
Distributed SPH Fluid Simulator
for Hewlett-Packard Scalable Visualization Array

February, 2008

Budapest University of Technology and Economics
Department of Control Engineering and Information Technology

1

Copyright 2008 Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology.
http://www.iit.bme.hu/

Contents

1 Introduction 4

2 Algorithmic Background 5
2.1 Lagrangian and Eulerian Viewpoints 5
2.2 The SPH Approach . 6
2.3 Modeling Fluids Using Particles . 6
2.4 Pressure, Viscosity . 7
2.5 External Forces . 7
2.6 Smoothing Kernels . 7
2.7 Single-Node Implementation . 8

2.7.1 GPU Implementation . 9

3 Distributed SPH Simulation 13
3.1 Parallelization Background . 13
3.2 Client Areas . 13
3.3 Data Transfer . 14

3.3.1 Peer-to-Peer Approach . 15
3.4 HP Parallel Compositing Library . 16

4 Installation and Usage 18
4.1 Installation . 18

4.1.1 Library Dependencies . 18
4.1.2 RPM Package . 19
4.1.3 Building from Sources . 19

4.2 Usage . 20
4.2.1 SVA Startup Script . 21
4.2.2 User Interface . 21

5 Program Structure 23
5.1 Container Object . 23
5.2 FluidSim Application . 23
5.3 gpuSPH . 23
5.4 Grid Cells . 24
5.5 Particle . 24

5.5.1 Particle System . 24
5.5.2 Scene . 24
5.5.3 GPU Shaders . 24

6 Results 25

2

3 CONTENTS

A MinGLE: Minimalist OpenGL Environment 27
A.1 MinGLE Parallel: Parallel Extension for MinGLE 28

Chapter 1

Introduction

Simulating natural phenomena like smoke, sand or fluid by physics-based algorithms
is a rapidly developing area of visualization. Animating fluid is time-consuming and
interactive visualization on a single workstation is limited to a less detailed quality. Our
goal is to develop an interactive scalable GPU-accelerated particle-based fluid simula-
tion system which runs parallel on Hewlett-Packard Scalable Visualization Array.

This document describes the basic equations of fluid dynamics [2] and covers im-
plementation details of a method called Smoothed Particle Hydrodynamics (SPH). The
particle-based approach reduces the complexity of the simulation because mass conser-
vation equations can be disregarded. The particle system can be used to render the fluid
surface using spheres, metaballs in the positions of the particles. Other visualization
possibility would be using ray casting methods.

For faster single node simulation the traditional SPH implementations should be
redesigned for efficient use of today’s graphics processor architectures. Interactive
visualization of accurate simulation needs a huge number of fluid particles. This com-
plexity is handled using highly parallelized methods.

This report shows an approach how to implement an SPH-based fluid simulation
engine using the graphics processor unit (GPU) and how to parallelize the solver for a
visualization cluster distributing the computation for space domains. The architecture
is peer-to-peer, there is no master node for the data set visualization. Displaying the
result is also separated, the ParaComp compositing API is responsible for collecting
the rendered image parts from the nodes and for showing the final result.

In the second chapter of this document the algorithmic background of SPH-based
fluid simulation is introduced. The third chapter gives a short introduction to parallel
rendering techniques, it describes the parallelization approach and details of the im-
plementation for HP-SVA graphics clusters. Chapter 4 presents the installation and
usage instructions for the mentioned platform. In Chapter 5 the structure of the code
is summarized. Generated images and measured frame rates are reported in the last
chapter.

4

Chapter 2

Algorithmic Background

The motion of a fluid system can be described with the Navier-Stokes equations [13].
These partial differential equations are usually written in the following form:

∂~u
∂ t

+~u ·∇~u+
1
ρ

∇p =~g+ν∇ ·∇~u

∇ ·~u = 0

The symbol ~u is used for the velocity of the fluid, ρ stands for the density, p for
pressure. The letter g is the acceleration due to gravity. The ν is called kinematic
viscosity. It measures how much the fluid resists deforming while it flows.

The first equation is called momentum equation which describes how the fluid ac-
celerates due to the forces. The second equation is the incompressibility condition.

2.1 Lagrangian and Eulerian Viewpoints
For tracking the motion of the fluid usually two different solutions are used that are
called the Lagrangian viewpoint and the Eulerian viewpoint.

The Lagrangian approach represents the motion as a finite interpolated system like
a given number of particles. Each point is labelled as a particle with current position,
and velocity (~v). Solids are usually simulated in a Lagrangian way.

The Eulerian approach looks at fixed points in the volume and measures how the
fluid quantities (density, velocity, pressure etc.) change in time.

The Lagrangian viewpoint corresponds to a particle system, the Eulerian viewpoint
uses a fixed grid that does not change in space.

Figure 2.1: Lagrangian and Eulerian viewpoints. Particles are represented by cubes

5

6 CHAPTER 2. ALGORITHMIC BACKGROUND

2.2 The SPH Approach
For smoke, water splashes or spray effects the application of particles is the most com-
fortable solution. A particle system contains a number of particles moving in the space
based on the effect of the surrounding forces. Usually they can collide with each other
and with obstacles. Without a particle-particle interaction we call our system a simple
particle system. Such a system can be implemented efficiently and with a low number
of particles it runs real-time. These particles are created at the start of the simulation
using a defined volume or generated by emitters. Particles are born at a given rate (par-
ticles/sec) and die after a certain time. When they get close to the end of their lifetime,
they disappear.

Without a particle-particle collision model the dynamic properties can be described
by a set of decoupled ordinary differential equations:

~̇xi =~vi

~̇vi =~fi/mi

where xi is the position, vi is the velocity, mi the mass of particle i and fi is the force
affecting the particle.

2.3 Modeling Fluids Using Particles
SPH [10] is an interpolation method for fluid motion simulation. SPH uses field quanti-
ties defined only at discrete particle locations and can be evaluated anywhere in space.
SPH distributes quantities in a local neighborhood of the discrete locations using radial
symmetrical smoothing kernels.

A scalar value A is interpolated at location (~r) by a weighted sum of contributions
from the particles:

AS(~r) = ∑
j

m j
A j

ρ j
W (~r−~r j,h)

where j iterates over all particles in the scene, m j is the mass of particle j. ~r j is the
position, ρ j is the density, and A j is the field quantity at ~r j. The W(~r,h) is called
smoothing kernel with core radius h. The kernel is normalized if

∫
W (~r)dr = 1.

Because mi = m constant in our case, we can evaluate the density at every step
using a modified equation based on Mueller’s work [10]:

ρS(r) = ∑
j

m j
ρ j

ρ j
W (~r−~r j,h) = ∑

j
m jW (~r−~r j,h).

With the SPH approach the derivatives only affect the smoothing kernel. The prob-
lem with the method is that these equations are not guaranteed to satisfy some physical
rules including symmetry of forces and conservation of momentum. Mueller [10] also
solves these SPH-related problems.

7 CHAPTER 2. ALGORITHMIC BACKGROUND

Particle-based simulation simplifies the solution of Navier-Stokes equations. Be-
cause the number and the mass of particles are constant, mass conservation is guaran-
teed. The mass conservation equation can be omitted. The expression ∂~u

∂ t +~u ·∇~u on
the left side can be simplified because the particles move with the fluid.

Based on simplified Navier-Stokes for the acceleration of particle i we get:

~ai =
d~ui

dt
=

~fi

ρi

where ~ui is the velocity of particle i, ~fi and ρi are the force field and the density field
at the location of particle i respectivelz. The next sections describe how to model the
force fields.

2.4 Pressure, Viscosity
Instead of an equation described by the SPH-rule a modified solution is used for pres-
sure force because it guarantees the symmetry of forces:

~f pressure
i =−∑

j
m j

pi + p j

2ρ j
∇W (~ri−~r j,h)

The pressure at particle locations has to be calculated first, which can be computed
via the ideal gas equation:

p = kρ

where k is a gas constant that depends on the temperature. A modified version — which
we used in our implementation — makes the simulation numerically more stable:

p = k(ρ−ρ0).

where ρ0 is the rest density. Applying the SPH-rule to the viscosity term also yields
to asymmetric forces because the velocity field varies. The idea of symmetrizing the
expression is using velocity differences:

f viscosity
i = µ ∑

j
m j

~v j−~vi

ρ j
∇2W (~ri−~r j,h).

2.5 External Forces
Additional forces can be applied to the particles without using the SPH-method. Grav-
ity or other external forces change the acceleration component of the particles. Particle-
object collisions are solved by reflecting the velocity component that is perpendicular
to the surface.

2.6 Smoothing Kernels
The accuracy of the algorithm highly depends on the smoothing kernels. For our im-
plementation we used the following kernel:

8 CHAPTER 2. ALGORITHMIC BACKGROUND

Wpoly6(r,h) =
{ 315

64πh9 (h2− r2)3 0≤ r ≤ h
0 otherwise

The advantage of this kernel is that r only appears squared which means that it can
be evaluated without computing square roots in distance calculations. Debrun’s spiky
kernel solves the problem of our basic kernel, clustering under high pressure. For the
pressure computing we use the following expression:

Wspiky(r,h) =
{ 15

πh6 (h− r)3 0≤ r ≤ h
0 otherwise

Viscosity is a phenomenon that is caused by friction decreasing the fluid’s kinetic
energy by converting it into heat. For two particles that are close to each other, the
Laplacian of the smoothed velocity field can cause negative result in forces that increase
their relative velocity. For the computation of viscosity forces a third kernel was used
because of stability problems:

Wviscosity(r,h) =

{
15

2πh3 (−r3

2h3 + r2

h2 + h
2r −1) 0≤ r ≤ h

0 otherwise

whose Laplacian is positive everywhere with the following properties:

∇W (r,h) =
45

πh6 (h− r)

W (|r|= h,h) = 0

∇W (|r|= h,h) = 0

2.7 Single-Node Implementation
The main steps of a hardware accelerated SPH-based fluid simulation algorithm can be
summarized as follows.

1. CPU generates a neighbour texture map for the GPU. The neighbour map’s ith
row contains the IDs of the neighbouring particles of particle ith. Particle at-
tributes are stored in attribute texture maps (position and velocity maps).

2. A distance cache texture is calculated for later algorithm steps. The ith row of
the texture contains the distance values between the particle and its neighbours.

3. A density texture map is used for particle density computation where the pixels
contain per particle density and pressure data. The density values are inherited
from a sum of the cache texture rows.

4. Per particle force data is cached in the force texture map which reads the density,
distance, position, and velocity attributes from the above textures.

5. The final GPU step is the acceleration, velocity and position computation using
Newton’s laws implemented by pixel shaders.

6. Particle positions are read back to the CPU for refreshing the neighbour map

The physics engine was implemented for GPU using pixel shaders. Our solution is
based on Amada’s GPU-based fluid [1] research.

9 CHAPTER 2. ALGORITHMIC BACKGROUND

Figure 2.2: Steps of our GPU-accelerated fluid simulator

2.7.1 GPU Implementation
Shaders were developed to speed up physics calculation on the graphics hardware. Dis-
tances between particles, particle attributes like density, pressure, force, acceleration,
velocity and position are computed by pixel shaders.

void main(float2 coord : TEXCOORD0,
uniform samplerRECT attr rect : TEXUNIT0,
uniform samplerRECT neighbour rect : TEXUNIT1,
uniform float attrlen ,
out float4 result : COLOR

)
{

float3 texel = f3texRECT(neighbour rect, coord) ;

float index = texel .x; // index of particle
float nindex = texel .y; // neighbor index

float2 index2 = convertInd (index , attrlen) ;
float2 nindex2 = convertInd (nindex, attrlen) ;

// valid indices
if (nindex!=−1 && index!=−1) {

// search in attribMap
float3 pos i = f3texRECT(attr rect , index2) ;
float3 pos j = f3texRECT(attr rect , nindex2) ;

float3 distance vec = pos i − pos j ;

// return distance vector and the vector length
result = float4 (distance vec , length (distance vec)) ;

} else result = float4 (0,0,0,0) ;
}

10 CHAPTER 2. ALGORITHMIC BACKGROUND

Listing 2.1: Pixel shader for distance computation between particles

Listing 2.1 shows the distance calculation function implemented in the fragment
shader that returns the distance vector and the vector length as RGBA float values.
The particle index and the neighbor index are read from the CPU generated neighbor
texture map.

void main(float2 coord : TEXCOORD0,
uniform samplerRECT dist rect : TEXUNIT0,
uniform samplerRECT dens rect : TEXUNIT1,
uniform float len ,
uniform float attrlen ,
uniform float itNum,
uniform float h,
uniform float mass,
uniform float gas const ,
uniform float maindens,
uniform float poly6 coef ,
out float3 result : COLOR)

{
float density = 0;
float pressure = 0;

float index = convertInd2 (coord, attrlen) ;
index = index − (itNum∗4096);

// iterate over neighbours
for (float i = 0.5; i < len+0.5; i=i+1) {

float r = texRECT(dist rect , float2 (i , index)) .w;
if (r) {

float h2 r2 = h∗h − r∗r ;

if (h2 r2>0)
density += h2 r2 ∗ h2 r2 ∗ h2 r2 ;

}
}
// calculate final density
density ∗= poly6 coef ∗ mass;

// calculate pressure
pressure = gas const∗(density − maindens);

// R = density , G = pressure , B = 0
result = float3 (density , pressure , 0) ;

}

Listing 2.2: Pixel shader for density and pressure computation

Listing 2.2 shows the density and pressure calculation function implemented in the
fragment shader. The shader iterates over the neighbours of the actual particle and

11 CHAPTER 2. ALGORITHMIC BACKGROUND

calculates the density and pressure values returned as float values in red and green
channels.

void main(float coord : TEXCOORD0,
uniform samplerRECT neighbour rect: TEXUNIT0,
uniform samplerRECT dist rect : TEXUNIT1,
uniform samplerRECT dens rect : TEXUNIT2,
uniform samplerRECT vel rect : TEXUNIT3,
uniform float mass rec ,
uniform float h,
uniform float grad spiky coef ,
uniform float v lap visc coef ,
uniform float len ,
uniform float attrlen ,
uniform float itNum,
out float4 result : COLOR
)

{
// particle attributes
float3 force = float3 (0,0,0) ;
float3 acc = float3 (0,0,0) ;
float3 texel ;
float h r ;

// compute force
for (float i =0.5; i < len+0.5; i=i+1) {

texel = f3texRECT(neighbour rect, float2 (i ,coord)) ;

float index = texel .x;
float nindex = texel .y;

float2 index2 = convertInd (index , attrlen) .xy;
float2 nindex2 = convertInd (nindex, attrlen) .xy;

if (index!=−1 && nindex!=−1) {

float3 distvec = texRECT(dist rect , float2 (i ,coord)) .xyz;
float r = texRECT(dist rect , float2 (i ,coord)) .w;
float3 element dist vec = −distvec / r ;

float density = f3texRECT(dens rect, index2) .x;
float ndensity = f3texRECT(dens rect, nindex2) .x;
float pressure = f3texRECT(dens rect, index2) .y;
float npressure = f3texRECT(dens rect, nindex2) .y;

float3 vel = f3texRECT(vel rect , index2) ;
float3 nvel = f3texRECT(vel rect , nindex2) ;

h r = h−r;

force += distvec ∗(pressure +npressure)∗h r∗h r∗grad spiky coef∗−0.5∗10;
force += (nvel−vel)∗(h r∗ v lap visc coef) ;
force /= (density +ndensity)∗200;

// acceleration
acc+= force ∗ mass rec;

}
}

12 CHAPTER 2. ALGORITHMIC BACKGROUND

// external force − gravity
acc += float3 (0,−9.81,0) ;

// collision calculation
acc += collForce () ;

// return acceleration
result = float4 (acc ,0) ;

}
}

Listing 2.3: Pixel shader for force computation

Listing 2.3 shows force and acceleration calculation function implemented in the
fragment shader. The shader iterates over the neighbours of the actual particle, gets
the distance values from the distance texture map and particle and particle neighbour
density and pressure scalar values from density texture map. Acceleration computation
is based on the sum of inside fluid force, external forces (like gravity) and collision
force. Result vector is returned as RGB float color.

From acceleration texture velocity and position maps are generated using simple
fragment programs.

Chapter 3

Distributed SPH Simulation

Previous distributed implementations usually use simplified 2D simulation for learning
and testing purposes and CPU-based algorithms [15].

We show a scalable distributed SPH approach which has been implemented for the
HP SVA architecture.

3.1 Parallelization Background
Computer graphics and simulation is one of the most resource demanding side of the
information technology. Working with detailed geometry elements and heavy algo-
rithms to imitate the real world need extra capacity and time. Our main goal is to
utilize the advantages of distributed systems.

Before implementing a distributed solver the main question we want to answer was
how and when we can get better performance with distributed simulation than using
only a single computer. The success depends on two factors:

1. how and which parts of a simulation step can we distribute?

2. how much data do we need to transfer among the nodes within a frame?

In our simulation in the first step we divide the scene (where particles can move
within) among the nodes. Each node or client is responsible for the particles in its
calculation area. A client needs more data to calculate the actual acceleration of a
particle, a client should also get the neighbors in the core. The inner area of the node
is not overlapping but the edges of the neighbors belong to other clients.

3.2 Client Areas
Figure 3.2 shows a client area in 2D. We have named the significant units with own
created names. There are three main areas and two zones on the map. The most
important is the calculation area. This place contains those particles whose attributes
are calculated by the client. The particles in the outgoing zone are in the calculation
area but they are neighbors of an other node’s own particles, so they are required to one
(or more) other node(s). The incoming zone holds those particles which are in another
node’s calculation are, but are needed for this client to the edge calculations. These
zones evolve the inner and outer areas.

13

14 CHAPTER 3. DISTRIBUTED SPH SIMULATION

Figure 3.1: Distributed fluid volume using 4 nodes

Figure 3.2: Logical space partition of a client node

3.3 Data Transfer
The outgoing zone of a client is the incoming zone of other clients and the incoming
zone belongs to those clients in the outgoing zone. Particles in this volume must be
transferred through the network. We get the best performance if the width of these

15 CHAPTER 3. DISTRIBUTED SPH SIMULATION

Figure 3.3: Server — client and client — client communication models

zones are the core value.
For accurate particle attribute values two communication steps are needed. At the

beginning of the frame each client sends the location of the particles in their outgoing
zone. Each client can set the neighbors and can start to calculate the local subvolume
but local density and pressure values need global attributes from the neighboring node.
We can see that the density and pressure values of the neighbors must be known to
determine the inner forces. With a second data transfer these missing attributes will be
sent and only these numbers should be transferred among nodes.

3.3.1 Peer-to-Peer Approach
Our peer-to-peer solution works without a head node that would store all the particles.
At the initialization step each node generates its own particles in a specific volume
and simulates the local particles on the GPU. Particles that should flow in or out of
the volume are sent in Message Parsing Interface (MPI) [6] packets to the destination
node.

1. Before data communication each client is initialized with the assigned scene
slice. Subvolume calculation is based on MPI node identifier called MPI rank.

2. After the first data transfer neighbor particle density and pressure values are
calculated.

3. The second communication step does not need synchronization because clients
store the number of data they are waiting for. If the communication is completed,
nodes can calculate per particle forces, acceleration values, and the next position
of each particle.

4. The result is displayed without communication, each node draws its own parti-
cles and a parallel compositing API merges result images from the nodes.

16 CHAPTER 3. DISTRIBUTED SPH SIMULATION

3.4 HP Parallel Compositing Library
The HP Parallel Compositing Library (ParaComp) is a sort-last parallel composit-
ing API suitable for hybrid object-space screen-space decomposition. The API was
originally developed by Computational Engineering International (CEI) to make its
products run efficiently in a distributed environments. The latest version is based on
the abstract Parallel Image Compositing API (PICA) designed by Lawrence Livermore
National Lab, HP, and Chromium team.

ParaComp is a message passing library for graphics clusters enabling users to take
advantage of the performance scalability of clusters with network-based pixel com-
positing without understanding its inner structure and operation. The library makes it
possible for multiple graphics nodes in a cluster to collectively produce images, thus
significantly larger data sets can be processed and larger images can be created than on
any individual graphics hardware by distributing the load over multiple nodes.

However, there is no explicit data distribution so no load balancing is done by the
API. The philosophy of the designers is keeping the API as thin as possible. Therefore,
only a global frame is defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset of the frame. ParaComp
controls the operation of the nodes based on their request; it takes the results of their
renderings and generates the needed composited images (see Figure 3.4). According
to the nomenclature of the API a sub-image contribution is called framelet and the
received image area is called the output. These framelets and the outputs can overlap
each other without any restriction to their origin or destination nodes. The attributes of
a framelet are the following:

• horizontal and vertical position in the global frame;

• width and height of the framelet in pixels;

• the data source which can be both the system memory and the frame buffer; and

• the depth order of the framelets which is needed by non-commutative composit-
ing operators like alpha blending.

The size of the output does not necessarily equal the size of the global frame. For
example, each tile can be connected to a separate node in a multi-tile display. The
attributes of an output are:

• horizontal and vertical position in the global frame;

Renderer1

Renderer2

CompositorA CompositorB CompositorC

G

R

G

R

Redistribute
pixels

D D D

Geometry
processing

Rasterization

Compositing

Display

Figure 3.4: The operation of the HP Parallel Compositing Library

17 CHAPTER 3. DISTRIBUTED SPH SIMULATION

• width and height of the output in pixels; and

• the pixel data to be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP Parallel Compositing Library [5].

Chapter 4

Installation and Usage of the
Distributed SPH Fluid
Simulator

The SPH fluid simulation application was implemented based on a very thin graphics
library called Minimalist OpenGL Environment. This library was designed to handle
the common issues of the development of a visualization application with the possibly
maximal code reusability. This library has a parallel extension that eases the imple-
mentation of a parallel visualization application.

4.1 Installation
Both source and prebuilt versions of the application and the library can be found on the
web site of the project1.

4.1.1 Library Dependencies
The following libraries are required by the volume rendering application:

• mingle: Minimalist OpenGL Environment library (version 0.11)

• mingle-parallel: the Parallel Rendering extension of MinGLE (version 0.11)

• paracomp: Hewlett Packard implementation of the Parallel Compositing API
(version 1.0-beta1 or later)

• devil: Developer’s Image Library (version 1.6.7)

• glew: OpenGL Extension Wrangler library (version 1.3.4 or later)

• Cg and CgGL : NVIDIA Cg library

• gl: library implementing OpenGL API

• glu: OpenGL Utility Library
1http://amon.ik.bme.hu/sphfluid/

18

19 CHAPTER 4. INSTALLATION AND USAGE

• glut: OpenGL Utility Toolkit

There are prebuilt packages for HP XC V3.2 RC1 platform for AMD64 architec-
ture on the web site of the project for Developer’s Image Library, OpenGL Extension
Wrangler, Cg, CgGL, MinGLE, and MinGLE-parallel libraries. If one of them is miss-
ing from the target system, it can be installed in the usual way using the rpm package
manager program:

rpm -i devil-1.6.7-1.x86_64.rpm

rpm -i devil-devel-1.6.7-1.x86_64.rpm

rpm -i glew-1.3.4-1.x86_64.rpm

rpm -i glew-devel-1.3.4-1.x86_64.rpm

rpm -i Cg-1.5.x86_64.rpm

rpm -i mingle-0.11-1.x86_64.rpm

rpm -i mingle-devel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-devel-0.11-1.x86_64.rpm

The XXX-devel-YYY.rpm packages are only needed when the SPH fluid simula-
tion application is built from sources. Otherwise, only the shared libraries are to be
installed.

The other libraries like the Parallel Compositing library, the standard C/C++ li-
braries, and the OpenGL libraries are platform specific and have to be installed based
on the actual software stack.

4.1.2 RPM Package
The SPH fluid simulation (sphfluid) can be also installed from a prebuilt RPM2 pack-
age in the same way:

rpm -i sphfluid-0.1-1.x86_64.rpm

4.1.3 Building from Sources
The build system of the SPH fluid simulation application is based on GNU Autotools.
So, it can be built with the usual procedure:

$./configure --with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

Since the only implemented parallel rendering support is the HP Parallel Composit-
ing Library, it must be enabled. On a 64-bit HP XC platform the additional path values
are the following:

• <additional include directory> = /opt/paracomp/include

• <additional library directory> = /opt/paracomp/lib64

2Red Hat Package Manager

20 CHAPTER 4. INSTALLATION AND USAGE

MinGLE and MinGLE-parallel libraries can be also built from sources as follows.

Building MinGLE from Sources

The build system of Minimalist OpenGL Environment library is also based on GNU
Autotools:

$./configure

$ make

$ sudo make install

Currently MinGLE supports only the GLUT windowing system. Hence, OpenGL
headers and GLUT headers are needed. MinGLE is customizable, each feature can be
disabled in the following way in the configuration step:

$./configure --disable-glew \

--disable-devil \

--disable-freetype

However, please note that the SPH fluid simulation application uses OpenGL exten-
sions, therefore OpenGL Extension Wrangler support should not be disabled. Please
also note that the application has a graphical user interface that requires font rendering,
so Developer’s Image Library is also needed. Nevertheless, FreeType support can be
disabled if necessary, since the fonts are read from precalculated image files.

Building MinGLE-parallel from Sources

The parallel extension can be built and installed with the following configuration op-
tions:

$./configure \

--with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

The meaning of the path options is the same as the volume rendering application.

4.2 Usage
The SPH fluid simulator can be executed in parallel mode using the SVA subsystem of
the visualization XC clusters. The user interface of the program is simple; the naviga-
tion can be performed and force direction can be changed using the gui slider.

21 CHAPTER 4. INSTALLATION AND USAGE

Figure 4.1: User interface of SPH fluid simulation application

4.2.1 SVA Startup Script
A SLURM3 startup script is provided to use sphfluid for parallel rendering. It can be
invoked with the following command:

$ sphfluid-hpxc.sh -r|--render <renderers>

The startup script has a parameter that should be set. The (--render) tells SLURM
the number of additional render nodes to be allocated.

4.2.2 User Interface
The user interface of the SPH fluid simulator is rather simple (see Figure 4.1). There is
a frame and frame rate indicator (a) on the right side which displays the current frame
and the frame rate based on the last simulation steps. On the left side the number of
nodes and the physical parameters of fluid volume like density, viscosity are displayed.

The navigation can be performed using the mouse in the following way:

• the left button can be used for rotating the scene,

• the right button is for zooming, and

• the middle button can be used for translating the scene.

The following hotkeys are defined:
3SLURM is an abbreviation for Simple Linux Utility for Resource Management. It is an open-source

resource manager designed for Linux clusters of all sizes. This software solution is used for HP-XC clusters.

22 CHAPTER 4. INSTALLATION AND USAGE

•
¤
£

¡
¢Esc quits from the program,

•
¤
£

¡
¢Tab toggles the user interface,

•
¤
£

¡
¢C selects next camera,

•
¤
£

¡
¢R resets camera,

•
¤
£

¡
¢G toggles viewport grid

Chapter 5

Program Structure

The main parts of the distributed SPH application are the following:

• there is a specific scene renderer like presented in Listing A.1 (see Appendix A)
in order to fit to the MinGLE system,

• there are specific classes responsible for particle volume handling,

• neighbor calculation is accelerated using a uniform grid structure,

• the shader handling is performed in designated classes,

• the Cg shader sources are in text files, and finally,

• a GUI sheet is responsible for tuning the shader parameters.

5.1 Container Object
Container object is a class referencing the fluid volume. A container initializes its con-
tents, creates the uniform grid structure, sets cell sizes, simulates and moves particles
and draws the fluid.

Files: container.[h|cpp]

5.2 FluidSim Application
fluidsim is the application class. The object initializes OpenGL including lights,
cameras. It displays simulation results, screen texts, and FPS data.

Files: fluidsim.[h|cpp]

5.3 gpuSPH
This class is responsible for simulating particles with the SPH method. gpuSPH is the
GPU-based fluid solver. The class initializes the CG context, generates textures from
the particle data. The solver computes

• the distance between particles,

23

24 CHAPTER 5. PROGRAM STRUCTURE

• density and pressure attributes for the particle points,

• forces, acceleration and collision,

• velocity values,

• position values.

The object can read back particles to the CPU for network communication.
Files: gpuSPH.[h|cpp]

5.4 Grid Cells
Grid cells are the basic components of the uniform grid computed on the CPU. Particles
can be added or removed using grid cell objects.

Files: gridcell.[h|cpp]

5.5 Particle
SPH approach describes the fluid as a particle system. A particle with quantities rep-
resents the local fluid properties. A particle has mass, position, velocity, acceleration,
density, pressure. For administration purposes particles have ids, neighbour number
parameters.

Files: particle.[h|cpp]

5.5.1 Particle System
Particle System represents the fluid volume. It creates particles inside the specified
container volume, adds particles to cells, sets particle neighbors, supervises the com-
munication process among particle system parts on separate nodes, and draws the par-
ticles.

Files: particlesystem.[h|cpp]

5.5.2 Scene
The Scene contains containers of particle systems. The scene is loaded from a de-
scription file and built during application initialization. The object is responsible for
handling multiple cameras, and switches among them.

Files: particlesystem.[h|cpp]

5.5.3 GPU Shaders
GPU Shaders are implemented using Nvidia’s CG language. Pixel shaders compute
physical quantities like distance, density, pressure, force, acceleration, velocity, and
position.

Shaders are listed in 2.7.1
Files: compute density.cg, compute distance.cg, compute force.cg,
compute position.cg, compute velocity.cg, sph.cg

Chapter 6

Results

In this section execution results are presented for a five-node HP SVA cluster. Each
node had a dual-core AMD Opteron 246 processor and NVIDIA Quadro FX3450
graphics cards. The software environment was HP XC V3.2 RC1.

Table 6.1 shows an exact view of the distributed working. Based on the compu-
tation time in Table 6.1 the distributed implementation seems to be useful for scenes
containing large number of particles. The bottleneck of the parallel implementation is
limited GPU memory on a single node and the network traffic.

particles 1 node 2 nodes 3 nodes 4 nodes
3000 8 fps 7 fps 12.6 fps 12.8 fps
10000 3 fps 2.2 fps 3.0 fps 4.2 fps
20000 2 fps 1 fps 1.4 fps 2.6 fps
30000 1.6 fps 0.5 fps 1 fps 2.3 fps
80000 - - 0.3 fps 0.4 fps

Table 6.1: Results of the distributed GPU-accelerated GRID-based application. Value
”-” means that result is not interactive or GPU is out of memory

25

26 CHAPTER 6. RESULTS

Figure 6.1: Fluid simulation results computed by our distributed GPU-accelerated ap-
plication. Subvolumes are rendered on 4 nodes running at 0.4 fps. Result is composited
interactively using HP ParaComp Library

Appendix A

MinGLE: Minimalist OpenGL
Environment

The aim of this library is twofold. First, it forms a thin object-oriented window
and event handling wrapper layer for GLUT, GLX, SDL and Windows systems. On
the other hand, it contains basic helpers for some general common tasks involved in
OpenGL based graphics applications, like camera handling and navigation, basic ma-
trix operations, initializing OpenGL extensions, image handling, font rendering and
simple user interface support, etc. Some of these features are implemented in-place
and some of them use existing libraries. The overall goal is to provide platform inde-
pendent aid for the very common tasks. A general API is defined, but at the moment
only the GLUT platform is supported.

To get an impression of this library see the source code of a simple “Hello World!”
application that renders a classic teapot object presented in Listing A.1. First, the
singleton System object should be initialized. Next, a window is created to which
several window listeners are added:

• our listener that overrides the onRender() method to render the teapot,

• a simple navigator that rotates, scales, and translates the scene based on the
mouse interaction, and

• an application key handler that handles common keys for quitting, creating screen
shots, and recording a frame sequence.

#include <mingle.h>
using namespace MinGLE;

#include <GL/glut.h>
#include <iostream>

// Custom window listener that does the rendering
class SceneRenderer : public WindowListener {

protected :
// This method is called when to render
virtual bool onRender() {

// Render a teapot using GLUT
glutSolidTeapot (0.5) ;

27

28 APPENDIX A. MINGLE: MINIMALIST OPENGL ENVIRONMENT

return true ;
}

};

int main(int argc , char ∗∗argv) {
// Initializing the rendering system
System:: initialize (&argc, argv) ;

// Creating a window
Window ∗win = System::createWindow();

// Registering the window listener
win−>registerWindowListener(new SceneRenderer());

// Adding a navigator
ExaminerNavigator ∗navigator = new ExaminerNavigator();
win−>registerWindowListener(navigator);

// Adding key handler
ApplicationKeyHandler ∗keyHandler = new ApplicationKeyHandler();
win−>registerWindowListener(keyHandler);

// Setting up OpenGL
glEnable(GL DEPTH TEST);
glShadeModel(GL SMOOTH);
glHint (GL PERSPECTIVE CORRECTION HINT, GL NICEST);

GLfloat position [] = { 3.0f , 3.0f , 3.0f , 1.0f };
GLfloat diffuse [] = { 0.8f , 0.8f , 0.8f , 1.0f };
GLfloat specular [] = {1.0f , 1.0f , 1.0f , 1.0f};
glEnable(GL LIGHTING);
glEnable(GL LIGHT0);
glLightfv (GL LIGHT0, GL POSITION, position);
glLightfv (GL LIGHT0, GL DIFFUSE, diffuse);
glLightfv (GL LIGHT0, GL SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return 0;
}

Listing A.1: Hello World! application using MinGLE

A.1 MinGLE Parallel: Parallel Extension for MinGLE
The parallel extension of MinGLE provides general support for sort-last parallel ren-
dering in applications based on MinGLE. It sets up compositing contexts, adds framelets,
receives outputs, and transmits window events to each application instance running in
parallel.

The parallelized version of the previous program is presented in Listing A.2. For
simplicity neither the teapot nor the screen is divided, but when more rendering nodes
are added the programs renders more colored teapots appear along a circle line. All
generated mouse and keyboard events are automatically transferred to the slave nodes
that receive these events as if they would have been generated by real user interaction.
The overall feeling of the user is that one application is running that renders several
teapots.

29 APPENDIX A. MINGLE: MINIMALIST OPENGL ENVIRONMENT

#include <mingle.h>
#include <mingle−parallel.h>
using namespace MinGLE;

#include <GL/glut.h>
#include <iostream>

#include <math.h>

class SceneRenderer : public WindowListener {
protected :

int mThisRenderer, mRendererCount;
double mPosition [3];

public :
SceneRenderer(int thisRenderer , int rendererCount) :

mThisRenderer(thisRenderer) , mRendererCount(rendererCount) {
// Setting up position of the object
mPosition[0] = 0.5 ∗ :: cos(2.0∗M PI/mRendererCount∗mThisRenderer);
mPosition[1] = 0.0;
mPosition[2] = 0.5 ∗ :: sin (2.0∗M PI/mRendererCount∗mThisRenderer);

}

virtual bool onRender() {
glMatrixMode(GL MODELVIEW MATRIX);
glPushMatrix() ;
glTranslatef (mPosition [0], mPosition [1], mPosition [2]) ;

// Drawing teapot with unique color
int i = mThisRenderer+1;
glColor4f ((i&1) ? 1.0 : 0.0,

(i&2) ? 1.0 : 0.0,
(i&4) ? 1.0 : 0.0,
1.0/ mRendererCount ∗ i) ;

glutSolidTeapot (0.1) ;
glPopMatrix() ;

return true ;
}

};

int main(int argc , char ∗∗argv) {
// Initializing the rendering system with parallel support
System:: initialize (&argc, argv) ;
ParallelRenderingSupport :: initialize (&argc, argv) ;

// Creating a window
Window ∗win = System::createWindow();
win−>setRenderMode(Window::RENDER WHEN IDLE);

// Adding parallel rendering support to the window
// Master/ slave mode is auto−detected using the command line arguments
ParallelRenderingSupport :: addParallelSupport (win);

// Adding key handler
win−>registerWindowListener(new ApplicationKeyHandler());

// Registering scene renderer
SceneRenderer ∗sceneRenderer = new SceneRenderer(

ParallelRenderingSupport :: getThisRenderer(win),
ParallelRenderingSupport :: getRendererCount(win)

30 APPENDIX A. MINGLE: MINIMALIST OPENGL ENVIRONMENT

) ;
win−>registerWindowListener(sceneRenderer);

// Add navigator
win−>registerWindowListener(new ExaminerNavigator());

// Setting up OpenGL
glEnable(GL DEPTH TEST);
glShadeModel(GL SMOOTH);
glHint (GL PERSPECTIVE CORRECTION HINT, GL NICEST);

GLfloat lightPosition [] = { 3.0f , 3.0f , 3.0f , 1.0f };
GLfloat diffuse [] = { 0.8f , 0.8f , 0.8f , 1.0f };
GLfloat specular [] = {1.0f , 1.0f , 1.0f , 1.0f};
glEnable(GL LIGHTING);
glEnable(GL LIGHT0);
glEnable(GL COLOR MATERIAL);
glLightfv (GL LIGHT0, GL POSITION, lightPosition);
glLightfv (GL LIGHT0, GL DIFFUSE, diffuse);
glLightfv (GL LIGHT0, GL SPECULAR, specular);

// Entering the event handing loop
System::enterMainLoop();

return 0;
}

Listing A.2: Hello World! application using MinGLE-parallel

For implementing distributed applications a general API is defined, but at currently
only the ParaComp library is supported. The applications based on the parallel exten-
sion library contains both the master and the slave parts of the visualization program.
When writing the code this master-slave differentiation is hidden by the underneath
MinGLE-parallel library. However, the application has to be executed in two different
modes in order to exploit the benefits of parallel rendering power:

application <sessionid> <master> <slave1> <slave2> ... <slaveN>

for master mode, and

application <sessionid> <slave_i>

for slave mode. Note that using an application startup script the overall distributed
startup can be done in one step, too. See Section 4.2.1 for the startup script of Tex-
tureVR designed for SVA and ParaComp.

Bibliography

[1] Y. Yoshihiro M. Yoshitsugu A. Takashi, I. Masataka and C. Kunihiro. Particle-Based Fluid Simulation
on GPU. Research Paper, 2003.

[2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

[3] Tom Duff. Compositing 3-D rendered images. In SIGGRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 41–44, New York, NY, USA, 1985.
ACM Press.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics, Principle and Practice. Addison-
Weseley, 1993.

[5] Hewlett Packard. HP Scalable Visualization Array Parallel Compositing Library Reference Guide,
2007.

[6] http://www-unix.mcs.anl.gov/mpi/. The Message Passing Interface (MPI) standard.

[7] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew Everett, and Pat Hanrahan.
WireGL: a scalable graphics system for clusters. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 129–140, New York, NY, USA,
2001. ACM Press.

[8] Williams J. L. and Hiromoto R. E. A proposal for a sort-middle cluster rendering system. In Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications, 2003. Proceedings
of the Second IEEE International Workshop, pages 36– 38, 2003.

[9] Tong-Yee Lee, C. S. Raghavendra, and John B. Nicholas. Image Composition Schemes for Sort-Last
Polygon Rendering on 2D Mesh Multicomputers. IEEE Transactions on Visualization and Computer
Graphics, 2(3):202–217, 1996.

[10] M. Gross. M. Mller, D. Charypar. Particle-Bsed Fluid Simulation for Interactive Applications. Euro-
graphics/SIGGRAPH Symposium on Computer Animation, 2003.

[11] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A Sorting Classification of Parallel
Rendering. IEEE Comput. Graph. Appl., 14(4):23–32, 1994.

[12] Carl Mueller. The sort-first rendering architecture for high-performance graphics. In Symposium on
Interactive 3D Graphics: Proceedings of the 1995 symposium on Interactive 3D graphics, pages 75 –
ff, New York, NY, USA, 1995. ACM Press.

[13] D. Pnueli and C. Gutfinger. Fluid Mechanics. Cambridge University Press, 1992.

[14] Thomas Porter and Tom Duff. Compositing digital images. In SIGGRAPH ’84: Proceedings of the
11th annual conference on Computer graphics and interactive techniques, pages 253–259, New York,
NY, USA, 1984. ACM Press.

[15] K. D. Vertanen. A Parallel Implementation of a Fluid Flow Simulation using Smoothed Particle Hy-
drodynamics. Research Paper, 1999.

31

