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Data-Parallel Algorithms – Why?

Algorithm design techniques are handy when solving
complex problems
One can increase the parallelism of seemingly serial
(sub) problems
No good libraries for writing custom kernels
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Maximum Element of an Array

template typename<T>

T

max(size_t len, T array[])

{

assert(len);

T rv = array[0];

for (size_t c = 1; c < len; c++)

if (array[c] > rv)

rv = array[c];

return rv;

}

Can we do this in parallel?
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Maximum Element of an Array – Parallel
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Reduction

Definition

A reduction operation takes a binary associative operator ⊕
with identity i , and an ordered set [a0,a1, . . . ,an−1] of n
elements, and returns the value a0⊕a1⊕ . . .⊕an−1.
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Parallel Reduction – The Code

__global__ void sum_reduce(double * work) {

__shared__ double w_s[];

w_s[threadIdx.x] = work[threadIdx.x];

__syncthreads();

for (unsigned d = 2, len = blockDim.x/2; len > 0;

len /= 2, d *= 2)

{

if (threadIdx.x < len)

w_s[d * threadIdx.x] = w_s[d * threadIdx.x]

+ w_s[d * threadIdx.x + d/2];

__syncthreads();

}

if (!threadIdx.x) *work = w_s[0];

}
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If you have More Data Than Threads . . .

__device__ double

sum_reduce(double * work, const unsigned len,

const unsigned nthreads, const unsigned tid)

{ // first phase

const unsigned step = len/nthreads

+ (len%nthreads > 0);

double acc = work[tid * step];

for (int c = 0; c < step && tid * step + c < length;

c++)

acc = acc + work[tid * step + c];

work[tid * step] = acc;

__syncthreads();

// second phase

}



Introduction to
Data-Parallel
Algorithms

Imre Palik

Introduction

Parallel
Reduction
Introducing
Reduction

Multi-Level
Reduction

Commutative
Reduction

Scan
Introducing Scan

Naive Parallel Scan

Brent-Kung Style
Scan

Applicable
Recurrences

Segmented Scan

Applications
Radix Sort

Quicksort

Sidetrack – nVidia GPU Architecture

Hierarchical synchronisation structure.
Warp Threads running on the same vector processor

at the same time. Synchronised by the
hardware

Threadblock Threads running on the same vector
processor. Explicit synchronisation possible.

Grid All the threads executing the same kernel.
Synchronised at kernel launches.
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Two-Level Reduction

Problems with implementing parallel reduction on GPUs:
Parallel reduction needs synchronisation.
Grid-wide synchronisation is really expensive
Block-wide synchronisation is relatively cheap.

Solution:
1 Parallel reduction for subarrays in each threadblock
2 Parallel reduction on the results in a single block
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Two-Level Reduction

Problems with implementing parallel reduction on GPUs:
Parallel reduction needs synchronisation.
Grid-wide synchronisation is really expensive
Block-wide synchronisation is relatively cheap.

Solution:
1 Parallel reduction for subarrays in each threadblock
2 Parallel reduction on the results in a single block
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Two-Level Reduction – Cont.
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Three-Level Reduction – Warp Level

__device__ double

sum_reduce_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

while (len)

{

if (wid < len/2)

w[wid] = w[2 * wid] + w[2 * wid + 1];

len /= 2;

}

}
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Three-Level Reduction – Warp Level Cont.

__device__ double

sum_reduce_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

switch (len) {

case 64:

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 32:

if (wid < 16)

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 16:

if (wid < 8)

w[wid] = w[2 * wid] + w[2 * wid + 1];

case 8:

// ...

}
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Three-Level Reduction – Cont.

__device__ double

sum_reduce_b (double *w) {

double val =

sum_reduce_w(w + (threadIdx.x/warpSize * 32), 32);

__syncthreads();

if (!(threadIdx.x%warpSize))

w[threadIdx.x/warpSize] = val;

__syncthreads();

if (threadIdx.x < warpSize)

val = sum_reduce_w(w, blockDim.x/warpSize);

return val;

}
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Commutative Reduction
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Commutative Reduction – the Code

__device__ double

sum_reduce_w(double * work, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

switch (len) {

case 64: work[wid] += work[wid + 32];

case 32: if (wid < 16) work[wid] += work[wid + 16];

case 16: if (wid < 8) work[wid] += work[wid + 8];

case 8: if (wid < 4) work[wid] += work[wid + 4];

case 4: if (wid < 2) work[wid] += work[wid + 2];

case 1: if (!wid) work[wid] += work[wid + 1];

}

return work[0];

}
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Prefix Sums and their Friends

for (unsigned c = 1; c <= len; c++)

out[c] = out[c - 1] + in[c - 1];
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Prefix Sums and their Friends – Cont.

for (unsigned c = 1; c <= len; c++)

out[c] = f(out[c - 1], in[c - 1]);
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The Name of the Game

Definition

The all-prefix-sum (scan) operation takes a binary
associative operator ⊕ and an ordered set [a0,a1, . . . ,an−1]
of n elements, and returns the value

[a0,(a0⊕a1), . . . ,(a0⊕a1⊕ . . .⊕an−1)]
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Back to the Reduction

3 1 7 0 1 6 3
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Naive Parallel Scan
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Naive Parallel Scan – The Code

__device__ double

sum_scan_w (double *w, unsigned len) {

const unsigned wid = threadIdx.x%warpSize;

for (unsigned offset = 1; offset < len; offset *= 2)

if (wid + offset < len)

w[wid + offset] += w[wid];

}
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Partitioned Naive Parallel Scan
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Brent-Kung Style Scan
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Parallelisable Recurrences

xi =

{
b0 i = 0
(xi−1⊗ai)⊕bi 0 < i < n

1 ⊕ is associative
2 ⊗ is semi-associative (exists � associative operator,

such that (a⊗b)⊗c = a⊗ (b�c))
3 ⊗ distributes over ⊕
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Parallelisable Recurrences – Cont.

Theorem

The xi recurrence defined on the previous slide can be
solved by scan.

Proof.

Let ci = [ai ,bi ] and define ∗ by
ci ∗cj = [ci ,a�cj ,a,(ci ,b⊗cj ,a)⊕cj ,b]. Then ∗ is associative.

Define si = [yi ,xi ], where yi =

{
a0 i = 0
yi−1�ai 0 < i < n

. Then

si =

{
c0 i = 0
si−1 ∗ci 0 < i < n
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Segmented Scan

a = [5 1 3 4 3 9 2 6]
f = [1 0 1 0 0 0 1 0]
segmented +-scan = [5 6 3 7 10 19 2 8]
segmented max-scan = [5 5 3 4 4 9 2 6]
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Segmented Scan→ Scan

Segmented scans satisfy the recurrence

xi =

{
a0 i = 0
(xi−1× fi)⊕ai 0 < i < n

where

x × f =

{
I⊕ f = 1
x f = 0

× is semi-associative with logical or as the companion
operator.
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Radix Sort

void

radix_sort(long * array, size_t len,

unsigned n_digits){

for (unsigned c = 0; c < n_digits; c++)

stable_sort_on_digit(array, len, c);

}
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Sequential Counting Sort

void

counting_sort(long * a, long * b, unsigned len,

unsigned k) {

long ls[k];

memset(ls, 0, k * sizeof(long));

for (unsigned c = 0; c < len; c++)

ls[a[c]]++;

for (unsigned c = 1; c < len; c++)

ls[c] += ls[c - 1];

for (signed s = len - 1; s >= 0; s--) {

b[ls[a[s]]] = a[s];

ls[a[s]]--;

}

}
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Binary Counting Sort (Split)

void

split(long * a, unsigned * flags, unsigned l,

unsigned * idown, unsigned * iup,

unsigned * idx) {

idown = enumerate(not(flags)) - 1;

iup = idown[l - 1] + enumerate(flags);

index = flags? iup : idown; // vector op

permute(a, index);

}

A = [ 5 7 3 1 4 2 7 2]
Flags = [ T T T T F F T F]
I-down = [-1 -1 -1 -1 0 1 1 2]
I-up = [ 3 4 5 6 6 6 7 7]
Index = [ 3 4 5 6 0 1 7 2]
permute(A, Index) = [ 4 2 2 5 7 3 1 7]
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Binary Radix Sort

A = [5 7 3 1 4 2 7 2]
A < 0 > = [T T T T F F T F]
A← split(A,A < 0 >) = [4 2 2 5 7 3 1 7]
A < 1 > = [F T T F T T F T]
A← split(A,A < 1 >) = [4 5 1 2 2 7 3 7]
A < 2 > = [T T F F F T F T]
A← split(A,A < 1 >) = [1 2 2 3 4 5 7 7]
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Quicksort

void

quicksort(double * b, double * e) {

if (b < e)

{

size_t p = partition(b, e);

quicksort(b, b + p);

quicksort(b + p + 1, e);

}

}
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Sequential Partition

unsigned

partition(double * b, double * e) {

double p = *(e - 1);

unsigned i = 0;

for (unsigned c = 0; c < e - b; c++)

if (b[c] < = p)

swap(b + i++, b + j);

swap(b + i, e - 1);

return i;

}

greaterless
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Parallel Quicksort

void

parallel_quicksort(double * a, bool * f, unsigned l){

while(!sorted(a, l))

parallel_partition(a, f, l, p, tf));

}

void

parallel_partition(double * k, bool * sf, unsigned l,

double * p, signed char * f) {

seg_copy(p, k, sf); // with scan

f = k < p? -1 : (k == p? 0 : 1); // vector compare

seg_split(k, f, sf); // 3-way split

sf |= new_seg_flags(k, p);

}
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Parallel Quicksort – Example

Key = [6.4, 9.2, 3.4, 1.6, 8.7, 4.1, 9.2, 3.4]
Flags = [ 1, 0, 0, 0, 0, 0, 0, 0]
Pivots = [6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4]
F = [ =, >, <, <, >, <, >, <]
Key← split(Key,F ) = [3.4, 1.6, 4.1, 3.4, 6.4, 9.2, 8.7, 9.2]
Flags = [ 1, 0, 0, 0, 1, 1, 0, 0]
Pivots = [3.4, 3.4, 3.4, 3.4, 6.4, 9.2, 9.2, 9.2]
F = [ =, <, >, =, =, =, <, =]
Key← split(Key,F ) = [1.6, 3.4, 3.4, 4.1, 6.4, 8.7, 9.1, 9.2]
Flags = [ 1, 1, 0, 1, 1, 1, 1, 0]
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