
Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Introduction to Data-Parallel Algorithms
Getting the Most out of your GPU

Imre Palik
imre.palik@morganstanley.com

The views expressed in this presentation are those of the author and, therefore, do not necessarily
reflect the views of Morgan Stanley

imre.palik@morganstanley.com


Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Data-Parallel Algorithms – Why?

Algorithm design techniques are handy when solving
complex problems
One can increase the parallelism of seemingly serial
(sub) problems
No good libraries for writing custom kernels



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Maximum Element of an Array

template typename<T>

T

max(size_t len, T array[])

{

assert(len);

T rv = array[0];

for (size_t c = 1; c < len; c++)

if (array[c] > rv)

rv = array[c];

return rv;

}

Can we do this in parallel?



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Maximum Element of an Array – Parallel

42 26 3450

42 26 3450

42 26 3450

50

50 50

0 12 1 26 17 1434322

12 12 42

42

42 26 17 3434 14

50 12 12 42 17 34 14

50 12 12 42 17 34 14

50 12 12 42 17 34 14



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Reduction

Definition

A reduction operation takes a binary associative operator ⊕
with identity i , and an ordered set [a0,a1, . . . ,an−1] of n
elements, and returns the value a0⊕a1⊕ . . .⊕an−1.



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Parallel Reduction – The Code

__global__ void sum_reduce(double * work) {

__shared__ double w_s[];

w_s[threadIdx.x] = work[threadIdx.x];

__syncthreads();

for (unsigned d = 2, len = blockDim.x/2; len > 0;

len /= 2, d *= 2)

{

if (threadIdx.x < len)

w_s[d * threadIdx.x] = w_s[d * threadIdx.x]

+ w_s[d * threadIdx.x + d/2];

__syncthreads();

}

if (!threadIdx.x) *work = w_s[0];

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

If you have More Data Than Threads . . .

__device__ double

sum_reduce(double * work, const unsigned len,

const unsigned nthreads, const unsigned tid)

{ // first phase

const unsigned step = len/nthreads

+ (len%nthreads > 0);

double acc = work[tid * step];

for (int c = 0; c < step && tid * step + c < length;

c++)

acc = acc + work[tid * step + c];

work[tid * step] = acc;

__syncthreads();

// second phase

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Sidetrack – nVidia GPU Architecture

Hierarchical synchronisation structure.
Warp Threads running on the same vector processor

at the same time. Synchronised by the
hardware

Threadblock Threads running on the same vector
processor. Explicit synchronisation possible.

Grid All the threads executing the same kernel.
Synchronised at kernel launches.



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Two-Level Reduction

Problems with implementing parallel reduction on GPUs:
Parallel reduction needs synchronisation.
Grid-wide synchronisation is really expensive
Block-wide synchronisation is relatively cheap.

Solution:
1 Parallel reduction for subarrays in each threadblock
2 Parallel reduction on the results in a single block



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Two-Level Reduction

Problems with implementing parallel reduction on GPUs:
Parallel reduction needs synchronisation.
Grid-wide synchronisation is really expensive
Block-wide synchronisation is relatively cheap.

Solution:
1 Parallel reduction for subarrays in each threadblock
2 Parallel reduction on the results in a single block



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Two-Level Reduction – Cont.

7 6 5

7 6 5

7 6 5

3 1 7 0 1 6 34

4

5 2 1 4

5 423101 73 6 4

5 44236160717



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Three-Level Reduction – Warp Level

__device__ double

sum_reduce_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

while (len)

{

if (wid < len/2)

w[wid] = w[2 * wid] + w[2 * wid + 1];

len /= 2;

}

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Three-Level Reduction – Warp Level Cont.

__device__ double

sum_reduce_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

switch (len) {

case 64:

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 32:

if (wid < 16)

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 16:

if (wid < 8)

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 8:

// ...

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Three-Level Reduction – Cont.

__device__ double

sum_reduce_b (double *w) {

double val =

sum_reduce_w(w + (threadIdx.x/warpSize * 32), 32);

__syncthreads();

if (!(threadIdx.x%warpSize))

w[threadIdx.x/warpSize] = val;

__syncthreads();

if (threadIdx.x < warpSize)

val = sum_reduce_w(w, blockDim.x/warpSize);

return val;

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Commutative Reduction

42 1734 32 34 26 32 34 14

42 1734 32 34 26 32 34 14

42 1734 32 34 26 32 34 14

42 143432502 17

0 12 1 42 26 17 143432502

26343217

5032

50

50

50

32



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Commutative Reduction – the Code

__device__ double

sum_reduce_w(double * work, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

switch (len) {

case 64: work[wid] += work[wid + 32];

case 32: if (wid < 16) work[wid] += work[wid + 16];

case 16: if (wid < 8) work[wid] += work[wid + 8];

case 8: if (wid < 4) work[wid] += work[wid + 4];

case 4: if (wid < 2) work[wid] += work[wid + 2];

case 1: if (!wid) work[wid] += work[wid + 1];

}

return work[0];

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Prefix Sums and their Friends

for (unsigned c = 1; c <= len; c++)

out[c] = out[c - 1] + in[c - 1];



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Prefix Sums and their Friends – Cont.

for (unsigned c = 1; c <= len; c++)

out[c] = f(out[c - 1], in[c - 1]);



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

The Name of the Game

Definition

The all-prefix-sum (scan) operation takes a binary
associative operator ⊕ and an ordered set [a0,a1, . . . ,an−1]
of n elements, and returns the value

[a0,(a0⊕a1), . . . ,(a0⊕a1⊕ . . .⊕an−1)]



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Back to the Reduction

3 1 7 0 1 6 3

3 4 7 7

4

4 5 6 9

3 4 7 11 4 5 6 14

3 4 7 11 4 5 6 25



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Naive Parallel Scan

3 1 7 0 1 6 3

3 4 7

4

5 9

3 4 11 14

3 4 11 25

8 4 7

12 12 1111

11 15 16 22



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Naive Parallel Scan – The Code

__device__ double

sum_scan_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

for (unsigned offset = 1; offset < len; offset *= 2)

if (wid + offset < len)

w[wid + offset] += w[wid];

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Partitioned Naive Parallel Scan

3 4 11 141111 4 5 5 7 10 12

3 1 7 0 1 6 3

3 4 7

4

5 98 4 7

5 2 1 4

5 7 3 5

11 14 12

11 25 26

11 25

3 4 1111 15 16 22 25 30 32 35

37

37



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Brent-Kung Style Scan

3 1 7 0 1 6 3

3 4 7 7

4

4 5 6 9

3 4 7 11 4 5 6 14

3 4 7 11 4 5 6 25

3 4 7 11 4 5 6 0

4 7 4 5 60 113

3 67 40 114 16

0 3 4 11 11 15 16 22 25



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Parallelisable Recurrences

xi =

{
b0 i = 0
(xi−1⊗ai)⊕bi 0 < i < n

1 ⊕ is associative
2 ⊗ is semi-associative (exists � associative operator,

such that (a⊗b)⊗c = a⊗ (b�c))
3 ⊗ distributes over ⊕



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Parallelisable Recurrences – Cont.

Theorem

The xi recurrence defined on the previous slide can be
solved by scan.

Proof.

Let ci = [ai ,bi ] and define ∗ by
ci ∗cj = [ci ,a�cj ,a,(ci ,b⊗cj ,a)⊕cj ,b]. Then ∗ is associative.

Define si = [yi ,xi ], where yi =

{
a0 i = 0
yi−1�ai 0 < i < n

. Then

si =

{
c0 i = 0
si−1 ∗ci 0 < i < n



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Segmented Scan

a = [5 1 3 4 3 9 2 6]
f = [1 0 1 0 0 0 1 0]
segmented +-scan = [5 6 3 7 10 19 2 8]
segmented max-scan = [5 5 3 4 4 9 2 6]



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Segmented Scan→ Scan

Segmented scans satisfy the recurrence

xi =

{
a0 i = 0
(xi−1× fi)⊕ai 0 < i < n

where

x × f =

{
I⊕ f = 1
x f = 0

× is semi-associative with logical or as the companion
operator.



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Radix Sort

void

radix_sort(long * array, size_t len,

unsigned n_digits){

for (unsigned c = 0; c < n_digits; c++)

stable_sort_on_digit(array, len, c);

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Sequential Counting Sort

void

counting_sort(long * a, long * b, unsigned len,

unsigned k) {

long ls[k];

memset(ls, 0, k * sizeof(long));

for (unsigned c = 0; c < len; c++)

ls[a[c]]++;

for (unsigned c = 1; c < len; c++)

ls[c] += ls[c - 1];

for (signed s = len - 1; s >= 0; s--) {

b[ls[a[s]]] = a[s];

ls[a[s]]--;

}

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Binary Counting Sort (Split)

void

split(long * a, unsigned * flags, unsigned l,

unsigned * idown, unsigned * iup,

unsigned * idx) {

idown = enumerate(not(flags)) - 1;

iup = idown[l - 1] + enumerate(flags);

index = flags? iup : idown; // vector op

permute(a, index);

}

A = [ 5 7 3 1 4 2 7 2]
Flags = [ T T T T F F T F]
I-down = [-1 -1 -1 -1 0 1 1 2]
I-up = [ 3 4 5 6 6 6 7 7]
Index = [ 3 4 5 6 0 1 7 2]
permute(A, Index) = [ 4 2 2 5 7 3 1 7]



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Binary Radix Sort

A = [5 7 3 1 4 2 7 2]
A < 0 > = [T T T T F F T F]
A← split(A,A < 0 >) = [4 2 2 5 7 3 1 7]
A < 1 > = [F T T F T T F T]
A← split(A,A < 1 >) = [4 5 1 2 2 7 3 7]
A < 2 > = [T T F F F T F T]
A← split(A,A < 1 >) = [1 2 2 3 4 5 7 7]



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Quicksort

void

quicksort(double * b, double * e) {

if (b < e)

{

size_t p = partition(b, e);

quicksort(b, b + p);

quicksort(b + p + 1, e);

}

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Sequential Partition

unsigned

partition(double * b, double * e) {

double p = *(e - 1);

unsigned i = 0;

for (unsigned c = 0; c < e - b; c++)

if (b[c] < = p)

swap(b + i++, b + j);

swap(b + i, e - 1);

return i;

}

greaterless



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Parallel Quicksort

void

parallel_quicksort(double * a, bool * f, unsigned l){

while(!sorted(a, l))

parallel_partition(a, f, l, p, tf));

}

void

parallel_partition(double * k, bool * sf, unsigned l,

double * p, signed char * f) {

seg_copy(p, k, sf); // with scan

f = k < p? -1 : (k == p? 0 : 1); // vector compare

seg_split(k, f, sf); // 3-way split

sf |= new_seg_flags(k, p);

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Parallel Quicksort – Example

Key = [6.4, 9.2, 3.4, 1.6, 8.7, 4.1, 9.2, 3.4]
Flags = [ 1, 0, 0, 0, 0, 0, 0, 0]
Pivots = [6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4]
F = [ =, >, <, <, >, <, >, <]
Key← split(Key,F ) = [3.4, 1.6, 4.1, 3.4, 6.4, 9.2, 8.7, 9.2]
Flags = [ 1, 0, 0, 0, 1, 1, 0, 0]
Pivots = [3.4, 3.4, 3.4, 3.4, 6.4, 9.2, 9.2, 9.2]
F = [ =, <, >, =, =, =, <, =]
Key← split(Key,F ) = [1.6, 3.4, 3.4, 4.1, 6.4, 8.7, 9.1, 9.2]
Flags = [ 1, 1, 0, 1, 1, 1, 1, 0]


	Introduction
	Parallel Reduction
	Introducing Reduction
	Multi-Level Reduction
	Commutative Reduction

	Scan
	Introducing Scan
	Naive Parallel Scan
	Brent-Kung Style Scan
	Applicable Recurrences
	Segmented Scan

	Applications
	Radix Sort
	Quicksort


