
Radiation Transfer Computation
for Hewlett-Packard Scalable Visualization Array

Dec, 2008

Budapest University of Technology and Economics
Department of Control Engineering and Information Technology

1

Copyright 2008 Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology.
http://www.iit.bme.hu/

Contents

1 Introduction 4

2 Iteration solution of the radiative transfer equation 8
2.1 Iteration on parallel machines . 9

3 Initial radiance distribution 10
3.1 Direct term . 10
3.2 Initial distribution of the estimated radiance 10

3.2.1 Initial approximation with wavefront tracing 11

4 Refinement of the initial solution by iteration 13

5 Implementation 15
5.1 The CUDA programming environment 15
5.2 Multiple scattering with iteration . 16

5.2.1 Modeling the FCC lattice on the GPU 16
5.2.2 Simulation kernel: iteration 17

5.3 Inital radiance distribution . 18
5.3.1 Wavefront tracing . 18

5.4 Visualization . 20

6 Parallel Implementation 22
6.1 Distribution of the simulation and visualization 22
6.2 HP Parallel Compositing Library . 23

7 Installation and usage 25
7.1 Installation . 25

7.1.1 Library dependencies . 25
7.1.2 RPM Package . 26
7.1.3 Building from Sources . 26

7.2 Usage . 27
7.2.1 SVA Startup Script . 27
7.2.2 User Interface . 28
7.2.3 Volume Descriptor File . 32

8 Program Structure 33
8.1 Main program . 33
8.2 LatticeSim class . 33
8.3 CUDA files . 33

2

3 CONTENTS

8.4 The definition of the FCC lattice . 33
8.5 Transfer curve controls . 33
8.6 Volume loader class . 33
8.7 Common utilities . 34

9 Results 35

Chapter 1

Introduction

The multiple-scattering simulation in participating media is one of the most challenging
problems in computer graphics, radiotherapy, PET/SPECT reconstruction, etc. Such
simulation should solve the radiative transport equation that expresses the change of
radiance L(~x, ~ω) at point~x and in direction ~ω :

~ω ·~∇L =
dL(~x+~ωs, ~ω)

ds

∣∣∣∣
s=0

=−σtL(~x, ~ω)+σs

∫

Ω′
L(~x, ~ω ′)P(~ω ′, ~ω) dω ′, (1.1)

where σt is the extinction coefficient describing the probability of collision in a unit
distance. When collision happens, the photon is either scattered or absorbed, so the
extinction coefficient is broken down to scattering coefficient σs and absorption coeffi-
cient σa:

σt = σa +σs.

The probability of reflection given that collision happened is called the albedo of the
material:

a =
σs

σt
.

If reflection happens, the probability density of the reflected direction is defined by
phase function P(~ω ′, ~ω). The extent of anisotropy is usually expressed by the mean
cosine of the phase function:

g =
∫

Ω′
(~ω ′ ·~ω)P(~ω ′ ·~ω) dω ′.

In homogeneous media volume properties σt , σs, and P(~ω ′, ~ω) do not depend on posi-
tion~x. In inhomogeneous media these properties depend on the actual position.

In case of measured data, material properties are usually stored in a 3D voxel grid,
and are assumed to be constant or linear between voxel centers. If the diameter of the
region represented by a voxel is ∆, then the total extinction is worth representing by a
new parameter that is called the opacity and is denoted by α:

α = 1− e−σt ∆ ≈ σt∆. (1.2)

Radiance L(~x, ~ω) is often expressed as a sum of two terms, the direct term Ld that
represents unscattered light, and the media term Lm that stands for the light component
that scattered at least once:

L(~x, ~ω) = Ld(~x, ~ω)+Lm(~x, ~ω).

4

5 CHAPTER 1. INTRODUCTION

The direct term is reduced by out-scattering:

dLd

ds
=−σtLd .

The media term is not only reduced by out-scattering, but also increased by in-scattering:

dLm

ds
=−σtLm +σs

∫

Ω′
(Ld +Lm)P(~ω ′, ~ω) dω ′.

Note that this equation can be re-written by considering the reflection of the direct term
as a volumetric source:

dLm

ds
=−σtLm +σs

∫

Ω′
LmP(~ω ′, ~ω) dω ′+Q(~x, ~ω), (1.3)

where the source intensity is

Q(~x, ~ω) = σs

∫

Ω′
Ld(~x, ~ω ′)P(~ω ′, ~ω) dω ′.

The volumetric source represents the coupling between the direct and media terms.
Although the direct term can be expressed as an integral even in inhomogeneous

medium, the evaluation of this integral requires ray marching and numerical quadra-
ture. Having obtained the direct term, and transforming it to the volumetric source, the
media term needs to be computed.

Cerezo et al. [3] classified algorithms solving the transfer equation as analytic,
stochastic, and iterative.

Analytic techniques rely on simplifying assumptions, such as that the volume is
homogeneous, and usually consider only the single scattering case [2, 17]. Jensen
et al. [7] attacked the subsurface light transport by assuming that the space is par-
titioned into two half spaces with homogeneous material and developed the dipole
model. Narasimhan and Nayar [11] proposed a multiple scattering model for optically
thick homogeneous media and isotropic light source.

Stochastic methods apply Monte Carlo integration to solve the transport problem
[8, 6]. These methods are the most accurate but are far too slow in interactive applica-
tions.

Iterative techniques need to represent the current radiance estimate that is refined
in each step [4]. The radiance function is specified either by finite-elements, using, for
example, the zonal method [14], spherical harmonics [8], radial basis functions [19],
metaballs, etc. or exploiting the particle system representation [18].

Stam [15] introduced diffusion theory to compute energy transport. Here the angu-
lar dependence of the radiance is approximated by a two-term expansion:

L(~x, ~ω)≈ L̃(~x, ~ω) =
1

4π
φ(~x)+

3
4π

~E(~x) ·~ω.

By enforcing the equality of the directional averages of L and L̃, we get the following
equation for fluence φ(~x):

φ(~x) =
∫

Ω

L(~x, ~ω) dω.

6 CHAPTER 1. INTRODUCTION

Requiring
∫
Ω

L(~x, ~ω)~ω dω =
∫
Ω

L̃(~x, ~ω)~ω dω , we obtain vector irradiance ~E(~x) as

~E(~x) =
∫

Ω

L(~x, ~ω)~ω dω.

Substituting this two-term expansion into the radiative transfer equation and averaging
it for all directions, we obtain the following diffusion equations:

~∇φ(~x) =−3σ ′t ~E(~x), ~∇ ·~E(~x) =−σaφ(~x). (1.4)

where σ ′t = σt −σsg is the reduced extinction coefficient.
In [15] the diffusion equation is solved by either a multi-grid scheme or a finite-

element blob method. Geist et al. [5] computed multiple scattering as a diffusion
process, using a lattice-Boltzmann solution method.

In order to speed up the solutions to interactive rates, the transport problem is of-
ten simplified and the solution is implemented on the GPU. The translucent rendering
approach [9] involves multiple scattering simulation, but considers only multiple ap-
proximate forward scattering and single backward scattering. This method aims at nice
images instead of physical accuracy. Physically based global illumination methods,
like the photon map, have also been used to solve the multiple scattering problem [13].
To improve speed, light paths were sampled on a finite grid.

The high computational burden of multiple scattering simulation has been attacked
by parallel methods both in surface [1] and volume rendering [16]. Parallel volume
rendering methods considered the visualization of very large datasets, while interactive
multiple scattering simulation has not been in the focus yet. Stochastic methods scale
well on parallel systems, so they would be primary candidates for parallel machines,
but their convergence rate is still too slow. Iterative techniques, on the other hand,
converge faster but require data exchanges between the nodes, which makes scalability
sub-linear.

This paper presents a fast parallel solution for the radiative transfer equation (Fig-
ure 1.1). We have taken the iteration approach because of its better convergence. This
posed challenges for the parallel implementation because we should attack the sub-
linear scalability and the communication bottleneck. Our approach is based on two
recognitions. Iteration is slow because it requires many “warming up” steps to dis-
tribute the power of sources to far regions. Thus, if we can find an easy way to approx-
imate the solution, then iteration should only refine the initial approximation, which
could be done in significantly fewer steps. On the other hand, iteration requires the ex-
change of data from all computing nodes in each step, which leads to a communication
bottleneck. We propose an iteration scheme when the data are exchanged less fre-
quently. This slows down the convergence of the iteration, so computing nodes should
work longer, but reduces the communication load.

We shall assume that the primary source of illumination is a single point light
source in the origin of our coordinate system. More complex light sources can be
modeled by translation and superposition. We use a simple and fast technique to ini-
tially distribute the light in the medium. The distribution is governed by the diffusion
theory, where the single pass approximate solution is made possible by assumptions
that the medium is locally homogeneous and spherically symmetric. The solution is
approximate but can be obtained at the same cost as the direct term. Having obtained
the initial approximation, the final solution is computed by iteration on a GPU cluster.

7 CHAPTER 1. INTRODUCTION

Figure 1.1: The outline of the algorithm. 1: The volume is defined on a grid. 2: An
illumination network is established between the grid points. 3: Single scattering and
estimated multiple scattering are distributed from each light source. 4: The final results
are obtained by iteration which corrects the errors of the estimation. 5: The image is
rendered by standard alpha blending.

This paper is organized as follows. Section 2 explains the iteration solution, the
importance of having a good initial approximation, and the challenges of parallel exe-
cution. Section 3 discusses the computation of the direct term. Section 4 presents the
initial estimation of the radiance. Section 5 deals with the iterative refinement. Section
6 presents our distributed implementation and Section 7 summarizes the results.

Chapter 2

Iteration solution of the
radiative transfer equation

The transport equation is an integro-differential equation. Integrating both sides, the
equation can be turned to an integral equation of the following form:

L = T L+Qe

where T is a linear integral operator and Qe is the source term provided by the bound-
ary conditions. Applying finite-element techniques, the continuous radiance function
is represented by finite data, which turns the integrated transfer equation to a system of
linear equations:

L = T ·L+Qe,

where vector L is the radiance of the sample locations and directions, Qe is the vector
of source terms and boundary conditions, and T is the transport matrix.

Iteration obtains the solution as the limiting value of the following iteration se-
quence

Ln = T ·Ln−1 +Qe

so if this scheme is convergent, then the solution can be obtained by starting with an
arbitrary radiance distribution L0 and iteratively repeating operator T. The convergence
is guaranteed if T is a contraction, i.e. for the norm of this matrix, we have

‖T ·L‖< λ‖L‖, λ < 1,

which is the case if the albedo is less than 1.
The error at a particular step n can be found by subtracting the solution L from the

iteration scheme, and applying the definition of the contraction iteratively:

‖Ln−L‖= ‖T · (Ln−1−L)‖< λ‖Ln−1−L‖< λ n‖L0−L‖.

Note that the error is proportional to the norm of the difference of the initial guess
L0 and the final solution L. Thus, having a good initial guess that is not far from the
solution, the error after n iteration steps can be significantly reduced.

8

9
CHAPTER 2. ITERATION SOLUTION OF THE RADIATIVE TRANSFER

EQUATION

2.1 Iteration on parallel machines
In order to execute the iteration on a parallel machine, the radiance vector Ln is bro-
ken to parts and each computing node is responsible for the update of its own part.
However, the new value of a part also depends on other parts, which would necessitate
state exchanges between the nodes in every iteration. This would quickly make the
communication the bottleneck of the parallel computation.

This problem can be attacked by not exchanging the current state in every iteration
cycle. Suppose, for example, that we exchange data just in every second iteration
cycle. When the data is exchanged before executing the matrix-vector multiplication,
the iteration looks like the original formula:

Ln = T ·Ln−1 +Qe.

However, when the data is not exchanged, a part of the matrix is multiplied by the
radiance estimate of the older iteration. Let us denote the matrix by T∗ that is similar
to T where the own part is multiplied and zero elsewhere. With this notation, the cycle
without previous data exchange is:

Ln = T∗ ·Ln−1 +(T−T∗) ·Ln−2 +Qe.

Putting the two equations together, the execution of an iteration without state changes
and then an iteration with state changes would result in:

Ln = T2 ·Ln−2 +T ·Qe +Qe +T · (T−T∗) · (Ln−3−Ln−2).

Note that if this scheme is convergent, then Ln, Ln−2, and Ln−3 should converge to the
same vector L, thus the limiting value satisfies the following equation:

L = T2 ·L+T ·Qe +Qe.

This equation is equivalent to the original equation, which can be proven if the right
side’s L is substituted by the complete right side:

L = T ·L+Qe = T · (T ·L+Qe)+Qe.

The price of not exchanging the data in every iteration step is the additional error term
T · (T−T∗) · (Ln−3−Ln−2). This error term also converges to zero, but slows down
the iteration process especially at the beginning of the iteration.

Using the same argument, we can prove a similar statement for cases when the
data is exchanged just in every third, fourth, etc. cycles. The number of iterations
done by the nodes between data exchanges should be specified by finding an optimal
compromise, which depends on the relative computation and communications speeds.

Chapter 3

Initial radiance distribution

3.1 Direct term
The direct term is reduced by out-scattering. As the source is in the origin, the direct
term is non-zero only for the direction from the origin to the considered point. Let us
consider a point at distance r on a beam started at the source and having solid angle ∆Ω,
and step on this beam by dr. As a photon collides with the medium with probability
σt(r)dr during the step, the radiant intensity (i.e. the power per solid angle) Φ(r) at
distance r satisfies the following equation

Φ(r +dr) = Φ(r)−σt(r)I(r) =⇒ dΦ(r)
dr

=−σt(r)I(r). (3.1)

If the radiant intensity is Φ0 at the source, then the solution of this equation is

Φ(r) = Φ0e−
∫ r

0 σt (s)ds.

The radiance is the power per differential solid angle and differential area. In
our beam the power is the product of radiant intensity Φ(r) and solid angle ∆Ω. On
the other hand, the solid angle in which the source is visible equals to zero, which
introduces a Dirac delta in the radiance formula. The area at distance r grows as ∆A =
∆Ωr2. Thus, the radiance of the direct term is

Ld(~x, ~ω) =
Φ(r)∆Ω

∆Ωr2 δ (~ω−~ω~x) =
Φ(r)

r2 δ (~ω−~ω~x), (3.2)

where r = |~x| is the distance and ~ω~x =~x/|~x| is the direction of the point from the source.

3.2 Initial distribution of the estimated radiance
Let us consider just a single beam starting at the origin where the point source of radiant
intensity Φ is. When a beam is processed, we shall assume that other beams face to the
same material characteristics, i.e. we assume that the scene is spherically symmetric.
Note that the assumption on spherical symmetry does not mean that only one beam
is processed. We take many beams originating from the source, and each of them are
traced independently assuming that other rays face the same material properties as the
current beam.

10

11 CHAPTER 3. INITIAL RADIANCE DISTRIBUTION

In case of spherical symmetry, the radiance of the inspected beam at point~x and in
direction ~ω may depend just on distance r = |~x| from the origin and on angle θ between
direction ~ω and the direction of point ~x. The unit direction vector of point ~x will be
denoted by ~ω~x =~x/|~x|. This allows parametrization L(r,θ) instead of L(~x, ~ω). The
fluence depends just on distance r and vector irradiance ~E(~x) has the direction of the
given point, that is ~E(~x) = E(r)~ω~x.

Expressing the divergence operator in spherical coordinates, we get:

~∇ ·~E(~x) = ~∇ · (E(r)~ω~x) =
1
r2

∂ (r2E(r))
∂ r

.

Thus, the scalar versions of the diffusion equations are:

dφ(r)
dr

=−3σ ′t E(r),
1
r2

d(r2E(r))
dr

=−σaφ(r). (3.3)

If we have a point light source, then this equation has a singularity at r = 0 where
the radiance gets infinite. To solve this problem, we rewrite the equations to use power
ψ instead of the fluence. In case of spherical symmetry, at distance r the power is
computed on area 4r2π , thus the correspondences between the fluence and the vec-
tor irradiance with the power measures are ψ0 = r2φ and ψ1 = r2E (note that the
correspondence between the radiance and the fluence already includes the 4π factor).
Substituting these into the differential equation we obtain:

dψ0(r)
dr

=
2
r

ψ0−3σ ′
t ψ1(r),

dψ1(r)
dr

=−σaψ0(r). (3.4)

For homogeneous infinite material, the differential equation can be solved analyti-
cally:

ψh
0 (r) = Ae−σerr,

ψh
1 (r) =

2
3rσ ′t

ψ0(r)− 1
3σ ′t

dψ0(r)
dr

=
A

3σ ′
t

e−σer (σer +1) . (3.5)

where σe =
√

3σaσ ′t is the effective transport coefficient, and A is an arbitrary con-
stant that should be determined from the boundary conditions. According to the first
equation ψ0(0) = 0, thus only the second equation is free at the boundary. The radiant
intensity of the source is Φ, which is made equal to the vector irradiance:

ψ1(0) =
A

3σ ′
t

= Φ =⇒ A = 3σ ′t Φ.

3.2.1 Initial approximation with wavefront tracing
With equation 3.4 we established two differential equations that describe the power
evolving as we move along a ray started at the origin. These equations can be solved by
numerical integration while marching on the ray and taking samples from the material
properties σt(r) and σs(r).

In order to obtain the initial values, we take the solution for homogeneous material:

ψ0(0) = ψh
0 (0) = 0, ψ1(0) = ψh

1 (0) = 3σ ′t Φ.

12 CHAPTER 3. INITIAL RADIANCE DISTRIBUTION

Care should be practiced when starting the iteration. At the beginning ψ0 = 0 and
r = 0, so when evaluating 2

r ψ0, we have a 0/0 type undefined value. Using again the
solution of the homogeneous case

lim
r→0

2
r

ψ0 = lim
r→0

2
r

3σ ′t Φe−σerr = 6σ ′t Φ.

As ray marching proceeds taking steps ∆ increasing distance r, material properties
σt , σs, and g are fetched at the sample location, and state variables ψ0[n], and ψ1[n]
are updated according to the numerical quadrature, resulting in the following iteration
formula for step n:

ψ0[n] = ψ0[n−1]
(

1+
2∆
r

)
−3σ ′t ψ1[n−1]∆,

ψ1[n] = ψ1[n−1]−σaψ0[n−1]∆. (3.6)

Chapter 4

Refinement of the initial
solution by iteration

At the end of the approximate radiance distribution we have good estimates for the
direct term Ld and volumetric source

Q(~x, ~ω) = σs

∫

Ω′
Ld(~x, ~ω ′)P(~ω ′, ~ω) dω ′ =

Φ(r)
r2 σsP(~ω~x, ~ω),

and probably less accurate estimates for the total radiance

L(~x, ~ω)≈ 1
4π

φ(~x)+
3

4π
E(~x)(~ω~x ·~ω).

Thus, we can accept direct term Ld , but the media term Lm = L−Ld needs further re-
finement. We use an iteration scheme to make the media term more accurate, which
is based on equation 1.3, but considers only the voxel centers. The incoming medium
radiance arriving at voxel p from direction ~ω is denoted by I(p)

m (~ω). Similarly, the out-
going medium radiance is denoted by L(p)

m (~ω). Using these notations, the discretized
version of equation 1.3 at voxel p is:

Lp
m(~ω) = (1−α p)Ip

m(~ω)+α pap
∫

Ω′
Ip
m(~ω ′)Pp(~ω ′, ~ω) dω ′+Qp(~ω) (4.1)

since σt∆≈ α and σs∆≈ αa.
The incoming radiance of a voxel is equal to the outgoing radiance of another voxel

that is the neighbor in the given direction, or it is set explicitly by the boundary con-
ditions. Since in the discretized model a voxel has just finite number of neighbors, the
in-scattering integral can also be replaced by a finite sum:

∫

Ω′
Ip(~ω ′)Pp(~ω ′, ~ω) dω ′ ≈ 4π

D

D

∑
d=1

Ip(~ω ′
d)P

p(~ω ′
d , ~ω).

where D is the number of neighbors, which are in directions ~ω ′
1, . . . , ~ω ′

D with respect
to the given voxel. The number of neighbors depends on the structure of the grid. In
a conventional, so called Body Centered Cubic grid a voxel has only 6 neighboring

13

14 CHAPTER 4. REFINEMENT OF THE INITIAL SOLUTION BY ITERATION

Figure 4.1: Structure of the Face Centered Cubic Grid. Grid points are the voxel
corners, voxel centers, and the centers of the voxel faces. Here every grid point has
12 neighbors, all at the same distance.

voxels that share a face, which seems to be too small to approximate a directional
integral. Thus, it is better to use a Face Centered Cubic grid (FCC grid) [13], where
each voxel has D = 12 neighbors (Figure 4.1).

Note that unknown radiance values appear both on the left and the right sides of
the discretized transfer equation. If we have an estimate of radiance values (and con-
sequently, of incoming radiance values), then these values can be inserted into the
formula of the right side and a new estimate of the radiance can be provided. Itera-
tion keeps repeating this step. If the process is convergent, then in the limiting case
the formula would not alter the radiance values, which are therefore the roots of the
equation.

Chapter 5

Implementation

The system has been implemented on a 5 node HP Scalable Visualization Array (SVA),
where each node is equipped with an NVIDIA GeForce 8800 GTX GPU, programmed
under CUDA. The nodes are interconnected by Infiniband.

During iterational refinement separate kernels are executed on the GPU for each
computational step.

The following section provides a brief overview of the programming platform, then
we discuss the implementation details.

5.1 The CUDA programming environment
A CUDA program consists of two parts: the conventional program on the CPU is the
host code, the one running on the GPU (or device) is the kernel code. Both the host
and the kernel code has its own DRAM memory space in the system memory and the
GPU memory. By transferring data between these two storages the communication
between the two components is possible. The graphical hardware executes each kernel
in large number of parallel threads which run independently from each other and are
able to synchronize in a limited way. These threads, fitted to the SIMD (Single Instruc-
tion Multiple Data) architecture of the hardware, are organized in a special scheduling
structure.

The individual threads are grouped into thread blocks. A given block is executed on
the same SIMD unit of he hardware, so its threads can communicate with each other
through the internal memory of the processor. This is the so-called shared memory.
The number of threads in a block is constrained by the number of registers which is di-
vided among them. The GPU is capable of running thousands of threads by organizing
the same sized blocks in a grid. The blocks of the grid are evenly distributed among
the SIMD processors on the device. Since having no common memory space synchro-
nization is not possible between the threads of different blocks. Scheduling adapts to
the number of the SIMD units on the device, thus provides excellent scalability.

In the kernel code one can index the current thread with two built-in variables. Each
block has its own block ID, which identifies it in the grid. Each thread running in the
block has a thread ID. The execution order of the different blocks, and the thread warps
in the blocks is undefined and should be considered random.

Finally let us get familiar shortly with the memory model of CUDA. The GPU has
own DRAM memory, in CUDA terminology this storage space is the device memory.

15

16 CHAPTER 5. IMPLEMENTATION

Data here can be accessed from every thread, but the memory latency is a serious
bottleneck. Therefore the programmer is provided with other memory types which
have a limited size. As it was mentioned before, each SIMD processor is equipped
wich a very fast integrated shared memory. This space is divided among the executing
blocks and the communication of the threads can be realized here. CUDA can exploit
the special texturing units of the GPU as well. Textures are in fact stored in the device
memory, but accessing is speeded up with a cache memory. A special part of the
storage space is the constant memory which gets copied into the constant cache, so
reading from here is also very fast.

The performance of the application is therefore highly determined by the decisions
between different memory spaces for the data used by the kernel part. The host has
full access to every memory types except the shared memory, but because of caching
textures and constant memory is read-only from the kernel.

5.2 Multiple scattering with iteration

5.2.1 Modeling the FCC lattice on the GPU
The iterative simulation models the radiance distribution in the media by sampling the
volume according to an FCC lattice and transferring photons between the neighboring
lattice sites along the edges in the iteration steps. For that a compound data structure
had to be created which implements the FCC lattice and fulfil the following require-
ments:

• it can be indexed in 3D in order to store the data in a 3D array,

• a neighborhood function must be implemented: for a given element with index
i, j,k we must determine i′, j′,k′ which is the neighbor of the element in a given
direction in the lattice,

• The Cartesian coordinates of the element must be easily calculated from its in-
dex.

Figure 5.1 illustrates the concept of the chosen indexing method. The FCC lattice
from a CC grid is prepared by first doubling the resolution of each slice of the grid
along the z axis. Then the elements of which the sum of the x an y index is odd (a
chessboard pattern) is selected and shifted 0.5 units along the z axis.

Figure 5.1: The construction of the FCC grid.

This method creates a 2N× 2M×L resolution FCC grid from an N×M×L CC
grid, and leave the original elements in place. In this data structure:

17 CHAPTER 5. IMPLEMENTATION

• the Cartesian coordinates of an element index [i, j,k] (if the CC grid had a unit
length voxel size):

x = i, y = j, z = k +
(i+ j) mod 2

2
.

• determining the nth neighbor of an element [i, j,k]:
A relIndices look-up table was created in the constant memory of the GPU. The
nth element of that will be the relative index of the element visible in the nth
discrete direction. The indices of the directions are chosen so that 0 is the first
direction, and the opposite of the nth direction is the one with index 11−n.

5.2.2 Simulation kernel: iteration
In the FCC grid the grid points are interconnected with 12 incoming and 12 outgoing
directed edges which encode the radiance transfer between the neighbors in the discrete
directions. To store the current state of the grid it is enough to store only the incoming
or the outgoing radiances for each grid point because the radiances in the opposite
direction can be obtained from the neighbors. In this implementation the array of
outgoing radiance values is maintained because it was more memory access efficient.

The radiance distribution for one wavelength in the FCC grid is represented with
12 floating point arrays — one for each discrete direction in the grid. The FCC sites
can be mapped into a standard 3D array by using proper indexing, where each value
means the outgoing radiance from a given grid site in one direction. The volumetric
source values remain constant during the iteration, so we store them in separate 3D
textures. The iteration kernel updates the state of the grid by reading the emissions and
the incoming radiances from the neighboring grid sites. Therefore it is more efficient to
store the previous state of the grid and the emissions in textures to utilize caching. The
output of an iteration step is the input of the following one, so we copy the results back
to the input textures after each kernel execution. In order to improve performance, we
introduced a sensitivity constant which is a lower bound to the sum of the incoming
radiances for each point. We evaluate the iteration formula only where the radiance
values are greater than this constant. This method is efficient if there are larger parts of
the volume without significant irradiance.

// alpha
sigma t = tex3D(alphaTex, spos) ; // read sigma t from the alpha texture
alpha = 1.0f − expf(−EDGE LENGTH∗sigma t);
// get and store the incoming illumination form each discrete direction
for (int t= 0; t<NUM DIR; t++) {

DGetNeighbourIndex(i, j , blockIdx .x, t , dx, dy, dz) ;
emissions[t] = getEmission(t , normPos.x, normPos.y, normPos.z);
if (dz >= 0 && dz < depth) {

inscatterings [t]= getIllumination (NUM DIR−1−t, dx, dy, dz);
} else {

inscatterings [t] = 0;
}

}
// update the outgoing illuminations in the discrete directions
for (int k=0; k<NUM DIR; k++) {

// pointer to the array of illuminations for one direction
// the outgoing illumination is at least the emission of the voxel
illuminations [index] = emissions[k];

18 CHAPTER 5. IMPLEMENTATION

// now, we add the contribution of the incoming illumination of the neighbouring voxels
illuminations [index]+= (1.0 f−alpha)∗ inscatterings [NUM DIR−1−k];
// in− scattering term
float inscatter = 0;
for (int t= 0; t<NUM DIR; t++) {

inscatter += inscatterings [t] ∗ phasef(NUM DIR−1−t, k);
}
illuminations [index]+=alpha∗albedo∗(4∗PI / NUM DIR) ∗ inscatter;

}

Listing 5.1: The pseudo code of the iteration kernel for one thread

5.3 Inital radiance distribution
The application is currently capable of simulating the radiance of a single point light
source. The effect of other light source types can be approximated by the superposition
of multiple point light sources, which functionality is currently unavailable.

5.3.1 Wavefront tracing
In order to execute ray marching parallely for all rays during initial radiance distri-
bution, the volume is resampled to a new grid that is parameterized with spherical
coordinates. A voxel of the new grid with (u,v,w) coordinates represents fluence φ
and vector irradiance E of point

~x = R(wcosα sinθ ,wsinα sinθ ,wcosθ),

where
α = 2πu, θ = arccos(1−2v),

and R is the radius of the volume. Note that this parametrization provides uniform
sampling in the directional domain. A (u,v) pair encodes a ray, while w encodes the
distance from the origin. This texture is processed w-layer by w-layer, i.e. stepping the
radius r simultaneously for all rays. In a single step the GPU updates the fluence and
the vector irradiance according to equation 3.6.

After the wavefront tracing the direct illumination from the light source is known in
a spherical coordinate system. In the next kernel call the program samples the primary
scattering of the direct illumination according to the original CC grid, in Cartesian
space. During the iteration, these values are regarded as emitted radiance on the lattice
edges, therefore they will be added to the scattered radiance in each iteration step.
Examining the source code, one can note that the emissions are sampled only on a CC
grid, and 12 CUDA arrays are necessary to store them for the whole simulation.

If the user enabled the first estimation, then a third kernel is executed which place
initial radiances to the edges of the FCC lattice as well. These inital radiances are
calculated by sampling the intensity, phi0 and phi1 3D textures.

/∗
primData: the pointer to the 3D arrays of size [resolution x resolution x depth] where the

attenuated light values will be stored
resolution : the number of the sample directions will be resolution x resolution
depth: the number of the ray marching steps
stepSize : the length of one ray step in WORLD COORDINATES, so not in normalized space

19 CHAPTER 5. IMPLEMENTATION

∗/
global void d IlluminationSphere (PrimarySimData primdata, float3 omniPos, float

intensity ,
int resolution , int depth , float stepSize)

{
uint x = umul24(blockIdx.x, blockDim.x) + threadIdx .x;
uint y = umul24(blockIdx.y, blockDim.y) + threadIdx .y;
float u = x / (float) resolution ;
float v = y / (float) resolution ;

[...] // variable declarations ...

// we also update the L0 and L1 values for the initial estimation
// see the documentation for details
float ∗ data = (float ∗)primdata . I . ptr ;
float ∗ L0s = (float ∗)primdata .L0.ptr ;
float ∗ L1s = (float ∗)primdata .L1.ptr ;
int rowsize = primdata . I . pitch / sizeof (float) ;

// ray marching
// every step updates a value in the 3D texture
if ((x < resolution) && (y < resolution)) {

index = rowsize ∗ y + x;

lightRay .o = omniPos;
samplePos = omniPos;
I = intensity ;

// get the unit step size
// spherical angles ...
phi = 2∗ PI ∗ u;
theta = acosf (1.0 f− 2.0f∗v);
lightRay .d.x = sinf (theta) ∗ cosf (phi) ;
lightRay .d.y = cosf (theta) ;
lightRay .d.z = sinf (theta) ∗ sinf (phi) ;
lightRay .d = normalize(lightRay .d) ;

// find intersection with box
if (intersectBox (lightRay , c volumeBox.minCorner, c volumeBox.maxCorner, &tnear, &

tfar)) {
[...]
// march along the ray
for (int i=0; i< depth; i++) {

samplePos = lightRay .o + distance∗lightRay .d;
sigma t = tex3D(alphaTex, samplePos.x, samplePos.y, samplePos.z) ;
sigma s = albedo ∗ sigma t ;
sigma a = sigma t − sigma s;
sigma r = sigma t − g∗sigma s;

[...]

if (i == 0) { // initial values
phi 0 = 0;
phi 1 = intensity ;
phi 0 per r = 3∗sigma r ∗ intensity ; // 3 ∗ sigma r ∗ I 0

}

// store the current intensities
[...]

// update phi0 , phi1
if (distance > stepSize) {

phi 0 per r = phi 0 / (distance + 0.025∗sigma t∗stepSize) ;

20 CHAPTER 5. IMPLEMENTATION

}
d phi 0 = 2 ∗ phi 0 per r − 3∗sigma r ∗ phi 1 ;
d phi 1 =−sigma a ∗ phi 0;
phi 0 += d phi 0 ∗ stepSize ;
phi 1 += d phi 1 ∗ stepSize ;
if (phi 0 < 0) phi 0 = 0;
if (phi 1 < 0) phi 1 = 0;

// attenuate the light
I = I ∗ expf(−sigma t∗stepSize) ;

// advance along the ray
distance = distance + stepSize ;
if (distance > tfar) break;

// get the next index in the 3D texture
index += rowsize ∗ resolution ;

}
}

}
}

Listing 5.2: Source code of the wavefront tracing kernel

5.4 Visualization
The task of the visualization kernel is to display the simulation results interactively for
the user. The image synthesis is performed by ray-marching. We use transfer functions
and alpha blending for rendering, sampling must be done in reverse order, marching
back to front on the rays.

The final image is composited of two different information: the first one is the
density, the second is the radiance channel. The appearance of those can be fine tuned
by two different transfer functions on the user interface (Figure 5.2).

Before ray-marching the FCC grid must be converted back to a CC grid, because
we would like to enable 3D texture filtering, and FCC data would give incorrect results.
After that we calculate the radiance scattering in the direction of the camera for each
CC voxel (final gathering) and we store the result in a 3D texture. During ray-marching
both the sampling of this texture and the density texture gives a scalar value, which the
transfer functions convert into RGBA values. The transfer functions are stored in GPU
memory as 1D textures.

global void
d RayMarch(uint ∗d output , uint imageW, uint imageH, int maxSteps, float tstep , float

displaydensity , float displayillumination)
{

[...] // declarations

// calculate eye ray in world space
eyeRay.o = make float3 (mul(c invViewMatrix, make float4 (0.0 f , 0.0f , 0.0f , 1.0f))) ;
eyeRay.d = normalize(make float3 (u, v, −2.0f)) ;
eyeRay.d = mul(c invViewMatrix, eyeRay.d);

// find intersection with box
if (intersectBox (eyeRay, c displayBox .minCorner, c displayBox .maxCorner, &tnear, &tfar))

{

21 CHAPTER 5. IMPLEMENTATION

density radiance composited
channel channel channels

Figure 5.2: The visualization of the result is composited of two channels.

// march along ray from back to front , accumulating color
float t = tfar ;
for (int i=0; i<maxSteps; i++) {

float3 pos = eyeRay.o + eyeRay.d∗t;
spos = (pos − c volumeBox.minCorner) / (c volumeBox.maxCorner−c volumeBox.

minCorner);

// sample the density value
illumination = tex3D(alphaTex, spos .x, spos .y, spos .z) ;
// look up in transfer function texture
float4 col = tex1D(transferDensityTex , illumination) ;

// accumulate result with alpha blending : density channel
float a = displaydensity ∗col .w∗stepfactor ;
float4 sumt = lerp (sum, col , a) ;
sum.w = a + (1.0 f − a) ∗ sum.w;
sum = make float4 (sumt.x, sumt.y, sumt.z , sum.w);

[...] // do the same for the radiance channel ...

t −= tstep ;
if (t < tnear) break;

}
}

if ((x < imageW) && (y < imageH)) {
uint i = umul24(y, imageW) + x;
d output [i] = rgbaFloatToInt (sum);

}
}

Listing 5.3: Source code of the visualization kernel for a single thread

Chapter 6

Parallel Implementation

6.1 Distribution of the simulation and visualization
We implemented our algorithm on a GPU cluster. This is a shared memory paral-
lel rendering and compositing environment that uses the ParaComp library of the HP
Scalable Visualization Array [12]. The main aspect of this library is that each host
contributes to the pixels of rectangular image areas, called framelets. The process of
merging the pixels of framelets into a single image is called compositing. The Para-
Comp library allows not only the framelet computation but also the composition to run
parallely on the cluster. In our implementation one node takes the role of the master,
which means that it has additional tasks beside rendering and compositing. The master
sets the proper order of the nodes for composition and displays the composited image
on screen. All nodes (including the master) do simulation steps on one portion of the
data set, render the subvolume, and contributes this image as one framelet. The com-
position of framelets is done with alpha blending in a parallel way using the parallel
pipeline algorithm [10].
The initial radiance distribution is not parallelized since the beams are distributed on
spherical layers, which is not compatible with the volume decomposition along a given
axis. We could, however, distribute the rays among the nodes, but that would signifi-
cantly increase the communication overhead.

However, the iteration, visualization, and image compositing are executed in a dis-
tributed way.

The tasks are distributed by subdividing the volume along one axis and each node is
responsible for both the radiative transfer simulation and the rendering of its associated
subvolume.

In addition to solving the iteration formula on the individual subvolumes, we need
to implement the radiance transport between the neighboring volume parts. The sim-
ulation areas overlap so that the radiance values can be seamlessly passed from one
subvolume to the other. MPI communication between the nodes is used to exchange
the solutions at the boundary layers. It is important to notice that each node needs
to pass only 4 arrays to its appropriate neighbor: the FCC grid has 4 outgoing and 4
incoming directions for each axis-aligned boundaries.

22

23 CHAPTER 6. PARALLEL IMPLEMENTATION

6.2 HP Parallel Compositing Library
The HP Parallel Compositing Library (ParaComp) is a sort-last parallel composit-
ing API suitable for hybrid object-space screen-space decomposition. The API was
originally developed by Computational Engineering International (CEI) to make its
products run efficiently in a distributed environments. The latest version is based on
the abstract Parallel Image Compositing API (PICA) designed by Lawrence Livermore
National Lab, HP, and Chromium team.

Figure 6.1: The workflow of distributed rendering with ParaComp.

ParaComp is a message passing library for graphics clusters enabling users to take
advantage of the performance scalability of clusters with network-based pixel com-
positing without understanding its inner structure and operation. The library makes it
possible for multiple graphics nodes in a cluster to collectively produce images, thus
significantly larger data sets can be processed and larger images can be created than on
any individual graphics hardware by distributing the load over multiple nodes.

However, there is no explicit data distribution so no load balancing is done by the
API. The philosophy of the designers is keeping the API as thin as possible. There-
fore, only a global frame is defined and one or more nodes can contribute pixels to this
frame and one or more nodes can receive a specified subset of the frame. ParaComp
controls the operation of the nodes based on their request; it takes the results of their
renderings and generates the needed composited images. According to the nomencla-
ture of the API a sub-image contribution is called framelet and the received image area
is called the output. These framelets and the outputs can overlap each other without
any restriction to their origin or destination nodes. The attributes of a framelet are the
following:

• horizontal and vertical position in the global frame;

• width and height of the framelet in pixels;

• the data source which can be both the system memory and the frame buffer; and

24 CHAPTER 6. PARALLEL IMPLEMENTATION

• the depth order of the framelets which is needed by non-commutative composit-
ing operators like alpha blending.

The size of the output does not necessarily equal the size of the global frame. For
example, each tile can be connected to a separate node in a multi-tile display. The
attributes of an output are:

• horizontal and vertical position in the global frame;

• width and height of the output in pixels; and

• the pixel data to be returned (RGB, RGBA, RGBA+depth).

For details see the official documentation of the HP Parallel Compositing Library [12].

Chapter 7

Installation and usage

The 3D texture volume rendering application was implemented based on a very thin
graphics library called Minimalist OpenGL Environment. This library was designed to
handle the common issues of the development of a visualization application with the
possibly maximal code reusability. This library has a parallel extension that eases the
implementation of a parallel visualization application.

7.1 Installation
Both source and prebuilt versions of the application and the library can be found on the
web site of the project1.

7.1.1 Library dependencies
The following libraries are required by the application:

• mingle: Minimalist OpenGL Environment library (version 0.11)

• mingle-parallel: the Parallel Rendering extension of MinGLE (version 0.11)

• paracomp: Hewlett Packard implementation of the Parallel Compositing API
(version 1.0-beta1 or later)

• devil: Developer’s Image Library (version 1.6.7)

• glew: OpenGL Extension Wrangler library (version 1.3.4 or later)

• gl: library implementing OpenGL API

• glu: OpenGL Utility Library

• glut: OpenGL Utility Toolkit

• glui: The free OpenGL user interface library

1http://amon.ik.bme.hu/radtransf/

25

26 CHAPTER 7. INSTALLATION AND USAGE

There are prebuilt packages for HP XC V3.2 RC1 platform for AMD64 architec-
ture on the web site of the project for Developer’s Image Library, OpenGL Extension
Wrangler, glui, MinGLE, and MinGLE-parallel libraries. If one of them is missing
from the target system, it can be installed in the usual way using the rpm package
manager program:

rpm -i devil-1.6.7-1.x86_64.rpm

rpm -i devil-devel-1.6.7-1.x86_64.rpm

rpm -i glew-1.3.4-1.x86_64.rpm

rpm -i glew-devel-1.3.4-1.x86_64.rpm

rpm -i mingle-0.11-1.x86_64.rpm

rpm -i mingle-devel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-0.11-1.x86_64.rpm

rpm -i mingle-parallel-devel-0.11-1.x86_64.rpm

The XXX-devel-YYY.rpm packages are only needed when the volume renderer ap-
plication is built from sources. Otherwise, only the shared libraries are to be installed.

The other libraries like the Parallel Compositing library, the standard C/C++ li-
braries, and the OpenGL libraries are platform specific and have to be installed based
on the actual software stack.

7.1.2 RPM Package
The application (radtransf) can be also installed from a prebuilt RPM2 package in
the same way:

rpm -i radtransf-0.1-1.x86_64.rpm

7.1.3 Building from Sources
The build system of the program is based on GNU Autotools. So, it can be built with
the usual procedure:

$./configure --with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

Since the only implemented parallel rendering support is the HP Parallel Composit-
ing Library, it must be enabled. On a 64-bit HP XC platform the additional path values
are the following:

• <additional include directory> = /opt/paracomp/include

• <additional library directory> = /opt/paracomp/lib64

MinGLE and MinGLE-parallel libraries can be also built from sources as follows.

2Red Hat Package Manager

27 CHAPTER 7. INSTALLATION AND USAGE

Building MinGLE from Sources

The build system of Minimalist OpenGL Environment library is also based on GNU
Autotools:

$./configure

$ make

$ sudo make install

Currently MinGLE supports only the GLUT windowing system. Hence, OpenGL
headers and GLUT headers are needed. MinGLE is customizable, each feature can be
disabled in the following way in the configuration step:

$./configure --disable-glew \

--disable-devil \

--disable-freetype

However, please note that the application uses OpenGL extensions, therefore OpenGL
Extension Wrangler support should not be disabled. Please also note that the applica-
tion has a graphical user interface that requires font rendering, so Developer’s Image
Library is also needed. Nevertheless, FreeType support can be disabled if necessary,
since the fonts are read from precalculated image files.

Building MinGLE-parallel from Sources

The parallel extension can be built and installed with the following configuration op-
tions:

$./configure \

--with-inc-dir=<additional include directory> \

--with-lib-dir=<additional library directory>

$ make

$ sudo make install

The meaning of the path options is the same as the volume rendering application.

7.2 Usage
The application can be executed in parallel mode using the SVA subsystem of the
visualization XC clusters. The data to be simulated and visualized have to be a raw
data file (containing only the data without extra format headers in the file). The data
attributes can be described in an additional text file (see Section 7.2.3).

7.2.1 SVA Startup Script
A SLURM3 startup script is provided to use radtransf for parallel rendering. It can
be invoked with the following command:

3SLURM is an abbreviation for Simple Linux Utility for Resource Management. It is an open-source
resource manager designed for Linux clusters of all sizes. This software solution is used for HP-XC clusters.

28 CHAPTER 7. INSTALLATION AND USAGE

$ radtransf-hpxc.sh -r|--render <renderers> --volume <descriptor-file>

The startup script has two parameters that should be set. The first one (--render)
tells SLURM the number of additional render nodes to be allocated. The later one
(--volume) sets the volume descriptor file.

7.2.2 User Interface
Figure 7.1 shows the graphical user interface of the program. The controls of the
GUI are built up with GLUI, the free OpenGL user interface library. Only the master
instance has a user interface, and only it can handle user interaction. The instances
running on the slave nodes run in full screen mode but do not contain any GLUT
callback functions to handle user events. The slaves are notified through MPI by the
master when, for instance, the user rotates the camera, or updates a transfer function.

Figure 7.1: Screenshot of the application.

The main element of the user interface is the viewport, which displays the compos-
ited visualization to the user. The navigation in the viewport can be performed using
the mouse in the following way:

• the left button can be used for rotating the scene,

• the right button is for zooming, and

• the left + right button can be used for translating the scene.

On the right side lay the customization panel where the transfer functions can be
adjusted, and the simulation and visualization parameters fine-tuned.

29 CHAPTER 7. INSTALLATION AND USAGE

Transfer functions

Probably the most spectacular feature in the user interface are the transfer function
controls. The user can customize the color and blending properties of the visualization
with them, as illustrated in Figure 7.2.

Figure 7.2: The same data set visualized with different transfer functions.

At the top-right corner of the customization panel lay the transfer function controls
(Figure 7.3).

Figure 7.3: The transfer function control group.

• Density / Radiance Channel Slider: the user can adjust the strength of the
individual display channels with these. For example drag the density slider to
the leftmost position, and only the radiance channel will be visible.

• Show (checkbox): indicates whether the transfer function tuner controls are
visible for the given channel.

• O (open): load the last saved transfer functions.

• S (save): save the transfer functions to a file.

• R (reset): reset the transfer function curves to the default position.

The characteristics of the transfer functions can be adjusted with the transfer func-
tion tuner controls (Figure 7.4). To make it easier, two vertical color bars are also
diplayed in the viewport for the density and radiance channels, where the top is the
largest, and the bottom is the smallest value. The user can add new knots to the curves
by left-clicking to the appropriate curve, and removing knots by right-clicking. Click
and drag a knot to change its position. The visualization interactively updates the trans-
fer characteristics in the meantime.

30 CHAPTER 7. INSTALLATION AND USAGE

Figure 7.4: The transfer function tuner control The user can separately adjust the trans-
fer curves for the RGBA channels separately.

Simulation parameters

Figure 7.5: The Simulation parameters rollout.

• Global density mul.: global density multiplier. The density of the volume (to be
exact, the extinction coefficient of the volume) will be globally multiplied with
this constant.

• Emitter intensity: the intensity of the single point emitter in the volume.

• Resolution (N): the number of rays in the wavefront tracing will be N×N.

• Iterations (I): the ray-marching of the wavefront tracing will take I steps.

• Iteration steps: the number of the iterations in the simulation.

31 CHAPTER 7. INSTALLATION AND USAGE

• Sensitivity: to speed up the simulation, it is sometimes useful, to neglect the
”very small” radiance values on the grid. The iteration updates the values on
the FCC grid, if the total incoming radiance at a the current point is greater than
sensitivity.

• First estimation: If checked, the program will use the first estimation algorithm
presented in this paper to speed up the convergence of the simulation.

• every Nth step: the radiance data between the neighboring nodes will be ex-
change in every Nth step.

• Start: starts the simulation.

• Abort: aborts the simulation.

Ray-marching parameters

Figure 7.6: The Ray-marching parameters rollout.

• Maximum steps: The number of maximum ray-marching steps

• Step size (draft / normal): Because the simulation consumes a lot of GPU time,
the rendering during simulation can be performed in lower quality (draft mode).
After the simulation is complete, the ray-marching should take smaller steps to
provide fine details to the user.

Hotkeys

•
¤
£

¡
¢Esc quits from the program.

•
¤
£

¡
¢0 aborts the simulation.

•
¤
£

¡
¢T toggles text information at the top left corner.

•
¤
£

¡
¢M toggles timers at the top right corner.

•
¤
£

¡
¢A ,

¤
£

¡
¢D moves the light source on the X axis.

•
¤
£

¡
¢W ,

¤
£

¡
¢S moves the light source on the Y axis.

•
¤
£

¡
¢Q ,

¤
£

¡
¢E moves the light source on the Z axis.

32 CHAPTER 7. INSTALLATION AND USAGE

Resolution
width=1024
height=1024
depth=1024

Voxel type
voxeltype=unsigned−char

Physical size
sizex=1.0
sizey=1.0
sizez=1.0

Data files
values from 0 to 255
den1020.10033.01−unsigned−char
den1020.10033.02−unsigned−char
den1020.10033.03−unsigned−char
den1020.10033.04−unsigned−char
den1020.10033.05−unsigned−char
den1020.10033.06−unsigned−char
den1020.10033.07−unsigned−char
den1020.10033.08−unsigned−char

Listing 7.1: Sample Volume Descriptor File (McMaster University’s astrophysical data
set, unsigned char data type)

7.2.3 Volume Descriptor File
The volume descriptor file has two main sections. In the first one, there are name-value
pairs for setting different parameters like resolution, physical size, and voxel type. In
the second part the data files are listed in a sequence. The list of parameters is the
following:

• width, height, and depth describe the dimensions of the volumetric data, i.e.
the number of voxels in each dimension,

• voxeltype specifies the data type of the volumetric data. Currently the follow-
ing values are accepted:

– unsigned-char sets byte/voxel data type,

– unsigned-short sets word/voxel data type,

– float-msb sets IEEE 754 float/voxel data type;

• sizex, sizey, and sizez sets the sizes of the bounding box.

See Listing 7.1 for a sample descriptor file. The volume descriptor files for the
Visible Human and the McMaster University’s data sets can be also downloaded from
our data server.

Chapter 8

Program Structure

The main parts of the application are the following:

8.1 Main program
Files:main.cpp

8.2 LatticeSim class
Files: LatticeSim.[h|cpp] This is a wrapper class for the CUDA functions and
global variables in the .cu files.

8.3 CUDA files
Files: SimpleTexture3D.cu: The host part of the CUDA code
SimpleTexture3D kernel.cu: The kernel part of the CUDA code

8.4 The definition of the FCC lattice
Files: IllumLattice.h

8.5 Transfer curve controls
Files: TransferCurve.[h|cpp] RGBTransfer.[h|cpp]

8.6 Volume loader class
Files: voldata.[h|cpp]

33

34 CHAPTER 8. PROGRAM STRUCTURE

8.7 Common utilities
Files: utilities.h

Chapter 9

Results

For our experiments we used a Hewlett-Packard’s Scalable Visualization Array consist-
ing of five computing nodes. Each node has a dual-core AMD Opteron 246 processor,
an nVidia GeForce 8800 GTX graphics controller, and an InfiniBand network adapter.
One node is only responsible for compositing and managing the framelet generations
and does not take part in the rendering processes, so we could divide our data set into
maximum four parts.

First, we have examined the effect of the initial radiance approximation. Figure 9.1
shows the error curves of the iteration obtained when the radiance is initialized by
the direct term only and when the media term approximation is also used. Note that
the application of the media term approximation halved the number of iteration steps
required to obtain a given accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140

to
ta

l e
rr

or
 (

%
)

iterations

Direct term only
Media term estimation

Figure 9.1: Error curves of the iteration when the radiance is initialized to the single-
scattering term and when the radiance is initialized to the media term approximation.
Note that in the latter case, roughly only 50% of the iteration steps are needed to obtain
the same accuracy.

The evolution of the iteration can also be followed in Figures 9.2 and 9.3. Note
that if we initialize the iteration with the direct term, we need about 100 iteration steps
to eliminate any further visual change in the image. However, when the radiance is
initialized to the approximated media term, we obtain the same result executing only
60 iterations.

35

36 CHAPTER 9. RESULTS

direct term direct term direct term
+1 iteration +25 iterations +100 iterations

density only media term estimation media term estimation
+60 iterations

Figure 9.2: Evolution of the iteration when the radiance is initialized to the direct term
and to the estimated media term, respectively. The radiance is color coded to emphasize
the differences and is superimposed on the density field.

direct term direct term direct term media term converged result
+1 iteration +25 iterations approximation

Figure 9.3: Evolution of the iteration when the radiance is initialized to the direct term
and to the estimated media term, respectively. The radiance is color coded to emphasize
the differences and is superimposed on the density field.

37 CHAPTER 9. RESULTS

Finally, we tested the scalability of our parallel implementation. The volume is
decomposed to 4 blocks along axis z, and the transfer of each block is computed on a
separate node equipped with its own GPU. Table 9.1 summarizes the time data mea-
sured when a classical iteration scheme is executed, that exchanges the boundary layers
of the blocks in each iteration.

Nodes Initial Iteration Visualization
2 30 ms 29 ms 19 ms
3 30 ms 28 ms 15 ms
4 30 ms 26 ms 12 ms

Table 9.1: Performance figures with respect to the number of nodes when boundary
conditions are exchanged after each iteration step. The volume is a 128× 128× 64
grid. The resolution of the screen is 600× 600. “Initial” time is needed by the initial
radiance distribution, “Iteration” is the time of a single iteration cycle, “Visualization”
is needed by the final ray casting and compositing the partial images.

We can observe that the visualization scales well with the introduction of new nodes
but iteration time improves just moderately when boundary conditions are exchanged
in each iteration. The explanation is that on a smaller grid the communication be-
comes the bottleneck. This bottleneck can be eliminated by exchanging the boundary
conditions less frequently. This reduces the speed of convergence, so we trade com-
munication overhead for GPU computation power. The performance data are shown
by Table 9.2. Note that when we exchanged the boundary conditions just after every
10 iteration cycles, the iteration speed scaled very well with the introduction of newer
nodes. The price for this is the slightly increased number of iterations. We observed
that the error caused by exchanging the boundary conditions just after every 10 iteration
cycles can be compensated by about 10% more cycles, which is a good tradeoff.

Nodes Initial Iteration Visualization
2 30 ms 29 ms 19 ms
3 30 ms 24 ms 15 ms
4 30 ms 18 ms 12 ms

Table 9.2: Performance figures with respect to the number of nodes when boundary
conditions are exchanged just after every 10th iteration step.

Bibliography

[1] AGGARWAL, V., CHALMERS, A., AND DEBATTISTA, K. High-Fidelity Rendering of Animations on
the Grid: A Case Study. J. M. Favre and K.-L. Ma, Eds., Eurographics Association, pp. 41–48.

[2] BLINN, J. F. Light reflection functions for simulation of clouds and dusty surfaces. In SIGGRAPH
’82 Proceedings (1982), pp. 21–29.

[3] CEREZO, E., PÉREZ, F., PUEYO, X., SERON, F. J., AND SILLION, F. X. A survey on participating
media rendering techniques. The Visual Computer 21, 5 (2005), 303–328.

[4] DACHILLE, F., MUELLER, K., AND KAUFMAN, A. Volumetric global illumination and reconstruction
via energy backprojection. In Symposium on Volume Rendering (2000).

[5] GEIST, R., RASCHE, K., WESTALL, J., AND SCHALKOFF, R. Lattice-boltzmann lighting. In Euro-
graphics Symposium on Rendering (2004).

[6] JENSEN, H. W., AND CHRISTENSEN, P. H. Efficient simulation of light transport in scenes with
participating media using photon maps. SIGGRAPH ’98 Proceedings (1998), 311–320.

[7] JENSEN, H. W., MARSCHNER, S., LEVOY, M., AND HANRAHAN, P. A practical model for subsur-
face light transport. Computer Graphics (SIGGRAPH 2001 Proceedings) (2001).

[8] KAJIYA, J., AND HERZEN, B. V. Ray tracing volume densities. In Computer Graphics (SIGGRAPH
’84 Proceedings) (1984), pp. 165–174.

[9] KNISS, J., PREMOZE, S., HANSEN, C., AND EBERT, D. Interactive translucent volume rendering and
procedural modeling. In VIS ’02: Proceedings of the conference on Visualization ’02 (Washington, DC,
USA, 2002), IEEE Computer Society, pp. 109–116.

[10] LEE, T.-Y., RAGHAVENDRA, C., AND NICHOLAS, J. B. Image composition schemes for sort-last
polygon rendering on 2D mesh multicomputers. IEEE Transactions on Visualization and Computer
Graphics 2 (1996).

[11] NARASIMHAN, S. G., AND NAYAR, S. K. Shedding light on the weather. In In CVPR 03 (2003),
pp. 665–672.

[12] PARACOMP. Hp scalable visualization array version 2.1. Tech. rep., HP, 2007.
http://docs.hp.com/en/A-SVAPC-2C/A-SVAPC-2C.pdf.

[13] QIU, F., XU, F., FAN, Z., AND NEOPHYTOS, N. Lattice-based volumetric global illumination. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1576–1583. Fellow-Arie Kaufman
and Senior Member-Klaus Mueller.

[14] RUSHMEIER, H. E., AND TORRANCE, K. E. The zonal method for calculating light intensities in the
presence of a participating medium. In SIGGRAPH 87 (1987), pp. 293–302.

[15] STAM, J. Multiple scattering as a diffusion process. In In Eurographics Rendering Workshop (1995),
pp. 41–50.

[16] STRENGERT, M., MAGALLN, M., WEISKOPF, D., GUTHE, S., AND ERTL, T. Hierarchical Visu-
alization and Compression of Large Volume Datasets Using GPU Clusters . D. Bartz, B. Raffin, and
H.-W. Shen, Eds., Eurographics Association, pp. 41–48.

[17] SUN, B., RAMAMOORTHI, R., NARASIMHAN, S. G., AND NAYAR, S. K. A practical analytic single
scattering model for real time rendering. ACM Trans. Graph. 24, 3 (2005), 1040–1049.

[18] SZIRMAY-KALOS, L., SBERT, M., AND UMENHOFFER, T. Real-time multiple scattering in participat-
ing media with illumination networks. In Eurographics Symposium on Rendering (2005), pp. 277–282.

[19] ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM, H.-Y. Real-time smoke rendering
using compensated ray marching. ACM Trans. Graph. 27, 3 (2008), 36.

38

