
Ambient occlusion and Image-Based Lighting
Extensions for RTPara Distributed Ray-Casting
Application

for Hewlett-Packard Scalable Visualization Array
August, 2008

Budapest University of Technology and Economics

Department of Control Engineering and Information Technology

1

Copyright 2008 Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology.
http://www.iit.bme.hu/

Contents

1 Introduction 3

2 Algorithmic Background 4
2.1 Ambient Occlusion in Volume Rendering 5
2.2 Environment Mapping . 6

2.2.1 Cube Mapping . 6
2.3 Ambient Occlusion Shader Implementation 6

3 Results 9

2

Chapter 1

Introduction

This document gives an overview of the extensions designed for the parallel isosur-
face ray-casting application calledRTPara developed byBME IT2 in 2007 [2]. The
application allows the visualization of volume datasets ina distributed environment by
rendering isosurfaces [1] using screen space or object space decomposition approaches
at interactive frame rates. Rendering parameters like the viewing direction, isosurface
threshold, etc. can be interactively modified, the program provides an immediate visual
feedback. In the available documentation the implemented isosurface ray-casting algo-
rithm was presented in detail including the parallelization approaches (screen space and
object space), theParaComp Library [3] bindings, the installation and usage manual,
and also the relevant implementation aspects were covered.

The original application supports basic ray-casting rendering with Phong-Blinn and
Lambert BRDF models. This extension adds new features to the software’s rendering
capabilities. A fake global illumination method calledambient occlusion has been
integrated with a cube map based image based lighting technique.

In the second Chapter of this document the algorithmic background of ambient
occlusion is introduced.

Generated images and measured frame rates are reported in the last chapter.

3

Chapter 2

Algorithmic Background

Ambient occlusion is a shading technique in 3D computer graphics which helps add
more realism to scenes with local illumination models. Local illumination reflection
models compute a physically inaccurate, simplified lighting without taking into account
multiple light bounces. Unlike local methods likePhong shading, ambient occlusion is
a global method, the illumination at each point is affected by the surrounding geometry,
however it is only an approximation of the full global illumination.

Ambient occlusion is most often calculated by casting rays in every direction from
the surface. The surface is darker if most of the rays hit an object in the scene, because
the surface is occluded. Rays which reach the background (nocollision detected in a
specific direction) increase the brightness of the surface.

Ambient occlusion has been popularized in production animation, video games and
other areas - where interactive feedback is essential - due to its relative simplicity and
efficiency. In the industry, ambient occlusion is often referred to assky light. The
algorithm has the property of offering a better quality perception of the 3d shape which
is important when huge volumetric data sets are rendered.

The occlusionAp at a pointp on a surface with normal~N can be computed by
integrating thevisibility function over the hemisphereΩ.

In addition to the ambient occlusion calculation, abent normal ~Nb can be also
generated. This vector points in the average direction of the unoccluded samples. The

Figure 2.1:Ambient occlusion AP at surface point P with normal vector ~N over the
hemisphere Ω

4

5 CHAPTER 2. ALGORITHMIC BACKGROUND

Figure 2.2:Ambient occlusion for volume rendering. Voxels are sampled along random
ray direction. If the density of the tested voxel is equal with the iso value, intersection
is found, surface point P is occluded from this direction

bent normal can be used to look up incident radiance from an environment map to
approximate image-based lighting. In our implementation we use dynamic ray-traced
ambient occlusion together with environment mapping for approximateIBL lighting.

2.1 Ambient Occlusion in Volume Rendering

Usually, traditional volume rendering approaches use local illumination models for
surface shading which do not provide enough support for easyexamination of complex
data. Therefore, quality of the rendered image should be extended with approximate
global illumination model. For the ray-caster applicationwe have reimplemented our
GPU shader model to calculate volume ray-traced ambient occlusion over the original
shader lit by a cube map environment.

For the occlusion effect random directions need to be generated which are uploaded
as an 1D texture. For the random vectors points with uniform distribution are placed
inside of a unit circle. The points inside the circle are projected up to the unit hemi-
sphere facing the normal vector. The vector pointing from the current surface point to
the projected point is a random direction for the occlusion effect. In the shader code
the number of the random samples can be changed for quality and speed balancing
purposes.

For each direction the occlusion has to be decided. The algorithm travels the vol-
ume grid and checks whether the current density value belongs to the displayed isosur-
face. If the density test passed for the voxel then the ray intersection test is terminated
and the fact of the intersection is registered. From the random rays and intersection
results abent normal is produced for each surface point during the rendering. Thebent
normal helps approximate the environment lighting. Thebent normal is used to deter-
mine the main direction of lighting taking into account the surrounding geometry. A
cube environment texture is also uploaded and indexed by thebent normal vector for
more realistic lighting conditions.

6 CHAPTER 2. ALGORITHMIC BACKGROUND

2.2 Environment Mapping

In computer graphicsenvironment mapping is a commonly used method of simulating
complex surrounding surfaces by a precomputed texture image. The texture stores the
image of the environment surrounding and can be fetched its color values from the
specific directions. There are different ways of storing theenvironment map.Cubic
environment mapping unfolds the environment onto the six faces of a cube, therefore it
stores six square textures. Thespherical environment mapping approach uses a single
texture which contains the image of the surrounding as reflected on a mirror ball.

The technique is widely used because of its efficiency instead of the classical ray
tracing reflections which calculates environment effects by shooting rays and follow-
ing their optically exact path. However, the method is a crude approximation of the
classical ray tracing.

In some cases real-world scenes are extended with computer generated scenes. The
advantage of the method is that real-life lighting conditions can be mimiced by envi-
ronment maps.

2.2.1 Cube Mapping

Our implementation contains thecube mapping technique that takes a three dimen-
sional texture coordinate and returns a texel from a given cube map. The texture coor-
dinate is a vector that specifies which way to look from the center of the cube mapped
cube to get the desired texel.

Cube mapping is usually preferred,sphere mapping yields to more distortion, which
needs a higher resolution map. Dynamic cube map generation is also more simple for
realtime simulated reflections and lighting effects.

2.3 Ambient Occlusion Shader Implementation

The ambient occlusion extension has been realized as a Nvidia pixel shader. The shader
extension gets the environment map texture, the surface isovalue, and the value of
the occlusion sampling. Uniformly sampled points are chosen inside of a unit circle.
Points are projected up onto the hemisphere. Vector direction is generated in tangent-
space coordinate system. In the specific direction the algorithm travels with predefined
iteration steps. Fragment object positions are stored in the pos tex texture. Rays are
emitted from this point fetched from the texture. Occlusionis checked for the generated
ray direction starting from the fragment object position. Current voxel density is read
via a texture-space conversion of the current voxel from thevol tex volume 3D texture.
If the current density value is higher and the previous density value is lower then the
iso value than the current point is occluded from that direction basedon the current
isosurface.

Ambient occlusion is composited over the original shader. The occlusion pass is a
grayscale image which is darker in more occluded areas.

struct fragmentIn {
float2 unit tc : TEXCOORD0;
float4 fragmentcolor : COLOR0;

};

7 CHAPTER 2. ALGORITHMIC BACKGROUND

struct fragmentOut main(
fragmentIn IN,
uniform float4x4 mvmat : state . matrix .modelview,
uniform float4x4 ttinv : state . matrix . texture [0],
uniform samplerCUBE envtex,
uniform sampler3D volumetex,
uniform sampler2D postex ,
uniform sampler2D gradtex ,
uniform sampler1D lucolor tex ,
uniform sampler1D randtex ,
uniform float iso value ,

uniform float samples
)

{

float2 unit tc = IN. unit tc ;
float4 posobj = tex2D(postex , unit tc) ;

// number of intersected rays ;
float hits = 0. f ;

float u, v;
float theta , phi ;
float3 randVec, O, P, newDir;
float3 bentNormal = float3 (0,0,0) ;

// occlusion
for (float i = 0.0 f ; i < samples; i=i+1){

u = −1 + 2∗i/samples;
v = −1 + 2∗i/samples;

// tangent−space base vectors
O = cross (N, float3 (0,0,1)) ;
if (length (O)< 0.0001){ O = cross (N, float3 (0,1,0)) ;}
P = cross (N,O);

float x0 = 2∗u − 1;
float y0 = 2∗v − 1;

if ((x0∗x0+y0∗y0)<1) {
// z from projection onto the hemisphere
float z0 = sqrt (1−(x0∗x0+y0∗y0));
// random direction
newDir = O∗ x0 + P ∗ y0 + N ∗ z0;

} else continue;

// intersection test
float4 raydir = float4 (newDir.x,newDir.y,newDir.z,1) ;
// iteration step
const float dt = 0.01f ;

// intersected point
float3 p;
float4 p4;
float4 p4text ;
float4 p4ray;
float s;
float vp = 0, vpold = 0, t ;

// is intersected ?
bool found = false ;

8 CHAPTER 2. ALGORITHMIC BACKGROUND

// intersection check
for (t = 0.01; t <= 0.9f; t += dt) {

if (t != 0.01) {
p = posobj .xyz + raydir .xyz∗ (t−dt);
p4 = float4 (p, 1.0) ;
p4text = mul(ttinv , p4);
vpold = tex3D(volumetex, p4text) . r ;
p = posobj .xyz + raydir .xyz∗ t ;
p4 = float4 (p, 1.0) ;
p4text = mul(ttinv , p4);
vp = tex3D(volumetex, p4text) . r ;

}
else {

p = posobj .xyz + raydir .xyz∗ t ;
p4 = float4 (p, 1.0) ;
p4text = mul(ttinv , p4);
vp = vpold = tex3D(volumetex, p4text) . r ;

}

// isovalue voxel density check
if (vp > iso value && vpold< iso value) {

hits +=1.f ;
found = true ;
break;

}

}
if (! found) bentNormal+=newDir;

}

// occlusion value
float occlusion = hits / samples;
// bent normal vector for lighting
bentNormal = normalize(bentNormal);

}

Listing 2.1: Pixel shader for occlusion calculation

Chapter 3

Results

In this section execution results are presented for a four-node HP SVA cluster. Each
node had a dual-core AMD Opteron 246 processor and NVIDIA Geforce 8600GT
graphics card. The software environment was HP XC V3.2 RC1.

Table 3.1 and Table 3.2 show the results of the distributed running of the volume
renderer application. The ambient occlusion calculation time decrease the simulation
speed, but scales well on the cluster. Speed and quality can be balanced by parameters
like occlusion samples. Less samples yield to noisy images but increase the FPS value.

occlusion samples 1 node 2 nodes 3 nodes 4 nodes

32 3.6 fps 6.8 fps 9.8 fps 12.9 fps
64 1.9 fps 3.8 fps 5.4 fps 7.1 fps
128 1 fps 2 fps 2.9 fps 4 fps
256 0.5 fps 1 fps 1.5 fps 2 fps

Table 3.1:Results of the screen-space distributed ray-caster with ambient occlusion
and IBL extensions. The rows show simulation results in FPS for 32, 64, 128, 256
occlusion shadow ray samples per surface point. Simulation is measured with the
engine data set (256x256x118 voxels)

occlusion samples 1 node 2 nodes 3 nodes 4 nodes

32 2.8 fps 5.3 fps 6.8 fps 8.2 fps
64 1.5 fps 2.9 fps 3.6 fps 4.5 fps
128 0.8 fps 1.6 fps 2 fps 2.6 fps
256 0.4 fps 0.85 fps 0.9 fps 1.3 fps

Table 3.2:Results of the screen-space distributed ray-caster with ambient occlusion
and IBL extensions. The rows show simulation results in FPS for 32, 64, 128, 256
occlusion shadow ray samples per surface point. Simulation is measured with the
visible human data set (512x512x512 voxels)

9

10 CHAPTER 3. RESULTS

Figure 3.1:Engine data set visualized by RTPara distributed ray-caster with ambient
occlusion and IBL extensions (256x256x118)

Figure 3.2:Visible human data set visualized by RTPara distributed ray-caster with
ambient occlusion and IBL extensions (256x256x256 slice)

Bibliography

[1] S. Guthe, M. Wand, J. Gonser, and W. Straßer. InteractiveRendering of Large Volume Data Sets. In
Proceedings of IEEE Visualization 2002, pages 45–52, 2002.

[2] BME IT2. RTPara - Distributed Ray-Casting Application for Hewlett-Packard Scalabe Visualization
Array. http://amon.ik.bme.hu/rtpara/, 2007.

[3] Hewlett Packard.HP Scalable Visualization Array Parallel Compositing Library Reference Guide, 2007.

11

