ordemethods calculate the color of each pixel separakdy cast-
ing [17] follows the inverse way of the light from the eye of thesebver
back to a light source.

(b) In contrast,object-ordermethods calculate the projection of each voxel.
Splatting[31] represents the volume as an array of overlapping basis f
tions, e.g. Gaussian kernels with amplitudes scaled by delwalues.
The image is then generated by projecting these basis funscto the
screen.

(c) Shear-warp factorizatiofil4] had been originally proposed as a fast soft-
ware implementation of direct volume rendering.

(d) Thetexture mappingnethod exploits the resampling functionality of the
texturing hardware on graphics cards. The resampling ofttheme is
performed by rendering several overlapping polygons. Astrobthe re-
cent consumer graphics cards support 3D texture mappiisgapiproach
has become one of the most popular volume-rendering tegbgsiq

Ray casting, which can produce the highest quality of rezdiénages, has been
implemented on different parallel architectures usinfpezitimage-space or object-
space partitioning [15, 20, 21, 1, 28, 30]. Similarly, thaessical object-order splat-
ting technique has also been adapted to multiprocessamameéents [3, 10, 18]. The
shear-warp algorithm was parallelized on an SGI system. [T3]Je most important
drawback of 3D texture mapping is that due to limited textammory large-scale vol-
ume data cannot be rendered without swapping sub-voluntegée the main mem-
ory and the local texture memory [6]. In this case, the bottk is the bandwidth of
data transferring rather than the performance of the GPeréfbre, implementations
for parallel architectures have been proposed by sevesabrehers to overcome this
limitation [11, 22, 5].

This document summarizes the implementation aspects ofetttare mapping
method parallelized on an 1/0O connected, message drivérbdiged memory archi-
tecture: the HP SVA graphics cluster.

2.1 Volume Rendering Equation

The fundamental element in volume rendering iswbleime rendering integrahat de-
scribes the light transport within the volume. For our voturandering application we
used the simplified, single-scattering optical model [Z3anes that a certain light ray
only scatters once before leaving the volume. The singitesing model computes
the amount of light coming from ray directionin lengthL to the image surface point
X:

Iy (X,1) = '/O'LC,\ (s)u(s)e JoHOkgg (2.1)
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Figure 2.2: Calculating and compositing volume layerderture mapping volume
rendering

whereC(s)u(s) denotes themitted, transmitted, or reflected intenditgm a sample
point of distancesin the direction of. This intensity is then attenuated by the material
betweens and the image plane. The atternuation if governeduliy which is the
differential absorption coefficieniThis calculation has to be performed for the whole
ray.

Since Equation (2.1) cannot be evaluated analytically fier general case [23],
in practical volume rendering algorithms the integral dtidae approximated using a
discrete Riemann sum with a sample distafise

L/As i-1

1(x,r) = _% C(s)u(s)bs rLe*“(Si)AS (2.2)
= =

By approximating the exponential term with the first two terof its Taylor series
expansion we get thaiscretized volume rendering equatiidVRI):

L/As i—

1
Ix1)= 3 Cls)a(s) []@-als) (2.3)
i= |=

whereC(s) is emitted or reflected intensity of the discrete volume elets and
a(s) = u(sj)Asis its opacity. Opacity is the discretized version of the absorption
coefficient, which fits well to the architecture of the gragghhardware which handles
an additional alpha channel besides the R, G, B color channel

The accumulated intensity on image surface pointpixel (u,v) can be calculated
using Equation (2.3) where the ray is directed from the eyeutjh the center of the
pixel. This ray casting approach evaluates the sums of dee afiother. However,
these sums can be evaluated in parallel calculating thenietiate images for =
1,2,...,L/As:

C(S41(u,v)) =C(Li(u,v))a(Li(u,v)) +C(S(u,v)) (1— a(L (u,v))) . (2.4)

where§ is the compound of intensity and opacity composited takiygtsLo, L1, ...,
L;j in sequence (see Figure 2.2). Notatlgrstands for théayersto be composited and
S indicates theompositectolor and opacity. In this way the rendering of the volume
can be calculated b§(S /as(u,Vv)).

Equation (2.4) describes the back to front compositingrigpke frequently applied
in texture mappingolume rendering techniques:

Gi1=aC+(1-a)G (2.5)
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(b) rendering volume slices

Figure 2.3: Proxy geometry for 3D texture mapping volumelsging

which is referred to as theveroperator. In OpenGL, it can be set using

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

2.2 Single-Node Implementation

The main steps of a hardware accelerated 3D texture volunteriag algorithm can
be summarized as follows.

1. The volume data imaded into a 3D textureThis is done once for a particular
volume. When the application uses the 3D texturing capadslof the graphics
hardware, viewport-aligned slices can be rendered anditinear interpolation
is done by the hardware.

2. Thepoint of viewand theview directionare calculated from the modelview ma-
trix.

3. A series of polygons are computed cutting the volume peligelarly to the
viewing direction in order to define layers introduced in Btjon (2.4). This
is calledproxy geometryhat allows using surface rendering hardware for direct
volume rendering (see Figure 2.3). The vertices of thegegytolygons are the
intersection points of the bounding box of the volume andsiges of planes
perpendicular to the direction of view. The distance betwibe planes equals
with the sampling distancéé) that usually matches the voxel dimensions of the

volumetric data.
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4. Each slice isendered as a textured polygdnom back to front. Alpha blending
operation with over operator (Equation (2.5)) is perforrf@deach slice.

5. As the viewpoint or the direction of view change, #ling polygons are re-
computedefore rendering a new frame.

2.2.1 Fast Proxy Geometry Calculation

When calculating proxy geometry the vertices of the geeergiolygons must be
ordered either in clockwise or in counterclockwise ordefdom a valid non-self-
intersecting shape. Since the number of vertices vari@s f&ro to six, the intersection
calculation can be terminated after six intersection pifbund. Using an additional
integer this ordering procedure can be fastened. If theeplatersects théh edge of
the bounding cube thi¢h bit is set of this integer. Finally, the proper orderingtloé
vertices can be retrieved using a single fetch froprexalculated lookup tableThis
table is indexed by a 12-bit mask where each bit is considaseal boolean variable
that indicates intersection with an edge of the bounding box

Therefore, the computational cost of a polygon is 6. .. 18rggction calculation
and an additional array read.

2.2.2 3D Texture Limits

The recent graphics cards have a maximal value for 3D texas@lutions which is
typically 512. So the size of the largest data block that carhéndled at once is
512x 512x 512 which means that maximum 128 Megabytes of data can bddthnd
using 1 byte/voxel data type. However, the amount of the ljcapmemory in these
hardware elements are high¢nan this value.

To overcome this limitation, the data is partitioned intodis handled as sepa-
rate 3D textures and rendered sequentially. However,dittiese blocks together is
not trivial, since multiple samples should be avoided atitbeders. In order to eval-
uate the interpolation in the border of the blocks, the baugdoxels of the neighbor
blocks should be added to each block (Figure 2.4). But, may the multiplicated
voxels would be composited twice or more in the final imageer&fore, the texture
coordinates originally defined ii®, 1] should be cut in the

1 1 1 1 1 1
Lo 2)ufla- ) [2a-d) 25
half-closed half-opened interval, whelRex Sx T is the size of the block in voxels.
This can be performed in the fragment shader (see later tmgig.2).

2.2.3 Transfer Function

In practice, it usually not worth using the resampled dataaty for shading. Ap-
plying an appropriate function can enhance the featurelseoflata and provide more
meaningful and more impressive images by mapping data satueptical properties
(RGB+A color and opacity channels). This mapping functisrcalled thetransfer
functionof the visualization.

2typically 256 MB - 1 GB in the first half of 2007
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"

Figure 2.4: Sharing voxels between neighbor volume blocks

Such function for volumes storing scalar value can bepbeudo-coloring A
pseudo-color image is derived from a grayscale image by mgmmach pixel value
to a color. A typical example is the encoding of altitude imtegraphic maps using
hypsometric tints in relief maps, where negative valuetofbesea level) are usually
represented by shades of blue, and positive values by gasehsrowns.

2.2.4 GPU Implementation

Texture-mapping techniques were developed to fit well taatiehitecture of graphics
hardware. It is straightforward to implement the clippirfatie texture coordinates
and the shading as shader programs. Note that no texturdicate generation is
necessary on CPU when using a GPU with programmable pipsiitoe the object

space coordinates can be copied as texture coordinatesweittex shader. Converting
to clipping coordinates are performed as usual (see Li&ihy

struct Vertln {

float4 pos : POSITION;
I
struct VertOut {
float4 pos : POSITION,;
float4 tcoord0 : TEXCOORDO;
I
VertOut main(
Vertin IN,

uniform float4x4 modelViewProj

)
{
VertOut OUT;
OUT.pos = mul(modelViewProj, IN.pos)/ Calculate object coordinates in clipping space
OUT.tcoordO = IN.pos;// Use object space position as texture coordinates

return OUT;

Listing 2.1: Vertex shader for texture mapping volume reirde
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Listing 2.2 shows a pseudo-color transfer function impleted in the fragment
shader that maps the density values fi@ni] to [0,1]* of the RGBA space. The color
is calculated using the HSH RGB transformation, where the Hue equals the density to
be mapped while both the Saturation and the Intensity ard figastants. The opacity
value is calculated as the power of the density using a tenatpponent. With higher
exponent, the low-density samples can be removed and oalyigih density structure
is visualized, which is usually the skeleton structure efdhata.
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float3 hsi2rgb float H, float S, float I) {
float r, g, b;
float Pl = 3.14159;

if (H< 1.0/3.0) {

b = (1-S)/3;
r = (1+Skcos(2:Pl«xH)/cos(P1/3-2«PIxH))/3.0;
g=1—-(b+r);
} else if (H < 2.0/3.0) {
H=H - 1.0/3.0;
r = (1-S)/3;
g = (1+Skcos(2PlxH)/cos(P1/3-2xP1xH))/3.0;
b =1-—(r+g);
} else {
H=H - 2.0/3.0;
g = (1-5)/3;
b = (1+Skcos(2PlxH)/cos(PI1/3-2xPlxH))/3.0;
r =1 —(g+b);

return float3 (I xr, | x g, | xb);

}

// Note angle: 0.6>1.0

float rotate (float value, float angle) {
value += angle;
return value — floor (value);

}

struct fragin {
float3 tcoord0 : TEXCOORDO;
i

float4 main(fragin IN,
uniform sampler3D texture ,
uniform float colorRotation ,
uniform float alphaExponent,
uniform float3 voxelSize) : COLOR

// Clip texture coordinates to avoid multiple sampling
// on the borders
if (IN.tcoord0.x < voxelSize.x || IN.tcoord0.y < voxelSize.y ||
IN.tcoord0 .z < voxelSize.z || IN.tcoord0.x >= 1.0-voxelSize.x||
IN.tcoord0 .y >= 1.0-voxelSize.y|| IN.tcoord0.z>= 1.0-voxelSize.z)
discard ;

// Resample density at the sample point
float tcol = tex3D(texture , IN.tcoord0).r;

// Apply transfer function

// Color: maximal saturation and intensity

float3 color = hsi2rgb ( rotate (tcol, colorRotation), 1.0,0)%
// Alpha is the power of the sampled density

float alpha = pow(tcol, alphaExponent);

return float4 (color, alpha);

Listing 2.2: Pseudo-color transfer function in a fragmehbader (HSHRGB
transformation)
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Parallel Implementation

The process of rendering using recent consumer graphids/aee can be divided into
two main stages. Thgeometry processingperates on the polygon vertices and the
rasterizationtransforms these polygons into corresponding 2-dimeasipaints on
the screen and fill in the transformed 2-dimensional triesgls appropriate. These
operations are performed sequentially in a well definedrardiéedrendering pipeline
that introduce$unctional parallelizatior4].

On the other hand, parallelization can either mean digtibhandling of data and
sharing them between GPUSs, graphics cards, and computitesnboad balancing
becomes very important when using this approach caléd parallelization

Rendering methods involved in data parallelism can be ifladsbased on the
graphics pipeline. In this way, the parallelization of tle@dering can be defined as
a data distribution and data sorting problem [25]. Sortiag be performed (1) in the
beginning of the pipeline, (2) between the geometry prangsand the rasterization
step, and (3) at the end of the pipeline, after the rastéizaThe location of the sort-
ing fundamentally determines the required hardware archite and communication
infrastructure.

The sort-first approach splits the image into non-overlapping pieces asijias
the incoming primitives to the designated renderers basddepositions of the prim-
itives in the camera frame. The benefit of this method is tliedommunication cost.
However, it is difficult to create good load balancing. Foample, when using a pro-
grammable pipeline the shaders can dynamically modify tgtipns of the vertices.
Therefore, it is difficult to calculate which pixels will béfected by a polygon before
feeding the primitives into the local pipelines [26] [9].

In case of ssort-middleparallelization the screen is also split into non-overlagp
pieces. However, the primitives are transformed into sti@®rdinates on the host
when they were generated, they are clipped, and then ribdigtd for rasterization. In
case of software renderers this is a “natural” break poirthépipeline between the
geometry processing and the rasterization. However, {haipes of modern graphics
cards cannot be broken to retrieve the primitives. Thus,rtiéthod cannot be applied
for hardware accelerated rendering [12].

Thesort-lastmethod transmits the primitives through the local rendgpipelines
and defers sorting after rasterization. In this case, caaifin of processesgnderer$
are assigned to different subsets of primitives. The otyyge bf processexdémpos-
itors) are assigned to areas of pixels in the output image. Thibodedassures more
treatable load balancing, but its network communicatidrigher than in the previous

13
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Figure 3.1: Classification of parallel rendering methodsebleon theraphics pipeline
and thesimultaneously processed entities

two approaches. This disadvantage can be moderated wherthenmodified sub-
image of the screen is transmitted to the compositparse merging

Another classification scheme of data-parallel renderiethads is actually based
on the type of data simultaneously processed (i.e. thei@ntiiat enter and the en-
tities that leave the conceptual, global pipeline). Sirthleaded software renderers
take graphics primitives one after another and the pixelsesponding to these prim-
itives are also processed sequentially. In contrast, tegraphics cards have multiple
graphics pipelines, therefore more vertices and pixelsheaprocessed at the same
time. This is calledpixel-parallel rendering Pixel-based parallelization can also be
performed when the upper and the lower parts of the screereadered by different
GPUs (like in NVIDIA SLI Technology) or when multiple grapts cards are used for
creating tiles of the overall outputimage. In general thisdlledscreen-space decom-
position On the other hand, when the data is divided in an initiglirastep, multiple
subsets of graphics primitives can be processed at the sameThis is calledbbject-
space decomposition

Using screen-space decomposition the image fragmentseceadily joined, how-
ever object-parallel rendering needs the combination efstlbsets of pixels corre-
sponding to different objects, which is call@dage compositing This is a simple
procedure, which involves processing of pixel attributes.

Originally alpha colors were introduced as a pixel coverageel for compositing
digital images [29]. The higher opacity (alpha value) thgeldas, the more it domi-
nates the final pixel color. Besides opacity-based comipgsipatial covering can be
also carried out comparing depth values, when a subset df-théfer is transmitted
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with the color values [2]. In this case the closest pixel shle on the final image.

Since these calculations have to be done for all pixels, ¢imepositing could be-
come a bottleneck for the overall rendering system and makentaunsuitable for
interactive applications. However, when the compositsglso done in parallein-
teractive compositings possible. There are several approaches providing phira
age compositing on multiprocessor architectures inclydirect send8, 27], parallel
pipeline[16], andbinary swap[21]. These algorithms are not detailed in this report.
Nevertheless, the message passing library introduceddtioBe3.2 implements the
parallel pipeline algorithm.

Nowadays, there are two significant trends for interactaelbel rendering. One
of them based on the sort-first approadtiually merges multiple graphics cardsd
provides asingle conceptual graphics pipelinén this way the incoming primitives
are redirected to the corresponding rendering node right #ieir definitions. The
benefit of this approach is that applications with origipalbn-parallel design can be
executed in a distributed environment without source coddification or moreover
without recompilation. The other solution uses foet-last methodvith object-space
data distributionandimage compositingThe drawback of this method is that larger
modifications or redesign are required for existing appilices, however the advantage
is that the load balance is more predictable and design&itee this later approach
is more favorable in volume rendering methods when the amafudata dramatically
determines the overall performance, the sort-last methasdused.

3.1 Parallelization Approach

For the 3D texture mapping algorithm introduced in Sectic®, @bject-space par-
allelizationis more favorable than screen-space partitioning. Theoreastwofold.
First, the amount of data determines the number of sliciaggd and in this way the
number of texture fetches that mainly affects the overatfggmance. On the other
hand, the memory capacity of the graphics cards are limiggatéd, the data must be
partitioned in any way.

With object-space data distribution the load is approx@tyaproportional to the
size of the data block. Approximately, this is because akbtbaser to the camera has
a larger image than the far ones so the number of texturedetshhigher. However,
handling dynamic sized volume blocks needs continuousitexipdating which is
expensive.

The network traffic can be reduced when only the pixels withim axis-aligned
bounding rectangle of the projection of the volume block tea@sferred. When the
application is interactive and the orientation is not fixéd average size of this rect-
angular area can be minimized whadiagonals of the volume blockse the shortest.

Alpha blending compositing operator (over) should be s#tésort-last composit-
ing. To avoid multiple sampling at the borders of the volunteck the same scheme
clipping should be applied as presented in Section 2.2.2.

3.2 HP Parallel Compositing Library

The HP Parallel Compositing Library (ParaComp$ a sort-last parallel composit-
ing API suitable forhybrid object-space screen-space decompositibime API was
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Figure 3.2: The operation of th¢P Parallel Compositing Library
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originally developed by Computational Engineering Intgional (CEI) to make its

products run efficiently in a distributed environments. Tdest version is based on
the abstract Parallel Image Compositing API (PICA) desigmelLawrence Livermore

National Lab, HP, and Chromium team.

ParaComp is aessage passitiprary for graphics clusters enabling users to take
advantage of the performance scalability of clusters witwork-based pixel com-
positing without understanding its inner structure andrafien. The library makes it
possible for multiple graphics nodes in a cluster to colety produce images, thus
significantly larger data sets can be processed and larggiearan be created than on
any individual graphics hardware by distributing the loadramultiple nodes.

However, there is no explicit data distribution so no loathbeing is done by the
API. The philosophy of the designers is keeping the API asdkipossible. Therefore,
only aglobal frameis defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset fshthe. ParaComp
controls the operation of the nodes based on their requeakds the results of their
renderings and generates the needed composited imagdsgsee 3.2). According
to the nomenclature of the API a sub-image contribution ileddrameletand the
received image area is called thetput These framelets and the outputs can overlap
each other without any restriction to their origin or deation nodes. The attributes of
a framelet are the following:

e horizontal and vertical position in the global frame;
e width and height of the framelet in pixels;
e thedata sourcewhich can be both the system memory and the frame buffer; and

o thedepth order of the framelets which is needed by non-commutative contposi
ing operators like alpha blending.

The size of the output does not necessarily equal the sizeegjlobal frame. For
example, each tile can be connected to a separate node intigtitaudisplay. The
attributes of an output are:

e horizontal and vertical position in the global frame;
¢ width and height of the output in pixels; and
¢ thepixel datato be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP Par@lbehpositing Library [7].
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Installation and Usage of the
Parallel 3D Texture Mapping
Volume Renderer

The 3D texture volume rendering application was implemehised on a very thin
graphics library called Minimalist OpenGL Environment.ig hibrary was designed to
handle the common issues of the development of a visuaizafpplication with the
possibly maximal code reusability. This library has a dat&xtension that eases the
implementation of a parallel visualization application.

4.1 Installation

Both source and prebuilt versions of the application andilthary can be found on the
web site of the projeét
4.1.1 Library dependencies
The following libraries are required by the volume rendgrmpplication:
e mingle: Minimalist OpenGL Environment library (version 0.11)
e mingle-parallel: the Parallel Rendering extension of MinGLE (version 0.11)

e paracomp: Hewlett Packard implementation of the Parallel CompogithPI
(version 1.0-betal or later)

e devil: Developer’s Image Library (version 1.6.7)

e glew: OpenGL Extension Wrangler library (version 1.3.4 or later
e CgandCgGL : NVIDIA Cg library

e gl: library implementing OpenGL API

e glu: OpenGL Utility Library

Ihttp://amon. ik.bme.hu/texturevr/

17
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e glut: OpenGL Utility Toolkit

There are prebuilt packages for HP XC V3.2 RC1 platform for@&4 architec-
ture on the web site of the project for Developer’'s Image &ifpr OpenGL Extension
Wrangler, Cg, CgGL, MinGLE, and MinGLE-parallel librarid§one of them is miss-
ing from the target system, it can be installed in the usugl wgng therpm package
manager program:

rpm -i devil-1.6.7-1.x86_64.rpm

rpm -i devil-devel-1.6.7-1.x86_64.rpm

rpm -i glew-1.3.4-1.x86_64.rpm

rpm -i glew-devel-1.3.4-1.x86_64.rpm

rpm -i Cg-1.5.x86_64.rpm

rpm -i mingle-0.11-1.x86_64.rpm

rpm -i mingle-devel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-devel-0.11-1.x86_64.rpm

H O H H H H O H R

TheXXX-devel-YYY.rpmpackages are only needed when the volume renderer ap-
plication is built from sources. Otherwise, only the shdiedhries are to be installed.
The other libraries like the Parallel Compositing libratlye standard C/C++ li-
braries, and the OpenGL libraries are platform specific at o be installed based
on the actual software stack.

4.1.2 RPM Package

The 3D texture volume renderetdxturevr) can be also installed from a prebuilt
RPM package in the same way:

# rpm -i texturevr-0.1-1.x86_64.rpm

4.1.3 Building from Sources

The build system of the volume rendering application apgion is based on GNU
Autotools. So, it can be built with the usual procedure:

$ ./configure --with-inc-dir=<additional include directory> \
--with-1lib-dir=<additional library directory>

$ make

$ sudo make install

Since the only implemented parallel rendering supportadtk Parallel Composit-
ing Library, it must be enabled. On a 64-bit HP XC platform #luglitional path values
are the following:

e <additional include directory>= /opt/paracomp/include
e <additional library directory>=/opt/paracomp/lib64
MinGLE and MinGLE-parallel libraries can be also built fraaources as follows.

2Red Hat Package Manager
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Building MinGLE from Sources

The build system of Minimalist OpenGL Environment librasydlso based on GNU
Autotools:

$ ./configure
$ make
$ sudo make install

Currently MinGLE supports only the GLUT windowing systemente, OpenGL
headers and GLUT headers are needed. MinGLE is customjzsulk feature can be
disabled in the following way in the configuration step:

$ ./configure --disable-glew \
--disable-devil \
--disable-freetype

However, please note that the volume renderer uses Opent@hstons, therefore
OpenGL Extension Wrangler support should not be disablddaseé also note that
the application has a graphical user interface that regdoet rendering, so Devel-
oper’s Image Library is also needed. Nevertheless, Free$ypport can be disabled
if necessary, since the fonts are read from precalculatadéniles.

Building MinGLE-parallel from Sources

The parallel extension can be built and installed with tHe¥ang configuration op-
tions:

$ ./configure \

--with-inc-dir=<additional include directory> \
--with-lib-dir=<additional library directory>

$ make

$ sudo make install

The meaning of the path options is the same as the volumerniagdgplication.

4.2 Usage

The volume renderer can be executed in non-parallel mode parallel mode using
the SVA subsystem of the visualization XC clusters. The urgerface of the program
is simple; the navigation can be performed and the shadanpers can be set using
the mouse device. The data to be visualized have to be a rafilgatcontaining only
the data without extra format headers in the file). The datéoates can be described
in an additional text file (see Section 4.2.5).

4.2.1 Stand-Alone Execution

After installingtexturevr, it can be started with theexturevr command instand-
alone(non-parallel) mode, which the following command:
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Figure 4.1: Elements of the user interface of the volumeeesrd

$ texturevr <volume-descriptor-file>

In this command thgolume descriptofile is a text file that stores additional prop-
erties of the data set. This is a flexible solution to integdifferent raw data sets into
this visualization system. For more details on the strgctidithis file see Section 4.2.5.

Please note that this non-parallel rendering mode cannappked for visualiza-
tion of large data sets. To find the maximum size the amountrapbtgcs memory
should be considered, which typically varies from 256 MB @B for recent graphics
cards.

4.2.2 SVA Startup Script

A SLURMS startup script is provided to usexturevr for parallel rendering. It can
be invoked with the following command:

$ texturevr-hpxc.sh -r|--render <renderers> --volume <descriptor-file>

The startup script has two parameters that should be seffirfhene ¢-render)
tells SLURM the number oédditional render nodeo be allocated. The later one
(--volume) sets the volume descriptor file, just like with the stanalal version.

4.2.3 User Interface

The user interface of the volume renderer is rather simge Bgure 4.1). There is
aframe rate indicator(@) on the right side which displays the frame rates for tisé la
second. There are three other widgets in the center of théniseface:

e a checkbox for toggling on/off theseudo-colotransfer function (b),

e aslider for rotating théaue offsefor pseudo-coloring (c), and

SSLURM is an abbreviation for Simple Linux Utility for Resm& Management. It is an open-source
resource manager designed for Linux clusters of all sizhis Joftware solution is used for HP-XC clusters.
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e another slider for setting tredpha exponenfd).

The opacity (alpha) value is calculateddf&P, whered is the resampled density
value in the data anéxpis the alpha exponent that can be tuned by the user interac-
tively.

The navigation can be performed using the mouse in the follpway:

¢ theleft buttoncan be used faotating the scene,
e theright buttonis for zooming and
¢ themiddle buttorcan be used faranslatingthe scene.

The following hotkeys are defined:

° quits from the program,
° toggles the user interface,

. + (P] creates a screen shot, and

. . J (R] starts/stops recording a frame sequence that can be usegfor
ating videos.

424 TestVolumes

We used the following data sets for presenting the apptinalihe Visible Human Data
Setcan be downloaded from the web site of the U.S. National Irjbcd Medicing'.
Theastrophysical data satas created at the McMaster Universitfrhehydrodynam-
ical data setwas provided by the Hewlett-Packard. The other data setslassical
volume rendering testing data sets. Thesent the Christmas tregand thestag bee-
tle data sets were created at the Vienna University of TechybloBhe preprocessed
version of these data sets that can be visualized with thisn@rendering application
can be downloaded from our data sefver

4.2.5 Volume Descriptor File

The volume descriptor file has two main sections. In the fingt, there are name-value
pairs for setting different parameters like resolutionygibal size, and voxel type. In
the second part the data files are listed in a sequence. The ligmrameters is the
following:

e width, height, anddepth describe the dimensions of the volumetric data, i.e.
the number of voxels in each dimension,

e voxeltype specifies the data type of the volumetric data. Currentlyahew-
ing values are accepted:

— unsigned-char sets byte/voxel data type,

“http://www.nlm.nih.gov/research/visible/visible_human.html
Shttp://www.mcmaster.ca/

Shttp://www.cg.tuwien.ac.at/

"http://visdata.ik.bme.hu/
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# Resolution
width=1024
height=1024
depth=1024

# Voxel type
voxeltype =unsignedchar

# Physical size
sizex=1.0
sizey=1.0
sizez=1.0

# Data files

# values from O to 255
den1020.10033.04unsigned-char
den1020.10033.02unsigned-char
den1020.10033.03unsigned-char
den1020.10033.04unsigned-char
den1020.10033.05unsigned-char
den1020.10033.06unsigned-char
den1020.10033.067unsigned-char
den1020.10033.08unsigned-char

Listing 4.1: Sample Volume Descriptor File (McMaster Unsigy’s astrophysical data
set, unsigned char data type)

— unsigned-short sets word/voxel data type,
— float-msb sets IEEE 754 float/voxel data type;

e sizex, sizey, andsizez sets the sizes of the bounding box.

See Listing 4.1 for a sample descriptor file. The volume dpsarfiles for the
Visible Human and the McMaster University’s data sets caalbe downloaded from
our data server.
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Program Structure

The main parts of the 3D texture volume renderer applicatrerthe following:

o thereis a specifiscene renderetike presented in Listing A.1 (see Appendix A)
in order to fit to the MinGLE system,

o there are specific classes responsiblefidlume data loadingandvolume chop-
ping into desired sized blocks,

e proxy geometry calculation is accelerated using a previously calculadegup
table,

e the shader handling and 3D texture handling are performed in designated
classes,

e theCg shader sourcesre in text files, and finally

e aGUI sheetis responsible for tuning the shader parameters.

5.1 Scene Renderer

The scene renderer is responsible for rendering the volurhe class inherits from
the MinGLE: : WindowListener class that can be added to the listener queue of a
MinGLE: :Window. The scene renderer class does not perform any rendereify its
it only calls therender () method of the volume object.

| MinGLE::WindowListener |

I

| SceneRenderer |

Figure 5.1: Inheritance diagram for the scene renderer

Files:SceneRenderer. [h|cpp]

23
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5.1.1 Volume Object

The volume object is an administrative class referenciegptbxy geometrythevol-
ume dataprovider, the correspondir@D texture and the applieghaderobjects. In
order to overcome the 3D texture size limit of the graphicedivare the abstract
Volume class is implemented in two waysimpleVolume can render one volume
block. VolumeSet is a set ofSimpleVolumes. When a volume set is called it renders
all of its simple volumes in back to front order.

Volume

/\

SimpleVolume VolumeSet

Figure 5.2: Inheritance diagram for the volume class

Files:SceneRenderer. [h|cpp]

5.1.2 Volume Chopping

VolumeChopper is a class that can produce volume blocks. It supports twpming
operations:

e it can partition a volume to N pieces with equal number of v&@ad minimal
diameters, and

e a volume can be chopped to smaller parts in order to satigfytekture size
limitation.

Files:SceneRenderer. [h|cpp]

5.1.3 Volumetric Data

In the current implementation only regular sampled volumessupported. For ef-
ficiency, the class responsible for volumetric data loading template class. It is
parameterized with multiple types (unsigned char, floajetie type of the volume
loader is chosen in run time based on the volume descripgor fil

VolumeData

/\

| RegularSampledVolumeData |

:_T: typename y
| RegularSampledVolumeDataTpl I

Figure 5.3: Inheritance diagram for the volumetric data

Files:VolumeData. [h|cpp]
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5.1.4 Proxy Geometry

This implementation of the TextureVR enables using mutiyloe of proxy geome-
tries. In current version, the most popular box bounded getgnis implemented with
parallel slicing polygons and constant sampling distance.

ProxyGeometry
/\
BoxGeometry

I SlicingPlaneGeometry

I SlicingPlaneBoxGeometry I

Figure 5.4: Inheritance diagram for the proxy geometry

Files:ProxyGeometry. [h|cpp]

5.1.5 3D Texturing

Similarly to the volumetric data loading, the 3D texturesslés a template class as well
that is parameterized with the type of the data and the quoreting OpenGL texture
format constant.

Texture3D

== m———-—
y T-typenane 1

| TEXTYPE: i nt

Texture3DTpl

Figure 5.5: Inheritance diagram for the 3D texturing class

Files:Texture3D. [h|cpp]

5.1.6 GPU Shaders

Two small wrapper classes are defined for easing interalstween the host C++ code
and the Cg shader code. These classes are then inheritdéu fepécific purposes of
the texture mapping volume rendering. For instanceT#x@ureVRFragmentShader
class contains the parameters of the pseudo color transfetidn.

Files:Shaders. [h|cpp]

5.2 GUI Renderer

GuiRenderer class manages the user interactions described in Sec8dh 4.
Files:GuiRenderer. [h|cpp]
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PROFI LETYPE: CGGLenum 1

Shader

| FragmentShader |

VertexShader

| TextureVRVertexShader | | TextureVRFragmentShader |

Figure 5.6: Inheritance diagram for the GPU shader classes

| MinGLE::WindowListener |

| MinGLE::GuiSheet |

Figure 5.7: Inheritance diagram for the GUI renderer

5.3 Extending the application

The application can be easily modified for two purposes.

1. Data loader classeBdgularSampledVolumeDataand
RegularSampledVolumeDataTpl<T>) have to be modified to support other

data formats for cases when the raw data support is not apydic

2. To define different shaders, the Cg shader code has to Hermapted, a new
subclass of th€ragmentShader or theVertexShader class has to be derived
for handling parameter interchange between the host cadshider code and
optionally a new GUI sheet can be derived fromMi@GLE: : GuiSheet class.

The overall class diagram is illustrated in Figure 5.8.
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Chapter 6

Results

In this section execution results are presented for a fidendP SVA cluster. Each
node had a dual-core AMD Opteron 246 processor and NVIDIA dpudX3450
graphics cards. The software environment was HP XC V3.2 RBdcause of the
incompatibility of the ParaComp implementation and the X®&ware stack only Gi-
gabit Ethernet interconnection was available.

Screen shots of the execution are presented in Figures.6.2T6e lobster, the
engine, the frog, the head, the present, the Christmasatneehe stag beetle illustrated
in Figures 6.2-6.3 are de facto standard data sets in voluaphigs. Each pixel has 2
bytes of grey tone. Figure 6.4 presents renderings of afiipaint CFD data source.
High resolution data sets with 8-bit depth are illustrate#igures 6.5-6.6The Visible
Human Male Frozen CT Data Setich is a medical data set created from a CT scan
of a real human and an astrophysical simulation generat#iteiylcMaster University
to simulate the formation of the large-scale structure eflilmiverse.

Frame rates for a 1024 768 viewport are presented in Table 6.1. The number of
nodes was increased from 1 to 4 where it was possible. Fotdagbeetle and Visible
Human data set, the lower limit was 2 since the capacity ofetkieire memory was 256
MB for each nodes. For the same reason the astrophysicaselatauld be visualized
only on four nodes and could not be used for scalability mesasants. A rendering
node was used for displaying therefore the final output wieimguone-node case the
parallel compositing library was not used.

[ dataset | size | type | data || 1node| 2nodes| 3nodes| 4 nodes]
lobster 1207 x 34 16-bit | ~1 MB 35.9 33.64 34.46 24.99
engine 256 x 110 16-bit 14 MB 9.55 11.5 17.64 23.46
frog 500x 470x 136 | 16-bit 61 MB 7.69 10.06 12.23 15.8
head 256 x 159 16-bit 20 MB 5.94 8.57 14.62 15.5
present 497 x 442 16-bit | 205 MB 1.74 2.57 3.67 4.44
xmas tree | 512x 499x 512 | 16-bit | 250 MB 1.4 2.46 3.34 453
beetle 832 x 494 16-bit | 653 MB N/A 2.12 3.49 4.17
hydro 5128 float 512 MB N/A 1.63 2.87 3.45
VHP 5127 x 1877 8-hit 470 MB N/A 0.62 2.16 2.07
McMaster 1024 8-bit 1GB N/A N/A N/A 0.71

Table 6.1: Frame rates and scalability (N/A indicates ifisieht memory for the se-
lected settings)

28
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(a) lobster €0t = 0.08 exp= 0.90)

(b) engine €t = 0.15 exp=7.19) (c) engine €0t = 0.15,exp= 2.52)

(d) frog (grey) €rot = 0.5,exp=4.34) (e) frog (color) €rot = 0.5,exp=4.34)

Figure 6.1: Rendering results for the lobster, the enginé the frog data sets
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(a) head (grey)dot = 0.5,exp=1.7) (b) head (color) ot = 0.5,exp=1.7)

(c) present@or = 0.71,exp=1.19) (d) presentgor = 0.71,exp=2.21)

Figure 6.2: Rendering results for the head and the presémbtdts
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(a) xmas treeq; = 0.21, exp= 1.38)

(b) xmas tree closeugf; = 0.21,exp= 1.38)

(c) beetle ¢t =0.79,exp= 1.55) (d) beetle ot = 0.79,exp=2.79)

Figure 6.3: Rendering results for the chrismas tree andtéiel®etle data sets
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(@) hydro (grey) ¢ot = 0.5,exp=5.00) (b) hydro (color) €t = 0.5,exp= 5.00)

(c) hydro €t = 0.11,exp= 0.56) (d) hydro €rot = 0.11,exp= 3.59)

(e) hydro €t = 0.11, exp= 6.27) (f) hydro (Crot = 0.11,exp= 10.00)

Figure 6.4: Rendering results for the hydrodynamical deta s
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(a) VHP (grey) €rot = 0.5,exp=1.62)

(b) VHP (color) €t = 0.5,exp= 1.62)

Figure 6.5: Rendering results for The Visible Human data set
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(a) mcmaster (greyxfor = 0.5,exp=3.05)  (b) mcmaster (color)get = 0.5,exp= 3.05)

(c) mcmasterdo; = 0.54,exp= 0.78) (d) mcmasterdio; = 0.54,exp= 2.59)
(e) mcmasterdy; = 0.54,exp= 5.06) (f) mcmaster ot = 0.54,exp=7.78)

Figure 6.6: Rendering results for the McMaster Universigstrophysical data set



Appendix A

MIiNnGLE: Minimalist OpenGL
Environment

The aim of this library is twofold. First, it forms #in object-orientedwindow
and event handlingirapper layerfor GLUT, GLX, SDL and Windows systems. On
the other hand, it contains basic helpers for some genenainmm tasks involved in
OpenGL based graphics applications, like camera handtidghavigation, basic ma-
trix operations, initializing OpenGL extensions, imagediiing, font rendering and
simple user interface support, etc. Some of these featueesrgplemented in-place
and some of them use existing libraries. The overall goal rovide platform inde-
pendent aid for the very common tasks. A general APl is defibetlat the moment
only the GLUT platform is supported.

To get an impression of this library see the source code ahplsi“Hello World!”
application that renders a classic teapot object presantédsting A.1. First, the
singleton System object should be initialized. Next, a winds created to which
several window listeners are added:

e our listener that overrides thRender () method to render the teapot,

e a simple navigator that rotates, scales, and translatescé@e based on the
mouse interaction, and

e an application key handler that handles common keys fotingjtcreating screen
shots, and recording a frame sequence.

#include <mingle.h>
using namespacevlinGLE;

#include <GL/glut.h>
#include <iostream>

// Custom window listener that does the rendering
class SceneRenderer public WindowListener{
protected:
// This method is called when to render
virtual bool onRender(){
// Render a teapot using GLUT
glutSolidTeapot (0.5) ;
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s

return true ;

int main(nt argc, char xxargv) {

// Initializing the rendering system
System:: initialize (&argc, argv);

// Creating a window
Window xwin = System::createWindow/();

// Registering the window listener
win—>registerWindowListenengw SceneRenderer());

// Adding a navigator
ExaminerNavigatok navigator =new ExaminerNavigator();
win—>registerWindowListener (navigator);

// Adding key handler
ApplicationKeyHandlerxkeyHandler =new ApplicationKeyHandler ();
win—>registerWindowListener (keyHandler);

// Setting up OpenGL

glEnable (GLDEPTH.TEST);

glShadeModel(GLSMOOTH);

glHint (GL_.PERSPECTIVECORRECTIONHINT, GL_NICEST);

GLfloat position [] ={ 3.0f, 3.0f, 3.0f, 1.0f};
GlLfloat diffuse [] ={ 0.8f, 0.8f, 0.8f, 1.0f};
GlLfloat specular [| ={1.0f, 1.0f, 1.0f , 1.0%;
glEnable (GLLIGHTING);

glEnable (GLLIGHTO);

glLightfv (GL_LIGHTO, GL_POSITION, position);
glLightfv (GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv (GL_LIGHTO, GL_SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return O;

Listing A.1: Hello World! application using MinGLE

A.1 MInGLE Parallel: Parallel Extension for MinGLE

The parallel extension of MinGLE provides general supportsiort-last parallel ren-
dering in applications based on MinGLESsHts up compositing contexéslds framelets

receives outputsaindtransmits window events each application instance running in

parallel.

simplicity neither the teapot nor the screen is divided Mauén more rendering nodes

The parallelized version of the previous program is presgkint Listing A.2. For

are added the programs renders more colored teapots appegraacircle line. All

generated mouse and keyboard events are automatical§fereed to the slave nodes

that receive these events as if they would have been geddrateal user interaction.
The overall feeling of the user is that one application isning that renders several
teapots.
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#include <mingle.h>
#include <mingle—parallel.h>
using namespacevlinGLE;

#include <GL/glut.h>
#include <iostream>

#include <math.h>

class SceneRenderer public WindowListener{
protected:
int mThisRenderer, mRendererCount;
double mPosition [3];

public:

SceneRenderent thisRenderer ,int rendererCount) :
mThisRenderer(thisRenderer), mRendererCount(rerdeuvet){
// Setting up position of the object
mPosition[0] = 0.5x% ::cos(2.6:M_Pl/mRendererCountThisRenderer);
mPosition[1] = 0.0;
mPosition[2] = 0.5x% :: sin (2.0M_Pl/mRendererCountThisRenderer);

}

virtual bool onRender(){
glMatrixMode (GLMODELVIEW _MATRIX);
glPushMatrix () ;
glTranslatef (mPosition [0], mPosition [1], mPosition)2]

// Drawing teapot with unique color

int i = mThisRenderer+1;

glColor4f( (i&1)? 1.0 : 0.0,
(i&2)? 1.0 : 0.0,
(i&4)? 1.0 : 0.0,
1.0/mRendererCounti);

glutSolidTeapot (0.1) ;

glPopMatrix () ;

return true ;

h

int main(nt argc, char xxargv) {
// Initializing the rendering system with parallel support
System:: initialize (&argc, argv);
ParallelRenderingSupport :: initialize (&argc, argv);

// Creating a window
Window xwin = System::createWindow/();
win—>setRenderMode (Window::RENDER/HEN_IDLE);

// Adding parallel rendering support to the window
// Master/slave mode is autaletected using the command line arguments
ParallelRenderingSupport :: addParallelSupport (win);

// Adding key handler
win—>registerWindowListenengw ApplicationKeyHandler ());

// Registering scene renderer

SceneRenderersceneRenderer rew SceneRenderer(
ParallelRenderingSupport :: getThisRenderer (win),
ParallelRenderingSupport :: getRendererCount(win)
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DE

win—>registerWindowListener (sceneRenderer);

// Add navigator
win—>registerWindowListenengw ExaminerNavigator());

// Setting up OpenGL

glEnable (GLDEPTH.TEST);

glShadeModel(GLSMOOTH);

glHint (GL_.PERSPECTIVECORRECTIONHINT, GL_NICEST);

GlLfloat lightPosition [] ={ 3.0f, 3.0f, 3.0f, 1.0f};
GlLfloat diffuse [] ={ 0.8f, 0.8f, 0.8f, 1.0f};
GlLfloat specular [| ={1.0f, 1.0f, 1.0f , 1.0%;
glEnable (GLLIGHTING);

glEnable (GLLIGHTO);

glEnable (GLCOLORMATERIAL);

glLightfv (GL_LIGHTO, GL_POSITION, lightPosition);
glLightfv (GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv (GL_LIGHTO, GL_.SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return O;

Listing A.2: Hello World! application using MinGLE-parall

For implementing distributed applications a general ARlaéned, but at currently
only the ParaComp library is supported. The applicatiorsetian the parallel exten-
sion library contains both the master and the slave partseo¥isualization program.
When writing the code this master-slave differentiatiomidden by the underneath
MinGLE-parallel library. However, the application has t® éxecuted in two different
modes in order to exploit the benefits of parallel renderioggr:

application <sessionid> <master> <slavel> <slave2> ... <slaveN>

for master mode, and

application <sessionid> <slave_i>

for slave mode. Note that using an application startup stirgpoverall distributed
startup can be done in one step, too. See Section 4.2.2 fetdhep script of Tex-
tureVR designed for SVA and ParaComp.
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