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Chapter 1

Introduction

This document gives an overview of the parallel isosurface ray-casting applica-
tion called RTPara developed by BME IT2 1. The application allows the visual-
ization of volume datasets in a distributed environment by rendering isosurfaces
using screen space or object space decomposition approaches. Rendering param-
eters like the viewing direction, isosurface threshold, etc. can be interactively
modified, the program provides an immediate visual feedback.

In the second chapter of this document the implemented isosurface ray-
casting algorithm is presented in detail. The third chapter discusses the paral-
lelization approaches (screen space and object space) and presents their realiza-
tion using the ParaComp library [2]. The fourth chapter provides an overview
of the installation and usage of the application. The fifth chapter describes the
structure of the program and details the relevant implementation aspects. The
sixth chapter contains numerical results using various datasets and scenarios.

1http://www.it2.bme.hu
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Chapter 2

Algorithmic Background

Volume rendering is a technique used to display a 2D projection of a 3D dis-
cretely sampled data set (sampled representation of a 3D continuous signal). A
typical 3D data set is a group of 2D slice images acquired by a CT (Computed
Tomography) or MRI (Magnetic Resonance Imaging) scanner. Usually these
are acquired in a regular pattern (e.g. one slice in every millimeter) and usually
have a regular number of image pixels in a regular pattern. This is an example
of a regular volumetric grid, with each volume element or voxel represented by
a single value.

To render a 2D projection of the 3D data set, we need to assign an opacity
value and a color value to every voxel. These are usually defined using a function
that determines the RGBA (red, green, blue, alpha) values for every possible
voxel value (transfer function).

A volume may be rendered by displaying surfaces of equal values (isosurface).
Isosurfaces can be extracted in two fundamentally different ways, which are rep-
resented by direct and indirect methods. Indirect volume-rendering methods
create an intermediate geometrical representation of an isosurface from the vol-
umetric data, which can be rendered by using the traditional surface-rendering
techniques. Apart from the rough approximation, the most important drawback
of such an indirect method is that the computationally expensive preprocessing
has to be repeated whenever the user modifies the isosurface threshold.

In contrast, using direct volume rendering, an isosurface can be implicitly ex-
tracted by resampling the volume data along the viewing rays at evenly located
sample points. Rays are cast from the view point through the center of each
pixel and the first point where the ray intersects the isosurface is determined.

While volume data is a sampled representation of a continuous signal, the
evaluation of a density sample at an arbitrary sample position needs the recovery
of this continuous signal from its samples (reconstruction). The Whittaker-
Shannon interpolation formula states that under certain limiting conditions the
continuous signal can be recovered exactly from its samples by an ideal low-pass
filter. An ideal low pass filter can be realized mathematically (theoretically) by
multiplying the signal of samples by the rectangular function in the frequency
domain or, equivalently, by the convolution with a sinc function (see Figure 2.1)
in the time domain.

The sinc function is not practical since it has infinite support, has negative
values, and may result in ringing. Thus for practical cases approximations of

4



5 CHAPTER 2. ALGORITHMIC BACKGROUND

Figure 2.1: The normalized sinc function ( sin(πx)
πx )

the ideal low-pass filter are used, which are not negative and have finite support.
The graphics hardware directly supports piece-wise constant (box filter) and tri-
linear filtering. These correspond to zero-order and first-order filter schemes.
However, these filters are very far from the ideal reconstruction filter, thus their
application results in sampling artifacts. For more accurate reconstruction,
higher order polynomial filters are needed.

In addition to the determination of the visible point of the isosurface, the
point has to be shaded, therefore a local surface characteristics are calculated
for each intersection point. These characteristics include the surface normal,
that is the derivative of the data, and might include curvatures associated with
the second derivatives. While the reconstruction can be expressed as a convo-
lution, from the properties of convolution comes that the reconstruction of the
derivative by a given filter can be replaced by the reconstruction of the origi-
nal data with the derivative of the filter. Note that this also means that the
appropriate order derivatives of the filter are needed so the box filter cannot
be applied when derivatives are reconstructed, and the tri-linear filtering is also
bad if second order derivatives (i.e. curvatures) need to be obtained. Consider-
ing the restrictions mentioned above and for the sake of efficiency, we use the
partial derivatives of a third-degree, i.e. cubic reconstruction filter, which is
applied for density reconstruction and during its implementation the bi-linear
filtering units of graphics hardware can be exploited (see Section 2.1.4).

In this document we present the implementation of a direct volume rendering
algorithm. The flow of the algorithm is:

• compute the intersection points of the rays with the implicit isosurface
using ray-casting,

• compute first and second order derivatives for the found intersection points,

• generate (sub)image applying the chosen shading model.

Since the pixel colors of the final image are computationally independent
of each other (intersection points, derivatives, etc. may be computed indepen-
dently) the computationally intensive parts can be implemented on the GPU
(Graphics Processing Unit) exploiting the performance and parallelism offered
by the modern, programmable GPUs. In general, when decomposing multipass
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Figure 2.2: Ray casting volume isosurfaces

algorithms for GPU implementation, partial results, precomputed data, etc.
are stored in textures and accessed by the corresponding vertex and fragment
programs of the subsequent phases. Various rendering and computation phases
employ different vertex and shader programs for accomplishing the necessary
computations. The following sections detail the main steps.

2.1 Ray Casting on a Single Node

The basic concept of GPU-based ray casting is to store the volume data in a
3D texture map and resample it along the rays in the fragment program [6] (see
Figure 2.2). Suppose that the texture is the sampled representation of a scalar
field f(x) that assigns a scalar density value to every 3D point x.

Isosurface rendering selects a surface from the scalar field, where the density
equals to a user specified threshold s. Thus the points x of the surface to be
rendered is given by equation

f(x) = s. (2.1)

If a virtual camera is place in the same space where the scalar field is defined,
the eye position and the pixels of camera window define rays. The ray of pixel
x, y is defined by the following parametric equation:

p(t, x, y) = c + d(x, y)t, (2.2)

where x and y are the screen-space coordinates of the given pixel, c is the center
of the camera, d(x, y) is the direction of the corresponding ray, and t is the ray
parameter.

The ray contains those points that are projected onto the respective pixel.
Since we are interested in visualizing the isosurface, the displayed point should
also be on the isosurface of equation 2.1. Substituting the ray equation into this
surface equation, we obtain:

f(p) = f(c + d(x, y)t) = s.

The objective of ray casting is to solve this equation for unknown point p and
non-negative ray parameter t. If there are more than one solutions, that is, the
ray intersects the isosurface more than once, we need the visible intersection
that has the minimal, non-negative ray parameter.
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Figure 2.3: Ray marching between the entry (GL GREATER) and (GL LESS)
exit points

2.1.1 Empty Space Skipping

Since the volume data fits into a cube, the sampling along a ray has to be done
between the points where the ray enters and exits this bounding cube. In order
to find the entry and exit points for the ray of each pixel of the final image, the
bounding cube is rendered in two separate passes and the entry an exit point
parameters are stored for the subsequent ray-casting phase in textures [1]. First,
the front faces of the cube are rasterized enabling depth test with GL LESS.
We assign volume-space coordinates as three color components to the bound-
ing boxes, therefore inside a scanline the color of each pixel represents entry
point pentry(x, y) of the corresponding ray into the cube (it is assumed that the
graphics hardware performs non-distorted perspectively correct color interpola-
tion, thus the vertex attributes are linearly interpolated in homogeneous space,
and a homogeneous division is executed for each pixel inside the scanline). Sim-
ilarly, exit points pexit(x, y) of the rays are determined by rendering the back
faces of the cube enabling the depth test with GL GREATER. The ray direc-
tion d(x, y) is calculated as the difference between the exit point pexit(x, y) and
entry point pentry(x, y) (see Figure 2.3).

2.1.2 Front-to-Back Evaluation

After having the entry and exit points of each ray, the rays are marched, i.e.
evaluated in front-to-back order at evenly located sample positions started from
point pentry(x, y). Therefore the ith sample position pi(x, y) along ray direction
d(x, y) is calculated as follows:

pi(x, y) = pentry(x, y)(pexit(x, y)− pentry(x, y))i/N, (2.3)

where N is the number of samples. Note that this approach evaluates the same
number of samples between the entry and exit points no matter how far they
are from each other. We can also normalize the ray direction to guarantee
that all rays are marched with the same increments, and use smaller number of
samples when the entry and exit points are close. The front-to-back evaluation is
implemented as a loop in the fragment shader, which is performed separately for
each pixel. This approach avoids multi-pass rendering for this phase, unlike the
classical texture-slicing, which uses alternating p-buffers and a separate pass
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for each resampling slice. The following simplified fragment shader program
illustrates the principle of the ray marching process for finding the intersection
points.

f loat4 i n t e r s e c t i o n (
in f loat2 un i t t c : TEXCOORD0, // shaded p i x e l in

// t ex ture coo rd ina t e s
uniform float i s ova lue , // i s o va l u e o f the

// su r f a c e to be
rendered

uniform sampler3D volume tex , // volume to be
// v i s u a l i z e d

uniform samplerRECT entry tex , // precomputed entry
// po in t s

uniform samplerRECT e x i t t e x // precomputed e x i t
// po in t s

) : COLOR0 // ray − i s o s u r f a c e
// i n t e r s e c t i o n

{
f loat4 ent rypo int = tex2D( ent ry tex , u n i t t c ) ;
f loat4 e x i t p o i n t = tex2D( e x i t t e x , u n i t t c ) ;
f loat4 r ayd i r = ex i t p o i n t − ent rypo int ;
f loat4 h i t ;
bool i n t e r s ec t i onFound = fa l se ;
// advance along the ray to f i nd the f i r s t ray−i s o s u r f a c e
// i n t e r s e c t i o n
for ( f loat t = 0 ; t <= 1.0 f ; t += dt ) {

f loat4 p = entrypo int + rayd i r ∗ t ;
f loat v = tex3D( volume tex , p) . r ;

// value above i s o va l u e : i n t e r s e c t i o n i s found
i f ( v > i s o v a l u e && ! in te r s ec t i onFound ) {

h i t = p ;
in te r s ec t i onFound = true ;

}
}
return h i t ;

}

Listing 2.1: Fragment shader for finding ray–isosurface intersections

2.1.3 Intersection Refinement

Suppose that ray marching detects an intersection point between sample po-
sitions pi(x, y) and pi+1(x, y). This is possible if the volume density is below
isovalues in the first point and above in the second, that is f(pi(x, y)) < s
and f(pi+1(x, y)) ≥ s, where f(p) denotes the density function at p and s is a
threshold defining the isosurface.

A refined intersection point can be calculated by using the following secant
root searching algorithm:

f loat3 i n t e r s e c t i onRe f i n ement (
f loat3 pNear ,
f loat3 pFar ,
f loat i s ova lue ,



9 CHAPTER 2. ALGORITHMIC BACKGROUND

uniform sampler3D volume tex //volume to
// be v i s u a l i z e d

)
{

f loat3 pNew ;
f loat fNear , fFar ;
int i ;
int i t e r a t i o n s = 10 ;
for ( int i = 0 ; i < i t e r a t i o n s ; i++)
{

fNear = tex3D( volume tex , pNear ) . r ;
fFar = tex3D( volume tex , pFar ) ;
pNew = ( pFar − pNear ) ∗ ( i s o va l u e − fNear ) /

( fFar − fNear ) + pNear ;
i f (tex3D( volume tex , pNew) < i s o v a l u e )

pNear = pNew ;
e l s e

pFar = pNew ;
}
return pNew ;

}

Listing 2.2: Intersection refinement

Function intersectionRefinement is called by arguments pNear = pi(x, y)
and pFar = pi+1(x, y).

2.1.4 Fast Third Order Filtering

Regarding the quality of isosurface rendering the applied resampling technique
is crucial. Generally the wider the support of the reconstruction filter, the bet-
ter its quality is. On the other hand, by increasing the support of the filter
kernel a convolution with it is getting more and more expensive computation-
ally. In practical volume-rendering applications the most popular filter is the
tri-linear filter, since it represents a reasonable trade-off between quality and
the rendering speed, and it is directly supported by the graphics hardware. The
most important drawback of tri-linear interpolation, however, is that it pro-
duces discontinuous derivatives. Alternatively, gradients can be calculated at
grid points using a more sophisticated estimation technique, and they can be
tri-linearly interpolated between the grid points. Nevertheless, this approach
drastically increases the storage requirements. Furthermore, some of the color
transfer functions and non-photorealistic volume-rendering techniques take also
second derivatives into account, which can hardly be estimated by a linear filter.
Therefore, to make our implementation generally usable with different render-
ing models, we apply a high-quality third-order filtering technique [5]. The
technique presented below is highly optimized for GPU implementation since it
minimizes the required texture memory fetches.

To discuss how the bi-linear filtering units can be exploited to minimize the
number of texture memory fetches when implementing a higher order filter, let
us consider the problem for a one-dimensional signal. We shall see that the
extensions to two-dimensional images and particularly for three-dimensional
volumes are straightforward.

The cubic reconstruction of a 1D signal can be formulated at an arbitrary
position x as a weighted sum of the signal values at the nearest four sample
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Figure 2.4: (a) Convolution of input samples fi with filter weights wi(x). First-
order (b) and second-order (c) derivatives of the cubic B-spline.

positions (see Figure 2.4/a):

f(x) ≈ f̃(x) = w0(x)fi−1 + w1(x)fi + w2(x)fi+1 + w3(x)fi+2, (2.4)

where i is the integer part of x and fi = f(i) are the samples of the original
signal. The filter weights wi(x) for a cubic B-spline are periodic in interval
x ∈ [0, 1], that is wi(x) = wi(α), where α = x− bxc is the fractional part of x.
The cubic B-spline filter kernel is defined as

w0(α) =
1
6
(−α3 + 3α2 − 3α + 1),

w1(α) =
1
6
(3α3 − 6α2 + 4),

w2(α) =
1
6
(−3α3 + 3α2 + 3α + 1),

w3(α) =
1
6
α3.

If we applied these weights naively, a 4× 4× 4 neighborhood of the sample
point should be fetched from the volume texture, which would be too slow. For-
tunately, we can take advantage of the linear interpolation unit of the texturing
hardware to decrease the number of necessary fetches.

The main idea is the following. If the texture memory is fetched between two
texel centers and bi-linear filtering is enabled, then we already get a weighted
average of multiple texels. Thus a single fetch gives the weighted sum of two
values for 1D textures, of four values of 2D textures, and of 8 values of 3D
textures.

Concerning the cubic B-spline filtering of 1D textures, it means that instead
of four texture memory fetches, the same result can be obtained with two fetches,
where one fetch is between i− 1 and i, and the other fetch is between i + 1 and
i + 2. Let us denote the difference of these locations and x by h0 and h1,
respectively. The first fetch returns

fx−h0(x) = fi−1(x− h0(x)) + fi(1− x + h0(x)).

The second fetch gives

fx+h1(x) = fi+1(2− x− h1(x)) + fi+2(x + h1(x)− 1).

Values fx−h0(x) and fx+h1(x) are weighted and added to compute the desired
filtered value f̃(x). Let us denote the not yet known weights by g0(x) and g1(x),
respectively. The weighted sum is then

w0(x)fi−1 + w1(x)fi + w2(x)fi+1 + w3(x)fi+2 = g0(x)fx−h0(x) + g1(x)fx+h1(x).
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Figure 2.5: To reconstruct a color texture of size N , we first perform a linear
transform of the reconstruction position x. This gives us the texture coordinates
for reading offsets hi(x) and weights wi(x) from a lookup texture. Second, two
linear texture fetches of the color texture are carried out at the offsets positions
x−h0 and x+h1. Finally, the output color is computed by a linear combination
of the fetched colors using weights gi(x) [1].

The fetch locations h0 and h1, as well as new weights g0 and g1 should be selected
to make the weighted sum equal to the desired filtered value f̃(x). Inspecting
the factors of fi−1, fi, fi+1, and fi+2 one by one, we get the following system
of equations for unknown locations and weights:

g0(x)(x− h0(x)) = w0(x),
g0(x)(1− x + h0(x)) = w1(x),
g1(x)(2− x− h1(x)) = w2(x),
g1(x)(x + h1(x)− 1) = w3(x).

Solving this equation, locations h0, h1 and weights g0, g1 can be obtained:

g0(x) = w0(x) + w1(x), h0(x) = 1− w1(x)
w0(x) + w1(x)

+ x, (2.5)

g1(x) = w2(x) + w3(x), h1(x) = 1− w3(x)
w2(x) + w3(x)

− x.

Since weights g0(x), g1(x) and locations h0(x), h1(x) are also periodic, they
can be stored in a lookup texture. The schematic of one-dimensional cubic filter-
ing is shown in Figure 2.5. In multi-dimensional spaces the cubic reconstruction
kernel is evaluated separately along the major axes and the resulting weights
are simply multiplied (tensor product extension).

The Cg code of the fragment program for one-dimensional cubic filtering
is shown in Listing 2.3. Note that B-splines fulfill the partition of unity, i.e.∑

wi(x) = 1, and so do the two weights since g0(x) + g1(x) = 1. Therefore, we
do not need to actually store g1(x) in addition to g0(x), and the final weighting
is again a convex combination carried out with a single lerp() instruction.

f loat4 FuncRec1D ( f loat coo rd source : TEXCOORD0,
uniform sampler1D t ex source , // source t ex ture
uniform sampler1D tex hg , // f i l t e r t ex tu re

// ( o f f s e t s and
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// weights )
uniform float e x , // source t e x e l

s i z e
uniform float s i z e s o u r c e // source t ex ture

s i z e
) : COLOR

{
// c a l c f i l t e r t ex ture coo rd ina t e s where [ 0 , 1 ] i s a s i n g l e

t e x e l
f loat coord hg = coord source ∗ s i z e s o u r c e − 0 .5 f ;

// f e t ch o f f s e t s and weights from f i l t e r t ex tu re
f loat3 hg x = tex1D( tex hg , coord hg ) . xyz ;

// determine l i n e a r sampling coo rd ina t e s
// hg x . x = h1(x) , hg x . y = h0(x) , hg x . z = g0(x)
f loat coord source1 = coord source + hg x . x ∗ e x ;
f loat coord source0 = coord source − hg x . y ∗ e x ;

// f e t ch two l i n e a r l y i n t e r p o l a t ed inputs
// t ex sou r c e0 = fx−h0(x) , t ex sou r c e1 = fx+h1(x)

f loat4 t ex sou r c e0 = tex1D( t ex source , coo rd source0 ) ;
f loat4 t ex sou r c e1 = tex1D( t ex source , coo rd source1 ) ;

// weight l i n e a r samples
t ex sou r c e0 = lerp ( t ex source0 , t ex source1 , hg x . z ) ;

return t ex sou r c e0 ;
}

Listing 2.3: Cubic B-spline filtering of a one-dimensional texture

The fragment shader parameters would be initialized as follows assuming a
1D source texture with 256 texels:

e x = f loat (1 / 256 .0 f ) ;
s i z e s o u r c e = f loat (256 . 0 f ) ;

The e x parameter corresponds to the size of a single source texel in texture
coordinates, which is needed to scale the offsets fetched from the filter texture
to match the resolution of the source texture. The size source parameter
simply contains the size of the source texture, which is needed to compute
filter texture from source texture coordinates so that the size of the entire filter
texture corresponds to a single texel of the source texture.

2.1.5 Multidimensional extension

The extension of one-dimensional cubic-filtering is straightforward due to fact
that the cubic reconstruction kernel can be evaluated separately along the major
axes and the resulting weights are simply multiplied as mentioned before. In the
implementation, this relates to multiple fetches from the same one-dimensional
lookup texture. The final weights and offsets are then computed using:

gi(x) =
∏

gik
(xk), hi(x) =

∑
ekhik

(xk),
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where index k relates to the directions. The Cg code of the fragment program
for two-dimensional cubic filtering is shown in Listing 2.4.

f loat4 FuncRec2D( f loat2 coo rd source : TEXCOORD0,
uniform sampler2D t ex source , // source t ex ture
uniform sampler1D tex hg , // f i l t e r t ex tu re

// ( o f f s e t s and
// weights )

uniform float2 e x , // t e x e l s i z e in
// x d i r e c t i o n

uniform float2 e y , // t e x e l s i z e in
// y d i r e c t i o n

uniform float2 s i z e s o u r c e // source t ex ture
// s i z e

) : COLOR
{

// c a l c f i l t e r t ex ture coo rd ina t e s where [ 0 , 1 ] i s a s i n g l e
t e x e l

f loat2 coord hg = coord source ∗ s i z e s o u r c e − f loat2 ( 0 . 5 f , 0 . 5
f ) ;

// f e t ch o f f s e t s and weights from f i l t e r t ex tu re
// hg x . x = h1x (xx) , hg x . y = h0x (xx) , hg x . z = g0x (xx)
// hg y . x = h1y (xy) , hg y . y = h0y (xy) , hg y . z = g0y (xy)
f loat3 hg x = tex1D( tex hg , coord hg . x ) . xyz ;
f loat3 hg y = tex1D( tex hg , coord hg . y ) . xyz ;

// determine l i n e a r sampling coo rd ina t e s
f loat2 coord source10 = coord source + hg x . x ∗ e x ;
f loat2 coord source00 = coord source − hg x . y ∗ e x ;
f loat2 coord source11 = coord source10 + hg y . x ∗ e y ;
f loat2 coord source01 = coord source00 + hg y . x ∗ e y ;
coord source10 = coord source10 − hg y . y ∗ e y ;
coord source00 = coord source00 − hg y . y ∗ e y ;

// f e t ch four l i n e a r l y i n t e r p o l a t ed inputs
f loat4 t ex sour c e00 = tex2D( t ex source , coord source00 ) ;
f loat4 t ex sour c e10 = tex2D( t ex source , coord source10 ) ;
f loat4 t ex sour c e01 = tex2D( t ex source , coord source01 ) ;
f loat4 t ex sour c e11 = tex2D( t ex source , coord source11 ) ;

// weight along y d i r e c t i o n
t ex sour c e00 = lerp ( t ex source00 , t ex source01 , hg y . z ) ;
t ex sour c e10 = lerp ( t ex source10 , t ex source11 , hg y . z ) ;

// weight along x d i r e c t i o n
t ex sour c e00 = lerp ( t ex source00 , t ex source10 , hg x . z ) ;

return t e x s r c 0 0 ;
}

Listing 2.4: Cubic B-spline filtering of a two-dimensional texture

The fragment shader parameters of Listing 2.4 would be initialized similarly
to the 1D case. Filtering in three dimensions is a straightforward extension of
Listing 2.4.
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2.2 Gradient Estimation and Shading

After having an accurate intersection point for each ray, the shading compu-
tations are performed for each corresponding pixel. Using the classical Phong-
Blinn reflection formula for shading, the normal vector of the isosurface needs
to be calculation. The surface normal can be determined as the first derivative
of the density field. Therefore a new fragment program has to be loaded, which
takes the result of the ray casting as a 2D texture storing the x, y, and z co-
ordinates of the intersection points, and a subvolume stored in a 3D texture.
The fragment program resamples the 3D texture at the given intersection point,
where gradient

g = ∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T

has to be determined for the shading computations. The gradient components
are calculated by filtering the volume data with the partial derivatives of the 3D
reconstruction kernel (see Figure 2.4/b). For efficient derivative reconstruction,
the same fast filtering scheme can be used as for the function reconstruction
with the following modifications. The difference is that now all the filter ker-
nel weights sum up to zero instead of one (derivative of constant value is 0),∑

wi(x) = 0. In comparison to Listing 2.3, where the two linear input samples
were weighted using a single lerp(), we obtain the second weight as the nega-
tive of the first one, that is, g1(x) = −g0(x), which can be written as a single
subtraction and subsequent multiplication, as shown in Listing 2.5.

f loat4 DerivRec1DX ( f loat coo rd source : TEXCOORD0,
uniform sampler1D t ex source , // source

t ex tu re
uniform sampler1D tex hg , // der ived

f i l t e r
// t ex ture (

o f f s e t s
// and weights )

uniform float e x , // source t e x e l
s i z e

uniform float s i z e s o u r c e // source
t ex tu re

// s i z e
) : COLOR

// . . . unchanged from L i s t i n g 2.3

// weight l i n e a r samples
// g0 ∗ fx−h0(x) − g0 ∗ fx+h1(x) = g0 ∗ (fx−h0(x) − fx+h1(x))
t ex sou r c e0 = hg x . z ∗ ( t ex sou r c e0 − t ex sou r c e1 ) ;

return t ex sou r c e0 ;
}

Listing 2.5: First-derivative cubic B-spline filtering of a one-dimensional texture

To compute the gradient in higher dimensions, we obtain the corresponding
filter kernels via the multiplication of 1D derived cubic B-splines for the axis
of derivation, and 1D (nonderived) cubic B-splines for the other axis (for the
two-dimensional case, see Listing 2.6).
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f loat4 DerivRec2DX ( f loat2 coo rd source : TEXCOORD0,
uniform sampler2D t ex source , // source

t ex tu re
uniform sampler1D tex hg , // f i l t e r

t ex tu re
// ( o f f s e t s and
// weights )

uniform sapmler1D tex dhg // der ived
f i l t e r

// t ex ture (
weights )

uniform float2 e x , // t e x e l s i z e in
// x d i r e c t i o n

uniform float2 e y , // t e x e l s i z e in
// y d i r e c t i o n

uniform float2 s i z e s o u r c e // source
t ex tu re

// s i z e
) : COLOR

// . . . unchanged from L i s t i n g 2.4

// f e t ch o f f s e t s and weights from f i l t e r and der ived f i l t e r
t ex tu re

f loat3 dhg x = tex1D( tex dhg , coord hg . x ) . xyz ;
f loat3 hg y = tex1D( tex hg , coord hg . y ) . xyz ;

// . . . unchanged from L i s t i n g 2.4

// weight l i n e a r samples
t ex sour c e00 = dhg x . z ∗ ( t ex sour c e00 − t ex sour c e10 ) ;

return t ex sou r c e0 ;
}

Listing 2.6: First partial derivative cubic B-spline filtering along the x-axis of a
two-dimensional texture

The other components of the gradient can be determined analogously. Af-
terwards the gradients are normalized to use them as surface normals for the
shading computations.

2.3 Curvature Estimation for NPR (Non-Pho-
torealistic Rendering)

The normalized gradient can be used for all shading models that require a surface
normal, like the Phong-Blinn shading. More sophisticated non-photorealistic or
illustrative shading models can be based on surface curvatures. The curvature
of a surface is defined by the relationship between small positional changes on
the surface, and the resulting changes in the surface normal, thus curvatures
are associated with the derivative of the surface normal. The surface normal is
the normalized gradient of the volume, or its negative, depending on the notion
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of being inside/outside the object:

n = ± g
|g| ,

where g is the gradient of the surface f(x).
The derivative of the gradient, i.e. the second derivative of the volume is

the Hessian matrix:

H =




∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


 (2.6)

The mixed derivatives in H (the off-diagonal elements) can be computed
using the previously described fast filtering approach for the first derivatives,
because the 1D filter kernels are derived only once in this case (so it needs the
first derivatives of the filter).

For the diagonal elements of H, however, the filter has to be derived two
times. The second derivative of the cubic B-spline is a piecewise linear function
(see Figure 2.4/c). Listing 2.7 shows how the convolution sum can be evaluated
with this filter using three linearly interpolated input samples.

f loat4 DerivRec1DXX ( f loat coo rd source : TEXCOORD0
uniform sampler1D t ex source , // source

t ex tu re
uniform float e x // source

t e x e l
// s i z e

) : COLOR
{

// determine add i t i o na l l i n e a r sampling coo rd ina t e s
f loat coord source1 = coord source + e x ;
f loat coord source0 = coord source − e x ;

// f e t ch three l i n e a r l y i n t e r p o l a t ed inputs
f loat4 t ex sou r c e0 = tex1D( t ex source , coo rd source0 ) ;
f loat4 t ex sou r c ex = tex1D( t ex source , coo rd source ) ;
f loat4 t ex sou r c e1 = tex1D( t ex source , coo rd source1 ) ;

// weight l i n e a r samples
t ex sou r c e0 = tex sou r c e0 2 ∗ t ex sou r c ex + tex sou r c e1 ;

return t ex sou r c e0 ;
}

Listing 2.7: Second-derivative cubic B-spline filtering of a one-dimensional
texture

To calculate the second derivatives in higher dimension, the three samples
along the axis of derivation can be computed by a subsequent convolutions along
the other axis (so filter texture is needed because of the other directions). For
the two-dimensional case see Listing 2.8.
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f loat4 DerivRec2DXX ( f loat2 coo rd source : TEXCOORD0,
uniform sampler2D t ex source , // source

t ex tu re
uniform sampler1D tex hg , // f i l t e r

t ex tu re
// ( o f f s e t s and
// weights )

uniform float2 e x , // t e x e l s i z e
in

// x d i r e c t i o n
uniform float2 e y , // t e x e l s i z e

in
// y d i r e c t i o n

uniform float2 s i z e s o u r c e // source
t ex tu re

// s i z e
) : COLOR

{
// c a l c f i l t e r t ex ture coo rd ina t e s where [ 0 , 1 ] i s a s i n g l e

t e x e l
f loat2 coord hg = coord source ∗ s i z e s o u r c e − f loat2 ( 0 . 5 f , 0 . 5

f ) ;

// f e t ch o f f s e t s and weights from f i l t e r t ex tu re in d i r e c t i o n y
f loat3 hg y = tex1D( tex hg , coord hg . y ) xyz ;

// determine l i n e a r sampling coo rd ina t e s
f loat3 coord source1 = coord source + hg y . x ∗ e y ;
f loat3 coord source0 = coord source − hg y . y ∗ e y ;

f loat3 coord source10 = coord source1 − e x ;
f loat3 coord source00 = coord source0 − e x ;
f loat3 coord source11 = coord sourec1 + e x ;
f loat3 coord source01 = coord source0 + e x ;

// f e t ch four l i n e a r l y i n t e r p o l a t ed inputs
f loat4 t ex sour c e00 = tex2D( t ex source , coord source00 ) ;
f loat4 t ex sour c e01 = tex2D( t ex source , coord source01 ) ;
f loat4 t ex sour c e10 = tex2D( t ex source , coord source10 ) ;
f loat4 t ex sour c e11 = tex2D( t ex source , coord source11 ) ;

// two add i t i o na l t ex tu re f e t c h e s
f loat4 t ex sou r c e0 = tex2D( t ex source , coo rd source0 ) ;
f loat4 t ex sou r c e1 = tex2D( t ex source , coo rd source1 ) ;

// weight along the y−ax i s
t ex sour c e00 = lerp ( t ex source00 , t ex source10 , hg y . z ) ;
t ex sour c e01 = lerp ( t ex source01 , t ex source11 , hg y . z ) ;
t ex sou r c e0 = lerp ( t ex source0 , t ex source1 , hg y . z ) ;

// convo lut ion with the second p a r t i a l d e r i v a t i v e s a long the x−
ax i s

t ex sou r c e0 = tex sour c e00 − 2 .0 f ∗ t ex sou r c e0 + tex sour c e01 ;

return t ex sou r c e0 ;

}

Listing 2.8: Second partial derivative cubic B-spline filtering (along the x-axis)
of a two-dimensional texture

The Hessian matrix has all the information needed for determining the cur-
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vatures, we just have to extract it. The difficulty is that the Hessian matrix
depends on the coordinate frame while curvatures are independent of the actual
coordinate system. Thus we project information of the Hessian matrix into a
coordinate system that is assign to the surface and is independent of the global
frame.

Let us first note that if a vector is multiplied by the following matrix com-
posed of unit vector n,

nnT =




n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z




then this operation projects the vector onto the line of direction n. Since mul-
tiplying a vector by unit matrix I does not change the vector at all, the mul-
tiplication by matrix P = I − nnT leads to a projection that keeps everything
except for direction n. This operation is the projection onto a plane that is
perpendicular to n (the complement of the line of n). Since n is the normal
vector of the isosurface, this projection projects onto the tangent plane of the
isosurface.

Remember that the Hessian matrix is the derivative of the gradient, thus
it tells how the gradient vector changes as a function of displacements away
from the point at which its measured. Those displacements, and the resulting
gradient changes, are both vectors in three dimensions. But if we post-multiply
the Hessian matrix by projection matrix P, then we are only looking at changes
in the gradient vector due to displacements in the tangent plane, i.e. on the
isosurface. Similarly if we pre-multiply the Hessian matrix by projection ma-
trix P, then we obtain the projection of the gradient vector changes onto the
surface. If the Hessian matrix is both pre-multiplied and post-multiplied by P,
then PHP will express the tangent plane change of the gradient vector when a
movement along the surface is made, which is directly proportional to the curva-
ture along the given direction on the surface. So to get the principle curvatures
the eigenvalues of matrix

G = −PHP
|g|

need to be determined [3]. Matrix invariants provide the possibility to extract
the eigenvalues, including curvature values κ1 and κ2 from G (the third eigen-
value is zero). The trace of G is κ1 + κ2. The Frobenius norm of G, notated
|G|F and defined as

√
trace(GGT ), is

√
κ2

1 + κ2
2. κ1 and κ2 are then found by

solving a second order equation.
So the steps needed to compute curvature at an arbitrary point in a scalar

field:

1. Measure the first partial derivatives comprising the gradient g. Compute
n = − g

|g| , and P = I− nnT .

2. Measure the second partial derivatives comprising the Hessian H (see
Equation 2.6). Compute G = −PHP/|g|.

3. Compute the trace T and Frobenius norm F of G. Then,

κ1,2 =
T ±√2F 2 − T 2

2
.
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After the computation of these differential surface properties (see Listing 2.9),
they can be mapped onto final pixel colors using different non-photorealistic
shading models. RTPara uses direct color mapping. There is a predefined color
lookup texture which is addressed by a given function (for example, by the mean
curvature ((κ1 + κ2)/2) or the Gaussian curvature (κ1κ2)).

f loat4 curvature ( in f loat2 un i t t c : TEXCOORD0, // shaded p i x e l
in

// t ex ture
coo rd ina t e s

uniform sampler2D grad tex , // tex ture o f
g r ad i en t s

uniform sampler2D he s s d i ag t ex , // tex ture o f
d iagona l

// e lements o f
Hess ian

unifomr sampler2D hess mixed tex // tex ture o f
mixed

// d e r i v e t i v e s

) : COLOR0

{
// get f i r s t and second d e r i v a t i v e s
f loat3 g = tex2D( grad tex , un i t t c ) ;
f loat3 H diag = tex2D( h e s s d i ag t ex , un i t t c ) ;
f loat3 H mixed = tex2D( hess mixed tex , un i t t c ) ;

// normal ize g rad i en t
f loat l = dot ( g , g ) ;
l = r s q r t ( l ) ;
f loat3 n = g∗ l ;

// compute P = I− nnT

f loat3 I = {1 . 0 , 0 . 0 , 0 . 0 } ;
f loat3 P1 = −n∗n . x + I . xyz ;
f loat3 P2 = −n∗n . y + I . zxy ;
f loat3 P3 = −n∗n . z + I . yzx ;

// compute Hess ian
f loat3 H1 = {H diag . x , H mixed . x , H mixed . y } ;
f loat3 H2 = {H mixed . x , H diag . y , H mixed . z } ;
f loat3 H3 = {H mixed . y , H mixed . z , H diag . z } ;

// compute G = PHP/|g|
f loat3 G1 = {dot (P1 , H1)∗(− l ) , dot (P1 , H2)∗(− l ) , dot (P1 , H3)

∗(− l ) } ;
f loat3 G2 = {dot (P2 , H1)∗(− l ) , dot (P2 , H2)∗(− l ) , dot (P2 , H3)

∗(− l ) } ;
f loat3 G3 = {dot (P2 , H1)∗(− l ) , dot (P3 , H2)∗(− l ) , dot (P3 , H3)

∗(− l ) } ;

G1 . x = dot (G1, P1) ; G1 . y = dot (G1, P2) ; G1 . z = dot (G1, P3) ;
G2 . x = dot (G2, P1) ; G2 . y = dot (G2, P2) ; G2 . z = dot (G2, P3) ;
G3 . x = dot (G3, P1) ; G3 . y = dot (G3, P2) ; G3 . z = dot (G3, P3) ;

f loat3 GGT1 = {dot (G1, G1) , dot (G1, G2) , dot (G1, G3) } ;
f loat3 GGT2 = {dot (G2, G1) , dot (G2, G2) , dot (G2, G3) } ;
f loat3 GGT3 = {dot (G3, G1) , dot (G3, G2) , dot (G3, G3) } ;
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//compute t r a c e and Frobenius norm2 o f G
f loat T, F ;

T = G1. x + G2. y + G3 . z ;
F = GGT1. x + GGT2. y + GGT3. z ;

f loat4 c o l o r ;

c o l o r . r = T + sqr t (2∗F − T) ;
c o l o r . g = T − s q r t (2∗F − T) ;

return c o l o r ;

}

Listing 2.9: Fragment shader program of curvature computations



Chapter 3

Parallel Implementation

3.1 Parallelization Approach

Rendering methods belonging to the ray-casting or ray-tracing family can easily
be implemented in a distributed environment. Our implementation (applica-
tion) contains both the object space decomposition, which partitions the data
to be rendered among the participating computing resources (nodes), and the
screen space approach, which assigns parts of final the image to be rendered to
the nodes. In both cases the resulting partial images need to be composited
together to form the final image.

The distributed compositing infrastructure of RTPara is based on Para-
Comp library (see Section 3.2) which implements the sort-last compositing tech-
nique [4].

3.1.1 Screen space

Using screen space decomposition the different nodes load the same data but
they render only a part of the final image (different tiles of the output image).
Thinking in terms of the classical camera analogy and OpenGL a so called
frustum pyramid (viewing frustum) determines what part of the scene will be
rendered. The parameters of the viewing frustum can be set by the glFrustum()
function in OpenGL which describes a perspective matrix that produces a per-
spective projection. The parameters of glFrustum() (Left, Right, Bottom,
Top, Near, Far) determine two rectangles, which are the top and bottom base
areas (on the near and far clipping planes) of the frustum pyramid. The ob-
jects contained by the frustum pyramid will be rendered. The lower left (Left,
Bottom, -Near) and upper right corner (Right, Top, -Near) of the top rect-
angle are mapped to the lower left and upper right corners of the window,
respectively, assuming that the eye is located at (0, 0, 0). The parameter Far
specifies the location (-Far) of the bottom base plane (it is parallel with the top
base plane). The corners of the bottom base rectangle are the intersection of
the bottom base plane and the lines determined by the corners of the top base
rectangle and the eye location (see Figure 3.1). The window where the top base
rectangle is mapped can be set by the glViewport() function.

In screen space decomposition the compositing node has to place the tiles
one aside the other (see Figure 3.2/a). While nodes render only a part of the

21
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Figure 3.1: Viewing frustum

entire screen, the number of the rays to be computed by one node is divided by
the number of the rendering nodes. So one node has to compute less number of
rays, which means that screen space decomposition induces higher frame rate
(performance scalability) because computing the ray–isosurface intersection is
the most computational expensive part of a ray-casting algorithm (could be up
to 70%).

3.1.2 Object space

In object space decomposition the data is divided into blocks. Rendering nodes
load one of the blocks and render the whole image of it. The result of the
ray casting on a single node is an image, which contains in each pixel the ray
parameter (i.e. depth) of the corresponding intersection point and its shaded
color. The output image is produced by depth compositing these partial images
(see Figure 3.2/b). While nodes load different partition of data, bigger datasets
can be visualized at the same time without frame rate drop (data scalability).

3.2 ParaComp

The Parallel Compositing Library (ParaComp) has been developed by HP and
Computational Engineering International (CEI). The addition of this library
simplifies the development and use of parallel applications on graphics clusters
and allows high performance computing users to interactively render and visu-
alize huge data sets. The HP Parallel Compositing Library does for graphics
clusters what MPI did for compute clusters. It enables users to take advantage
of the inherent performance scalability of clusters with network-based pixel com-
positing.

The ParaComp library was designed in order to create a single image from
a collection of partial images generated by multiple sources. The sources can
be located on one or more machines and can be threads of execution on a single
machine. The library was designed to hide the network layer from the caller
and provide a graphics pixel abstraction. For more information see [2].

ParaComp library is able to perform depth and alpha compositing. The
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(a) Screen-space decomposition.
Nodes load the same data but render
other part of the image. Composite
node joins together the tiles.

(b) Object-space decomposition.
Nodes load different parts of the
data and render the whole image.
Composite node makes depth
compositing.

Figure 3.2: Screen space and object space parallelization

RTPara application uses the depth compositing mode in both parallelization
cases. The used pixel format is

PC_PF_BGR8 | PC_PF_Z32I,

which means that the color of a pixel consists of three bytes in BGR (blue/-
green/red) order and there are 32 bits for depth data. If depth compositing is
performed, this pixel format setting provides the best performance of ParaComp
(see [2]). In screen space decomposition, framelets (part of the entire frame) do
not overlap each other while in object space decomposition framelets correspond
to the whole output image.
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Installation and Usage

This chapter explains the usage of RTPara. The first section contains installa-
tion instructions. Section 4.2 describes how RTPara can be started and used.

4.1 Installation

Both source and prebuilt version of the application can be found on the web
site of the project1.

The build process is the well-known configure, make, make install method
(after downloading and extracting):

$ cd src
$ ./configure −−with−incdir=<additional include directory> \
−−with−libdir=<additional library directory>

$ make
$ sudo make install

On a 64-bit HP XC platform the additional path values are the following:

• <additional include directory> = /opt/paracomp/include

• <additional library directory> = /opt/paracomp/lib64

RTPara can be also installed from a prebuilt RPM package2:

# rpm −i rtpara−0.1−1.x86 64.rpm

4.1.1 Library Dependencies

The following libraries are needed by RTPara:

libparacomp is the Hewlett Packard implementation of the Parallel Composit-
ing API,

1http://amon.ik.bme.hu/rtpara
2Red Hat Package Manager
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libGL library implements OpenGL API,

libCgGL is the Cg (C for Graphics)3 runtime library (for OpenGL),

libCg is the Cg library runtime library,

libglut is the OpenGL Utility Toolkit (GLUT).

4.2 Execution and Usage

RTPara is developed and designed to run under HP XC V3.2 Scalable Visual-
ization Array (SVA) System. After installing RTPara, it can be started with
the rtpara.sh command. This script can start a program on several nodes,
allocate resources, launch services, and run the visualization job. It uses SVA4

resource management and job scheduling scripts, which are based on SLURM5

(Simple Linux Utility for Resource Managment). The script works with RGS6

(Remote Graphics Software) and TurboVNC7 (Turbo Virtual Network Client) if
the execution of the application from a remote machine is required. Two groups
of parameters can be specified for the script. Parameters of the first type are
processed by the script itself, others are processed by the program:

rtpara.sh [[−r <node count>] [−g <tile geometry>] [−p <partition>]
−a [−i <volume data path>] [−t [object|screen]]
[−s <volume dimension>] [−q <true|false>]
[−w <window sizes>]]

where

-a indicates that the rest of the parameters are going to be processed by the
application.

-r sets the number of nodes which perform rendering. Its default value is 2.

-p request resources from the given SLURM partition. The default partition is
used if no partition is named.

-g sets the tile geometry that each of tiles will use. It can be any of the sup-
ported resolutions on the cluster.

-i sets the path of the volume data file. If a wrong path to the volumetrical data
is given, the program will exit. Its default value is “./data/volume.dat”.

-t defines the type of decomposition, its value can be either “screen” or “object”.
Its default value is “screen”.

-s specifies the expected dimensions of the volume for loading (x× y× z). This
part of the data will be displayed if it is possible. Its default value is
512× 512× 512.

3http://developer.nvidia.com/object/cg_toolkit.html
4http://www.docs.hp.com/en/A-SVARN-4A/ch01s01.html?btnPrev=%AB%A0prev
5http://www.llnl.gov/LCdocs/slurm/
6http://h20331.www2.hp.com/Hpsub/cache/286504-0-0-225-121.html
7http://www.virtualgl.org/About/TurboVNC
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Figure 4.1: GUI of RTPara

-q indicates whether the program should quantize the data to eight bit preci-
sion. Its default value is true.

-w gives the size of the window (width×height). Its default value is 512×512.

RTPara can be started without parameters (all parameters have default
values). In this case the program runs on two nodes and performs screen space
decomposition.

If parameter -r is set to one, the program runs on one node and similarly to
multinode rendering renders, adds the rendering results to the compositor, and
composites.

The data files are in raw format (see Section 5.4) and contain the dimensions
and data precision of the volume in the header. If the expected dimensions
are greater than the real volume dimensions the program will set them to the
possible biggest values. If they are less, then during execution we can set which
part of the volume is displayed. The expected dimensions are also variable.

The application supports the following user actions (see Figure 4.1):
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• rotate the volume: The displayed volume can be rotated by clicking
somewhere on the window then moving the mouse.

• set isovalue: The value (density) which determines the isosurface. It can
be set by the isovalue slider.

• navigate in the data: If not the whole data is loaded for rendering, the
user has the possibility to interactively determine which part of the data
should be rendered. To allow this selection, the program displays a wired
box in the right upper corner of the window. Its sizes are proportional
to the sizes of the whole volumetrical data. The superimposed blue box
with a coordinate system shows which part of the data is actually loaded.
The loaded part of the volume can be changed by moving the blue cube
by clicking on one of the axes and moving the mouse.

• change expected sizes: We can change the sizes of the loaded part of
the volume using the X,Y, Z expected size sliders.

• “stripping” the data: The user can set whether the application should
display the first, second, etc. isosurface intersections with the aid of the
intersection slider.

The program displays information about the current rendering parameters
in the left bottom corner. The displayed information includes:

decomposition type can be either object space or screen space.

entire volume sizes are the sizes of data loaded into the operative memory.

displayed volume sizes are the sizes of the displayed data. This part of the
whole data is loaded from the operative memory into the graphics card
memory.

FPS is actual rendered frames per second.

number of nodes is number of rendering nodes.

original bits per voxel is the original number of bits per voxel.

displayed bits per voxel is the displayed number of bits per voxel.

Sliders, navigator, and rendering information can be hidden or made visible
again by pressing the “m” key.
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Program Structure

This chapter provides a brief overview of the source code organization, providing
the interested reader with guidelines where to find the code responsible for the
main functional units. RTPara has four main parts which are responsible for
different functionalities:

algorithm implements the isosurface ray-casting algorithm. It is responsible
for rendering the given part of the volume.

parallelization manages the parallel rendering using ParaComp.

display creates the windows and displays the result of compositing.

volume loader loads the volume data.

The root directory (RTpara) of the source code contains directories of header
files (inc), source files (src), shaders (cgprograms), and volume data files
(data). The parts of the program are separated into different directories as
illustrated in Figure 5.1:

cgwrapper (algorithm) contains classes for managing the Cg environment, ver-
tex shader and fragment shader loading, their parameter settings, etc.

display (display) includes window handling classes. These classes are respon-
sible for realizing the user interface with GLUT.

fto (algorithm) contains the core files of the isosurface ray-casting algorithm
(see Chapter 2).

glh (display and algorithm) is the place of files which give additional helper
functionalities for OpenGL and GLUT (for example interactors).

network (parallelization) is the directory of the RTPara network communica-
tion classes. They provide functionality for passing parameters/commands
among the nodes.

para (parallelization) contains the wrapper class of ParaComp and the class
specialized for the parallelization of the isosurface ray-casting algorithm.

paramgl (display) contains helper classes for interactive parameter display.
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shared (algorithm) contains miscellaneous utility functions. Such as initializa-
tion of openGL extensions, basic class of pbuffer, etc.

voldata (volume loader) is the place of class for volume loading.

A distributed rendering task with RTPara means the execution of program
instances on the nodes of the employed cluster. The instances of RTPara can
be either master or slave. There must be one master instance and any number
of slave instances. The master instance runs on the node (master node) where
the program is started. Slave nodes create slave context of ParaComp API [2],
render the appropriate part of the output and send the result to the composit-
ing (master) node. In addition, a master node creates the master context of
ParaComp API [2], composites, displays results, and provides GUI.

After starting the program the entire data is loaded into the operative mem-
ory and its specified part is displayed. The GUI is visible initially. The master
instance handles user actions and sends them to the slave instances.

5.1 Algorithm

The core class of the algorithm part is called Renderer. Its main methods are
as follows:

init() initializes the shaders, some lookup textures, OpenGL extensions, loads
the volume data and allocates buffers.

initSpaceFramelet() sets the parameters that determine what has to be ren-
dered. It sets glFrustum() and glViewport() attributes as explained in
Chapter 3.

initScaling() sets the texture scaling factors, texture translation values and
the sizes and offsets of the bounding cube. Since volume data is stored
in a 3D texture map, the coordinates of the density samples are mapped
into texture coordinates, initially into the [0, 1] interval in the direction
x, y, z. So if the volume data is not cubic the scaling and translation of the
texture coordinates are needed. The goal of this translation is different
in the two parallelization approaches. While in the case of screen space
decomposition its purpose is only to display the data in the center of the
screen, it is a crucial step during object space parallelization (all nodes
render the entire image but load only a part of the data which has to be
put in the appropriate position, see Section 3.1.2). Since the entry and
exit points of the rays are calculated by projecting the bounding cube of
the displayed data (see Section 2.1) its parameters have to be set properly.

onRender() performs rendering.

The first two functions are called once during an execution, onRender is
executed once for each rendered frame. The initScaling() function is called
every time when the sizes of the displayed data are changed.
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5.2 Parallelization

Para and RTPara classes are responsible for managing the parallel execution
(they can be found in the para directory). Para provides a comfortable interface
for using ParaComp. It solves every ParaComp initialization step using a node
list and its type (master or slave). These two classes assume that windows are
already created. Para has two virtual functions for specializing the class for a
given task:

• initRenderingJob(),

• renderingJob().

The initRenderingJob() function of RTPara calculates the sizes and offsets
of framelets and calls the initialization functions of the Renderer class. Its
renderingJob() function calls not only the rendering function of Renderer
but also refreshes its rendering parameters. In addition, the master node sends
these parameters to every nodes through a broadcast message mechanism.

5.3 Display

This part of the program creates windows, handles user inputs and passes them
to the RTPara class. It creates the instance of RTPara and calls its appropriate
methods during execution. It processes the input arguments and provides the
GUI on the master node. The program is based on GLUT and does not use any
widget sets.

5.4 Volume loader

The class VolData loads and stores the volume data. Its constructor sets the
user defined expected sizes, data path, quantize bit (see Section 4.2) and default
values. Data loading is performed by the loadRawVolume() function which
modifies the values of the expected sizes if it is needed and quantizes if it is
demanded. The getData() function returns a pointer to the required data.
The used raw data format is the following:

• the first 3× 2 bytes are the sizes in directions X, Y, Z, respectively,

• the seventh byte is the bits per voxel value.

The data is continuous within the file in direction Z. The data storing
and arbitrary data access need two memory regions (see Figure 5.2). The first
memory region stores the loaded data, the other one is used by the getData()
function. If there are X and/or Y offsets or the expected sizes in the direction
X and/or Y are not equal to the appropriate data sizes, the corresponding
region from the first memory is copied into the second memory and getData()
function returns with a pointer to the second memory region.
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Figure 5.1: Directory structure of RTPara

Figure 5.2: Continuous and non-continuous data access



Chapter 6

Results

This chapter provides numerical results about the execution of RTPara on a five-
node HP SVA cluster. Each node had a dual-core AMD Opteron 246 processor
and NVIDIA Quadro FX3450 graphics card. Frame rates of the execution are
presented in Table 6.1 and 6.2. Figures 6.1 show screen shots of the program.

Data set Size (MB) Resolution 1 node 2 nodes 3 nodes 4nodes

VHP 128 512× 512 4.13 6.76 10.39 14.76
VHP 128 800× 800 2.28 3.58 5.27 7.38
lobster ≈ 1 512× 512 4.49 7.22 9.02 11.35
lobster ≈ 1 800× 800 2.18 3.4 5.49 6.02
engine 14 512× 512 2.64 5.62 7.01 11.34
engine 14 800× 800 1.63 2.97 3.4 5.72

Table 6.1: Average frame rates using screen space decomposition

Data set Resolution 1 (128 MB) 2 (256 MB) 3 (384 MB) 4 (470 MB)

VHP 512× 512 3.87 4.19 5.42 4.43
VHP 800× 800 2.14 0.97 1.43 2.06

Table 6.2: Average frame rates using object space decomposition
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(a) VHP (isovalue = 0.15) (b) VHP (isovalue = 0.32)

(c) engine (isovalue = 0.15) (d) lobster (isovalue = 0.15)

(e) head (isovalue = 0.32) (f) VHP (isovalue = 0.15)

Figure 6.1: Rendering results for RTPara application
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