
Illustrative Volume Visualization with
Style Transfer Functions

for Hewlett-Packard Scalable Visualization Array
October, 2008

Budapest University of Technology and Economics

Department of Control Engineering and Information Technology

1

Copyright 2008 Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology.
http://www.iit.bme.hu/

Contents

1 Introduction 3

2 Parallel Implementation 4
2.1 HP Parallel Compositing Library . 4

3 Installation and Usage 6
3.1 Installation . 6

3.1.1 Library dependencies . 6
3.1.2 RPM Package . 7
3.1.3 Building from Sources . 7

3.2 Usage . 7
3.2.1 SVA Startup Script . 7
3.2.2 User Interface . 8
3.2.3 Test Volumes . 8
3.2.4 Configuration File . 9
3.2.5 Volume Descriptor File . 9

4 Results 11

2

Chapter 1

Introduction

Illustrative volume visualization frequently employs non-photorealistic rendering tech-
niques to enhance important features or to suppress unwanted details. Classical ap-
proaches use transfer functions to just assign colors and opacities values to density
values, while style transfer functions allow us to combine amultitude of different shad-
ing styles in a single rendering. In this method an image-based lighting model uses lit
sphere maps to represent non-photorealistic rendering styles. An arbitrari redering style
can be stored using an image of a sphere shaded in the desired style. The basic idea is
to capture color variations of an object as a function of normal direction. As a sphere
provides coverage of the complete set of unit normals, an image of a sphere under or-
thographic projection will capture all such variations on one hemisphere. This image
is then used as a sphere map indexed by the eye-space normals to shade an object. The
style transfer function lookup table contains references to these styles instead of colors.

From a user’s point of view, the transfer function now not only specifies the color
over the range of data values, but also the shading as a function of eye-space normal
direction. The complexity of specifying a transfer function, however, is not increased.
Instead of assigning a single color to a certain value range,a pre-defined shading style
represented by a lit sphere map is chosen. In this context, one advantage of sphere
maps as opposed to other mappings is that they can be directlypresented to the user
as an intuitive preview image for the style. Style transfer functions allow for a flexible
combination of different shading styles in a single transfer function.

Reference: Stefan Bruckner, Meister Eduard Grller : ”Style Transfer Functions for
Illustrative Volume Rendering”. Computer Graphics Forum,26(3):715-724, Septem-
ber 2007.

3

Chapter 2

Parallel Implementation

2.1 HP Parallel Compositing Library

The HP Parallel Compositing Library (ParaComp) is a sort-last parallel composit-
ing API suitable forhybrid object-space screen-space decomposition. The API was
originally developed by Computational Engineering International (CEI) to make its
products run efficiently in a distributed environments. Thelatest version is based on
the abstract Parallel Image Compositing API (PICA) designed by Lawrence Livermore
National Lab, HP, and Chromium team.

ParaComp is amessage passing library for graphics clusters enabling users to take
advantage of the performance scalability of clusters with network-based pixel com-
positing without understanding its inner structure and operation. The library makes it
possible for multiple graphics nodes in a cluster to collectively produce images, thus
significantly larger data sets can be processed and larger images can be created than on
any individual graphics hardware by distributing the load over multiple nodes.

However, there is no explicit data distribution so no load balancing is done by the
API. The philosophy of the designers is keeping the API as thin as possible. Therefore,
only a global frame is defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset of the frame. ParaComp
controls the operation of the nodes based on their request; it takes the results of their
renderings and generates the needed composited images (seeFigure 2.1). According
to the nomenclature of the API a sub-image contribution is called framelet and the
received image area is called theoutput. These framelets and the outputs can overlap
each other without any restriction to their origin or destination nodes. The attributes of
a framelet are the following:

• horizontal and vertical position in the global frame;

• width and height of the framelet in pixels;

• thedata sourcewhich can be both the system memory and the frame buffer; and

• thedepth order of the framelets which is needed by non-commutative composit-
ing operators like alpha blending.

The size of the output does not necessarily equal the size of the global frame. For
example, each tile can be connected to a separate node in a multi-tile display. The
attributes of an output are:

4

5 CHAPTER 2. PARALLEL IMPLEMENTATION

Renderer1

Renderer2

CompositorA CompositorB CompositorC

G

R

G

R

Redistribute
pixels

D D D

Geometry
processing

Rasterization

Compositing

Display

Figure 2.1: The operation of theHP Parallel Compositing Library

• horizontal and vertical position in the global frame;

• width and height of the output in pixels; and

• thepixel data to be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP ParallelCompositing Library [1].

Chapter 3

Installation and Usage of the
Illustrative Volume
Visualization application

This program is the SVA implementation of the style transferfunction algorithm. It
uses NVidia’s Cg toolkit for rendering and HP’s Paracomp forcompositing.

3.1 Installation

Both source and prebuilt versions of the application and thelibrary can be found on the
web site of the project1.

3.1.1 Library dependencies

The following libraries are required by the volume rendering application:

• paracomp: Hewlett Packard implementation of the Parallel Compositing API
(version 1.0-beta1 or later)

• devil: Developer’s Image Library (version 1.6.7)

• glew: OpenGL Extension Wrangler library (version 1.3.4 or later)

• Cg andCgGL : NVIDIA Cg library

• gl: library implementing OpenGL API

• glu: OpenGL Utility Library

• glut: OpenGL Utility Toolkit

There are prebuilt packages for HP XC V3.2 RC1 platform for AMD64 architec-
ture on the web site of the project for Developer’s Image Library, OpenGL Extension
Wrangler, Cg and CgGL libraries. If one of them is missing fromthe target system, it
can be installed in the usual way using therpm package manager program:

1http://amon.ik.bme.hu/styletransfer/

6

7 CHAPTER 3. INSTALLATION AND USAGE

rpm -i devil-1.6.7-1.x86_64.rpm

rpm -i devil-devel-1.6.7-1.x86_64.rpm

rpm -i glew-1.3.4-1.x86_64.rpm

rpm -i glew-devel-1.3.4-1.x86_64.rpm

rpm -i Cg-1.5.x86_64.rpm

TheXXX-devel-YYY.rpm packages are only needed when the visualization appli-
cation is built from sources. Otherwise, only the shared libraries are to be installed.

The other libraries like the Parallel Compositing library,the standard C/C++ li-
braries, and the OpenGL libraries are platform specific and have to be installed based
on the actual software stack.

3.1.2 RPM Package

The 3D texture volume renderer (texturevr) can be also installed from a prebuilt
RPM2 package in the same way:

rpm -i styletransfer-0.1-1.x86_64.rpm

3.1.3 Building from Sources

The build system of the volume rendering application application is based on CMake.
So, it can be built with the usual procedure:

$ cmake .

$ make

$ sudo make install

However, please note that the volume renderer uses OpenGL extensions, therefore
OpenGL Extension Wrangler support should not be disabled. Please also note that
the application has a graphical user interface that requires font rendering, so Devel-
oper’s Image Library is also needed. Nevertheless, FreeType support can be disabled
if necessary, since the fonts are read from precalculated image files.

3.2 Usage

3.2.1 SVA Startup Script

A SLURM3 startup script is provided to usestyletransfer for parallel rendering. It
can be invoked with the following command:

$ style.sh -r <renderers> -cf <descriptor-file>

2Red Hat Package Manager
3SLURM is an abbreviation for Simple Linux Utility for Resource Management. It is an open-source

resource manager designed for Linux clusters of all sizes. This software solution is used for HP-XC clusters.

8 CHAPTER 3. INSTALLATION AND USAGE

The startup script has two parameters that should be set. Thefirst one (-r) tells
SLURM the number ofadditional render nodes to be allocated. The later one (-cf)
sets the volume descriptor file. The config file describes the path of the volume file to
load, and the texture file names used as styles during rendering. If ”-r n” is not given 2
rendering nodes will be set up. If ”-cf file” is not given the file ”default.config” will be
choosen, which loads a head volume set (”head128.volume”) and three style textures
(”style1.bmp”, ”style2.bmp” and ”style4.bmp”). (The given image files should have
the same resolution and pixel format.)

3.2.2 User Interface

The virtual camera can be rotated around the examined volumeby holding the left
mouse button and moving the mouse. The camera can be moved closer or further with
the ”W” and ”S” keys. Pressing SPACE will show or hide the transfer curves.

The transfer curves can be adjusted with the mouse. Clickingon them will select the
closest control point or create a new control point if no point exists nearby. Selected
control points can me moved by holding the left mouse button and dragging the mouse.
Selected control points can be deleted with the right mouse button.

The actual transfer curves can be saved into a file by pressing”P”, and the last saved
curves can be loaded with the ”L” key.

Meaning of the transfer curves:

• The upper curve is the style transfer curve: The x axis represents the density
values and the y axis represents the style indices (0 is for the first style given in
the config file and 1 is for the last style image). (This curve should be set once
for the given data set and styles.)

• The second curve is a classical opacity curve: x axis stands for densitiy and y for
opacity values. (This curve is typically changed during examination.)

3.2.3 Test Volumes

We used the following data sets for presenting the application. The Visible Human Data
Set can be downloaded from the web site of the U.S. National Library of Medicine4.
Theastrophysical data set was created at the McMaster University5. Thehydrodynam-
ical data set was provided by the Hewlett-Packard. The other data sets areclassical
volume rendering testing data sets. Thepresent, theChristmas tree, and thestag bee-
tle data sets were created at the Vienna University of Technology6. The preprocessed
version of these data sets that can be visualized with this volume rendering application
can be downloaded from our data server7.

4http://www.nlm.nih.gov/research/visible/visible_human.html
5http://www.mcmaster.ca/
6http://www.cg.tuwien.ac.at/
7http://visdata.ik.bme.hu/

9 CHAPTER 3. INSTALLATION AND USAGE

kopf.volume
style1 .bmp
style2 .bmp
style3 .bmp
style4 .bmp

Listing 3.1: Sample Config File

3.2.4 Configuration File

The config file describes the path of the volume file to load, andthe texture file names
used as styles during rendering.

3.2.5 Volume Descriptor File

The volume descriptor file has two main sections. In the first one, there are name-value
pairs for setting different parameters like resolution, physical size, and voxel type. In
the second part the data files are listed in a sequence. The list of parameters is the
following:

• width, height, anddepth describe the dimensions of the volumetric data, i.e.
the number of voxels in each dimension,

• voxeltype specifies the data type of the volumetric data. Currently thefollow-
ing values are accepted:

– unsigned-char sets byte/voxel data type,

– unsigned-short sets word/voxel data type,

– float-msb sets IEEE 754 float/voxel data type;

• sizex, sizey, andsizez sets the sizes of the bounding box.

See Listing 3.2 for a sample descriptor file. The volume descriptor files for the
Visible Human and the McMaster University’s data sets can bealso downloaded from
our data server.

10 CHAPTER 3. INSTALLATION AND USAGE

Resolution
width=256
height=256
depth=159

Physical size
sizex=1
sizey=1
sizez=0.621

Voxel type
voxeltype=unsigned−char

Data files
kopf

Listing 3.2: Sample Volume Descriptor File)

Chapter 4

Results

For our experiments we used aHewlett-Packard’s Scalable Visualization Array consist-
ing of five computing nodes. Each node has a dual-core AMD Opteron 246 processor,
an nVidia 8800GTX graphics controller, and an InfiniBand network adapter. One node
is only responsible for compositing and managing the framelet generations and does
not take part in the rendering processes, so we could divide our data set into maximum
four parts.

Table 4.1 shows our results. It can be seen that using 2 nodes gives better perfor-
mance than the single computer version. Using more than 2 nodes becomes useful only
in case of larger data sets, for small data sets the communication between the nodes be-
comes a bottleneck. The N/A sign means that a 256× 256× 256 data set cannot be
simulated on a single computer since it has too high memory needs.

It is worth examining the resolutions of 64× 64× 64 and 80× 80× 80. The 80
resolution needs about twice as many voxels as the 64 one. It can be clearly seen that
the performance of the two node implementation is the doubleof the performance
obtained on a single node. Similarly the two node implementation nearly doubles
performance in almost all cases.

Table 4.1: Performance results.

11

Bibliography

[1] HEWLETT PACKARD. HP Scalable Visualization Array Parallel Compositing Library Reference Guide,
2007.

12

