
Ray-tracing is a fundamental algorithm to render 3D scenes in a realistic way. It is the basis 

of many photorealistic rendering methods and are used extensively in movie production 

rendering.



In rendering, first the surface visible through a pixel should be determined by computing 

the first intersection of the surfaces and the half line starting at the eye position and going in 

the direction of the pixel. In local illumination rendering, having identified the surface 

visible in a pixel, we have to compute the reflected radiance due to the direct illumination

of the light sources. We prefer abstract light sources for the sake of simplicity since an 

abstract light source may illuminate a point just from a single direction. The intensity 

provided by the light source at the point is multiplied by the BRDF and the geometry term 

(cosine of the angle between the surface normal and the illumination direction). The 

intensity provided by the light source is zero if the light source is not visible from the 

shaded point. The visibility of light sources from the shaded point can be determined by 

sending a ray from here in the direction of the light source and checking whether or not this 

ray intersects any surface before reaching the light source.

For directional sources, the intensity and the direction are the same everywhere. For point 

sources, the direction is from the source to the shaded point and the intensity decreases with 

the square of the distance. 



The BRDF times the geometry factor equals to the following expression for diffuse + 

Phong-Blinn type materials. Here we use different product symbols for different data types; 

* for spectra,  for multiplying with a scalar, and  for the dot product of two vectors. The 

plus sign in the superscript indicates that negative dot products are replaced by zero since 

this corresponds to the situation when the considered object occludes the given point from 

the light source.



In the local illumination model, all surfaces that are not directly visible from the light 

sources are completely back. However, this is against everyday experience when some light 

indirectly illuminates even hidden regions as well. So, we add an ambient term to the 

reflected radiance, where the intensity is uniform everywhere and in all directions, and the 

ambient reflection k_a is a material property (if a physically accurate model is applied, k_a

= k_d * pi).

Note, however, that adding the ambient term is a very crude approximation of true indirect 

lighting, which can be obtained by global illumination algorithms (upper right image).



A fundamental operation of ray tracing is the identification of the surface point hit by a ray. A ray is 

defined by its start and direction. When transparent objects are also considered, it is useful to store 

whether the ray is inside some object or outside in the air since the index of refraction should be 

dealt with accordingly. 

The ray may be a primary ray originating at the eye and passing through the pixel, or it can be a 

shadow ray originating at the shaded point and going towards the light source, or even a secondary 

ray that also originates in the shaded point but goes into either the reflection or the refraction 

direction. The intersection with this ray is on the ray, thus it satisfies the ray equation, ray(t)=start + 

dir· t for some POSITIVE ray parameter t, and at the same time, it is also on the visible object, so 

point ray(t) also satisfies the equation of the surface. By emphasizing the constraint of positive ray 

parameters, we have a half line or restrict the visible objects to those that are in front of the eye. A 

ray may intersect more than one surface, when we need to obtain the intersection of minimal 

positive ray parameter since this is the closest surface that occludes others. Function firstIntersect

finds this point by trying to intersect every surface with function Intersect and always keeping the 

minimum, positive ray parameter t. This implementation assumes that the existence of objects’ 

intersect function that returns a hit structure.

This hit structure contains the ray parameter of the intersection or a negative value when there is no 

intersection. In addition to the ray parameter t, the hit structure also stores the position of the 

intersection in the virtual world, and the normal and the material properties of the surface at the 

intersection point. So, intersection calculation should also determine the normal vector of the surface 

at the intersection point. Recall when we established formulas and implemented functions for the 

reflection or refraction direction computation, we assumed that the surface normal points towards 

the incoming ray, so the dot product of the ray direction and the surface normal is negative. To make 

sure that it always happens, it is worth checking this condition and flipping the surface normal if 

needed.





The implementation of function intersect depends on the actual type of the surface, since it 

means the inclusion of the ray equation into the particular equation of the surface. The first 

example is the sphere. Substituting the ray equation into the equation of the sphere and 

taking advantage of the distributivity of the scalar product, we can establish a second order 

equation for unknown ray parameter t. A second order equation may have zero, one or two 

real roots (complex roots have no physical meaning here), which correspond to the cases 

when the ray does not intersect the sphere, the ray is tangent to the sphere, and when the ray 

intersects the sphere in two points, entering then leaning it. From the existing roots, we 

need the smallest positive one.

Recall that we also need the surface normal at the intersection point. For a sphere, the 

normal is parallel to the vector pointing from the center to the surface point. It can be 

normalized, i.e. turned to a unit vector, by dividing by its length, which equals to the radius 

of the sphere.



On the implementation level, the abstract definition of an object that can be rendered with 

ray tracing is provided by the Intersectable struct, which has material properties and an 

abstract function intersect that is supposed to compute the intersection of the ray and this 

surface. The intersect function can be given a real body if we know the equation of the 

surface. Therefore, specific types are inherited from the general abstract base class. Here, 

we present the Sphere inherited from Intersectable. The sphere has particular parameters 

like the center and the radius, and the intersection with a ray can be implemented.



The equation of the sphere is an example of a more general category of the implicit surfaces 

that are defined by an implicit equation of the x,y,z Cartesian coordinates or the position 

vectors r of surface points. Substituting the ray equation into this equation, we obtain a 

single, usually non-linear equation for the single unknown, the ray parameter t. Having 

solved this equation, we can substitute the ray parameter t* into the equation of the ray to 

find the intersection point. 

The normal vector of the surface can be obtained by computing the gradient at the 

intersection point. To prove it, let us express the surface around the intersection point as a 

Taylor approximation. f(x*,y*,z*) becomes zero since the intersection point is also on the 

surface. What we get is a linear equation of form n\cdot(r – r0) = 0, which is the equation of 

the plane, where n=grad f.

So, the gradient is the normal vector of the plane that approximates the surface locally in 

the intersection point.



The triangle is the most important primitive because we often use it to approximate 

arbitrary surfaces. So effective ray-triangle intersection algorithms are still in the focus of 

research. Now, we present a very simple solution. 

The algorithm consists of two steps, first the intersection with the plane of the triangle is 

found, then we determine whether or not the ray-plane intersection point is inside the 

triangle. Suppose that the triangle is given by its vertices r1, r2, r3. The equation of its plane 

is n\cdot(r-r0)=0 where n is the normal vector and r0 is a point of the plane. Position vector 

r0 can be any of the three vertices and normal vector n can be computed as the cross 

product of edge vectors r2-r1 and r3-r1. Substituting the ray equation into this linear 

equation, we get a linear equation for t, which can be solved. If t is negative, the 

intersection is behind the eye, so it must be ignored. The positive t is substituted back to the 

ray equation giving p as the intersection with the plane.

Now we should determine whether p is inside the triangle. An edge line separates the plane 

into two half planes, a “good”  one (this is the left one if the edge vector points from r1 to 

r2) that contains the triangle, as well as the third vertex and a “bad” one that contains 

nothing. Point p must be on the good side, i.e. where the third vertex is located. Points on 

the left and right with respect to edge r1 to r2 can be separated using the properties of the 

cross product. 

Assuming that we look at the plane from above, (r2 - r1)  (p - r1) will point towards us if 

p is on the left, and it will point down if p is on the right.

As n = (r2 - r1)  (r3 - r1) points towards us, we can check whether (r2 - r1)  (p - r1) has 

the same direction by computing their dot product and checking if the result is positive (the 

dot product of two vectors point into the same direction is positive, the dot product of two 

oppositely pointing vectors is negative). A single inequality states that the point is on the 

good side with respect to a given edge vector. If this condition is met for all three edge 



vectors, the point is inside the triangle.



On the top level, ray tracing rendering visits pixels one by one. For every pixel, the virtual 

camera has a point on its window (in real space we have the user and the screen; in virtual 

world one of the user’s eye is the virtual eye and the display surface is a rectangle). The 

origin of primary rays is always the eye position. The direction of a ray is from the eye to 

the center of the pixel on the window rectangle, which is calculated by the GetRay function. 

With this ray, function trace is called, which computes the radiance transferred back by this 

ray (i.e. the radiance of the point hit by this ray in the opposite of the ray direction). The 

radiance on the wavelengths of r,g,b is written into the current physical pixel. 



To implement the GetRay function, the virtual camera should be defined in the virtual 

space. The user’s location is specified by the position vector called eye. The display surface 

is represented by a 2D rectangle in the virtual world coordinates. The center of this 

rectangle is specified by the lookat point, and its orientation and size are defined by two 

vectors. Right points from the center of the window to the right edge, up from the center to 

the top edge. Any point on the window can be obtained as going to the center called lookat

and then applying the combination of right and up where the combination parameters alpha 

and beta are in [-1,1], which are the normalized screen space coordinates. Physical pixels 

are mapped to normalized screen coordinates using the XM, YM screen resolutions. 

If the resolution of the target image is XM x YM, then the center of pixel (X,Y) in world 

coordinates is p = lookat + (2X/XM-1)right + (2Y/YM-1)up.



The trace function gets the ray that involves its origin and direction vectors. First we 

compute the intersection that is in front of the eye and is closest to the eye. The already 

implemented solution is firstIntersect. This function indicates with a negative value if 

there is no intersection. In this case, trace returns with the radiance of the ambient 

illumination.

If some surface is seen, trace computes the contribution of the abstract light sources. To 

check the visibility of a particular light source, a ray, called shadow ray, is sent from the 

shaded point towards the light source. If this ray intersects an object and this intersection is 

closer than the light source, the object occludes the light source so this point is in shadow. 

Note that the start of the shadow ray is pushed a little in the direction of the surface normal 

N in order to avoid situations when numerical inaccuracies result in a intersection with the 

identified surface with not zero but some small positive ray parameter. This would produce 

ugly black dots on the surface as shown by the figure.





To simulate also smooth surfaces responsible for mirroring and light refraction, the local 

illumination model should be extended. When the surface visible from the eye is identified, 

we calculate the radiance as the contribution from abstract light sources in case of rough

surfaces. However, for optically smooth surfaces, the reflection of the radiance from the 

ideal reflection direction is computed, and for transparent objects, the refraction of the 

radiance coming from the ideal refraction direction is added. According physics, the scaling 

factors of the radiance values are the Fresnel and 1-Fresnel for reflection and refraction, 

respectively. However, we do not always insist on physical precision so may use other 

scaling factors that are set by an artist and not computed as the Fresnel function. 

This equation expresses the radiance of a surface point in a given direction as the function 

of the direct light sources and the radiance coming from the ideal reflection and refraction 

directions. The question is how these extra terms can be computed. 

Let us recognize, that the computation of the radiance delivered back by reflection and 

refraction rays is essentially the same computation what we are doing right now, just the ray 

origin and direction should be altered. So the solution of this problem is a recursive 

function. 



The trace function gets the ray that involves its origin and direction vectors. First we 

compute the intersection that is in front of the eye and is closest to the eye. The already 

implemented solution is firstIntersect. This function indicates with a negative value if 

there is no intersection. In this case, trace returns with the radiance of the ambient 

illumination.

If a rough surface is seen, trace computes the contribution of the abstract light sources, for 

which we implemented the DirectLight function. 

If the surface is smooth and is ideally reflective, then the reflection direction is computed 

with the already implemented reflect function and the trace function is called recursively to 

compute the radiance of reflection direction. The same is done for the refraction direction if 

the surface is refractive.



Recursion is a dangerous operation if we cannot make sure that it stops. Assume, for 

example, that this ellipsoid is made of glass. The ray is refracted into the glass and there can 

be infinite number of reflections on the internal surface. So our program will surely crash 

with a stack overflow error. We should limit the recursion depth for any price. This is 

possible with depth parameter d, which is incremented in each recursive call. If depth is 

greater than the limit, additional calculations are terminated.



Ray tracing is an elegant algorithm, the implementation fits just a business card, but can 

render rough surfaces, reflective and refractive objects, and shadows.



Object oriented decomposition identifies the objects representing the problem. These 

objects are defined in an abstract way by specifying what operations can be executed on 

these elements. 

The virtual world is represented by the Scene class. A Scene can be built and rendered, 

which in turn requires the ability to trace a ray in the scene, which should find the first 

intersection with firstIntersect. Ambient light intensity La is a data member of the Scene. 

The Scene has embedded objects like the Camera and Light sources. The camera serves the 

rendering algorithm with its getRay member function. The Scene is also a collection of 

Intersectable objects. Intersectable is an abstract base class, so this is a heterogeneous 

collection. Any intersectable can be associated with a Material containing all possible 

material properties. Intersectable has a pure virtual function called intersect. 

Specific geometric object types can be included in this virtual world by deriving their type 

from the general Intersectable and implementing the intersect method.


