Ambient occlusion and Image-Based Lighting
Extensions for RTPara Distributed Ray-Casting
Application

for Hewlett-Packard Scalable Visualization Array
August, 2008

Budapest University of Technology and Economics

Department of Control Engineering and Information Tecbgyl

Copyright 2008 Budapest University of Technology and Ecoits,
Department of Control Engineering and Information Tecbgg!
http://www.iit.bme.hu/

Contents

1 Introduction

2 Algorithmic Background
2.1 Ambient Occlusionin Volume Rendering
2.2 EnvironmentMapping
221 CubeMapping
2.3 Ambient Occlusion Shader Implementation

3 Results

»

Chapter 1

Introduction

This document gives an overview of the extensions desigoeth& parallel isosur-
face ray-casting application callélPara developed byBME T2 in 2007 [2]. The
application allows the visualization of volume dataseta distributed environment by
rendering isosurfaces [1] using screen space or objecegfmmomposition approaches
at interactive frame rates. Rendering parameters like iveing direction, isosurface
threshold, etc. can be interactively modified, the programrides an immediate visual
feedback. In the available documentation the implemesteslirface ray-casting algo-
rithm was presented in detail including the parallelizatpproaches (screen space and
object space), thearaComp Library [3] bindings, the installation and usage manual,
and also the relevant implementation aspects were covered.

The original application supports basic ray-casting reindevith Phong-Blinnand
Lambert BRDF models. This extension adds new features to the saftsveendering
capabilities. A fake global illumination method calladhbient occlusion has been
integrated with a cube map based image based lighting tgaéni

In the second Chapter of this document the algorithmic bamkyd of ambient
occlusionis introduced.

Generated images and measured frame rates are reportedastichapter.

Chapter 2

Algorithmic Background

Ambient occlusion is a shading technique in 3D computer graphics which helds ad
more realism to scenes with local illumination models. Ualkamination reflection
models compute a physically inaccurate, simplified ligiptinthout taking into account
multiple light bounces. Unlike local methods liRkaong shading, ambient occlusion is

a global method, the illumination at each point is affectgthie surrounding geometry,
however it is only an approximation of the full global illungtion.

Ambient occlusion is most often calculated by casting rays in every directiomf
the surface. The surface is darker if most of the rays hit g@obin the scene, because
the surface is occluded. Rays which reach the backgrounddifision detected in a
specific direction) increase the brightness of the surface.

Ambient occlusion has been popularized in production animation, video gameés a
other areas - where interactive feedback is essential -alii® ttelative simplicity and
efficiency. In the industry, ambient occlusion is often redd to assky light. The
algorithm has the property of offering a better quality g@tton of the 3d shape which
is important when huge volumetric data sets are rendered.

The occlusionAp at a pointp on a surface with normall can be computed by
integrating thevisibility function over the hemispher@.

In addition to the ambient occlusion calculationpent normal N, can be also
generated. This vector points in the average directionetititoccluded samples. The

Figure 2.1: Ambient occlusion Ap at surface point P with normal vector N over the
hemisphere Q

5 CHAPTER 2. ALGORITHMIC BACKGROUND

iy

S
~
N
N
N
v /N N

/ / b \

Figure 2.2:Ambient occlusion for volume rendering. Voxelsare sampled along random
ray direction. If the density of the tested voxel is equal with the iso value, intersection
isfound, surface point P is occluded from this direction

bent normal can be used to look up incident radiance from an environmeqt ta
approximate image-based lighting. In our implementati@nuse dynamic ray-traced
ambient occlusion together with environment mapping faragimatel BL lighting.

2.1 Ambient Occlusion in Volume Rendering

Usually, traditional volume rendering approaches usel ldkcaemination models for
surface shading which do not provide enough support for eesgination of complex
data. Therefore, quality of the rendered image should benebetd with approximate
global illumination model. For the ray-caster applicatioa have reimplemented our
GPU shader model to calculate volume ray-traced ambiehision over the original
shader lit by a cube map environment.

For the occlusion effect random directions need to be géegtrehich are uploaded
as an 1D texture. For the random vectors points with unifoistridution are placed
inside of a unit circle. The points inside the circle are potg¢d up to the unit hemi-
sphere facing the normal vector. The vector pointing froendtirrent surface point to
the projected point is a random direction for the occlusifiece. In the shader code
the number of the random samples can be changed for qualityspeed balancing
purposes.

For each direction the occlusion has to be decided. Theittigotravels the vol-
ume grid and checks whether the current density value bslriipe displayed isosur-
face. If the density test passed for the voxel then the rarsection test is terminated
and the fact of the intersection is registered. From the@anthys and intersection
results éent normal is produced for each surface point during the rendering.behe
normal helps approximate the environment lighting. Tieat normal is used to deter-
mine the main direction of lighting taking into account thersunding geometry. A
cube environment texture is also uploaded and indexed bpdftenormal vector for
more realistic lighting conditions.

6 CHAPTER 2. ALGORITHMIC BACKGROUND

2.2 Environment Mapping

In computer graphicenvironment mapping is a commonly used method of simulating
complex surrounding surfaces by a precomputed texturegmBige texture stores the
image of the environment surrounding and can be fetchedblts walues from the
specific directions. There are different ways of storing éhgironment map Cubic
environment mapping unfolds the environment onto the six faces of a cube, thezefo
stores six square textures. Tégherical environment mapping approach uses a single
texture which contains the image of the surrounding as ttefiiean a mirror ball.

The technique is widely used because of its efficiency inkstédhe classical ray
tracing reflections which calculates environment effegtshooting rays and follow-
ing their optically exact path. However, the method is a eragproximation of the
classical ray tracing.

In some cases real-world scenes are extended with companteraged scenes. The
advantage of the method is that real-life lighting condii@an be mimiced by envi-
ronment maps.

2.2.1 Cube Mapping

Our implementation contains theibe mapping technique that takes a three dimen-
sional texture coordinate and returns a texel from a givéreenap. The texture coor-
dinate is a vector that specifies which way to look from theeeof the cube mapped
cube to get the desired texel.

Cubemappingis usually preferredsphere mapping yields to more distortion, which
needs a higher resolution map. Dynamic cube map generatalao more simple for
realtime simulated reflections and lighting effects.

2.3 Ambient Occlusion Shader Implementation

The ambient occlusion extension has been realized as ad\viid#l shader. The shader
extension gets the environment map texture, the surfaceals®, and the value of
the occlusion sampling. Uniformly sampled points are chdaside of a unit circle.
Points are projected up onto the hemisphere. Vector dinecsigenerated in tangent-
space coordinate system. In the specific direction the ihgotravels with predefined
iteration steps. Fragment object positions are storeddmpdl tex texture. Rays are
emitted from this point fetched from the texture. Occlusgchecked for the generated
ray direction starting from the fragment object positionur@nt voxel density is read
via a texture-space conversion of the current voxel fronvétheex volume 3D texture.
If the current density value is higher and the previous dgnsilue is lower then the
iso_value than the current point is occluded from that direction basedhe current
isosurface.

Ambient occlusion is composited over the original shadée dcclusion pass is a
grayscale image which is darker in more occluded areas.

struct fragmentin {
float2 unittc : TEXCOORDO;
float4 fragmentcolor : COLORO;

+

CHAPTER 2. ALGORITHMIC BACKGROUND

struct fragmentOut main(
fragmentin IN,

uniform float4x4 mvmat :
uniform float4x4 ttinv :
uniform samplerCUBE entex,
uniform sampler3D volumgex,
uniform sampler2D pagex,
uniform sampler2D gradex ,
uniform samplerlD Icolor_tex ,
uniform samplerlD randex ,

uniform float iso.value ,

)

uniform float samples

float2 unittc = IN. unittc ;

float4 posobj = tex2D(postex, unittc);

// number of intersected rays;

float hits = 0.f;

float u, v;
float theta, phi;
float3 randVec, O, P, newDir;

float3 bentNormal = float3 (0,0,0) ;

// occlusion

for (float i = 0.0f; i < samples; i=i+1){

u = —1 + 2«i/samples;
v = —1 + 2«i/samples;

// tangent-space base vectors

O = cross (N, float3 (0,0,1));

if (length (O)< 0.0001){ O = cross (N, float3 (0,1,0)) }

P = cross (N,0);

float x0 = 2xu — 1;
float yO = 2xv — 1,

if ((x0%x0+yOry0)<1) {

// z from projection onto the hemisphere
float z0 = sqrt (2 (x0+x0+yC«xy0));

// random direction

newDir = Ox* X0 + P % y0 + N z0;

} else continue

// intersection test

float4 raydir = float4 (newDir.x,newDir.y,newDir.z,1);

// iteration step
const float dt = 0.01f;

// intersected point
float3 p;

floatd p4;

floatd p4text;

float4 péray;

float s;

float vp = 0, vpold = 0, t;

// is intersected ?
bool found = false ;

state . matrix . modelview,
state . matrix . texture [0],

CHAPTER 2. ALGORITHMIC BACKGROUND

// intersection check
for (t = 0.01; t <=0.9f; t +=dt) {
if (t!=0.01){
p = posobj.xyz + raydir .xyzx (t—dt);
p4 = float4 (p, 1.0);
p4text = mul(ttinv , p4);
vpold = tex3D(volumetex, p4text).r;
p = posobj.xyz + raydir .xyzx* t;
p4 = float4 (p, 1.0);
patext = mul(ttinv, p4);
vp = tex3D(volumetex, p4text).r;

else {
p = posobj.xyz + raydir .xyzx* t;
p4 = float4 (p, 1.0);
patext = mul(ttinv, p4);
vp = vpold = tex3D(volumdex, p4text).r;

}

// isovalue voxel density check
if (vp > isovalue && vpold < iso.value) {

hits +=1.f;
found = true;
break;

if (!found) bentNormal+=newDir;

}

// occlusion value

float occlusion = hits / samples;
// bent normal vector for lighting
bentNormal = normalize (bentNormal);

Listing 2.1: Pixel shader for occlusion calculation

Chapter 3

Results

In this section execution results are presented for a foderHP SVA cluster. Each
node had a dual-core AMD Opteron 246 processor and NVIDIAo@ef 8600GT
graphics card. The software environment was HP XC V3.2 RC1.

Table 3.1 and Table 3.2 show the results of the distributeding of the volume
renderer application. The ambient occlusion calculatiorme tdecrease the simulation
speed, but scales well on the cluster. Speed and qualityebalanced by parameters
like occlusion samples. Less samples yield to noisy images but increase the FP8.valu

| occlusion samples| 1 node| 2 nodes| 3 nodes| 4 nodes]

32 3.6fps| 6.8fps | 9.8fps | 12.9fps
64 19fps| 3.8fps | 5.4fps | 7.1fps
128 1fps 2fps | 29fps | 4fps
256 0.5fps| 1fps 15fps | 2fps

Table 3.1: Results of the screen-space distributed ray-caster with ambient occlusion
and IBL extensions. The rows show simulation results in FPS for 32, 64, 128, 256
occlusion shadow ray samples per surface point. Smulation is measured with the
engine data set (256x256x118 voxels)

| occlusion samples| 1 node| 2 nodes| 3 nodes| 4 nodes|

32 2.8fps| 5.3fps | 6.8fps| 8.2fps
64 15fps| 29fps | 3.6fps | 4.5fps
128 0.8fps| 1.6fps | 2fps | 2.6fps
256 0.4fps| 0.85fps| 0.9fps | 1.3fps

Table 3.2: Results of the screen-space distributed ray-caster with ambient occlusion
and IBL extensions. The rows show simulation results in FPS for 32, 64, 128, 256
occlusion shadow ray samples per surface point. Smulation is measured with the
visible human data set (512x512x512 voxels)

10 CHAPTER 3. RESULTS

Figure 3.1:Engine data set visualized by RTPara distributed ray-caster with ambient
occlusion and I BL extensions (256x256x118)

Figure 3.2:Visible human data set visualized by RTPara distributed ray-caster with
ambient occlusion and IBL extensions (256x256x256 slice)

Bibliography

[1] S. Guthe, M. Wand, J. Gonser, and W. Stral3er. Intera®isrdering of Large Volume Data Sets. In
Proceedings of | EEE Visualization 2002, pages 45-52, 2002.

[2] BME IT2. RTPara - Distributed Ray-Casting ApplicatioarfHewlett-Packard Scalabe Visualization
Array. http://amon.ik.ome.hu/rtpara/, 2007.

[3] Hewlett PackardHP Scalable Visualization Array Parallel Compositing Library Reference Guide, 2007.

11

