
In this lecture we review the optics fundamentals that are essential in simulating the light 

transfer in virtual worlds. 



In order to compute the image, the power arriving at the eye from the solid angle of each pixel 

needs to be determined on different wavelengths.

We establish a virtual world model in the computer memory, where the user is represented by 

a single eye position and the display by a window rectangle. Then we compute the power 

going through a pixel toward the eye on different wavelengths, which results in a power 

spectrum. 

If we can get the display to emit the same photons (i.e. the same number and of the same 

frequency) as that real surface would emit which is visible in the solid angle of the pixel, then 

the illusion of watching the virtual world can be created. Note that the human eye is sensitive 

only to the number and frequency of photons, but is not sensitive to the source of the photons, 

thus, we would not able to distinguish the real world from a virtual one shown on the computer 

screen. 

As the human eye can be cheated with red, green, and blue colors, it is enough if the display 

emits light on these wavelengths. The last step of rendering is the conversion of the calculated 

spectrum to displayable red, green and blue intensities, which is called color matching and 

tone mapping. If we compute the light transfer only on these wavelengths, then this step can be 

omitted and the resulting spectrum can be used directly to control the monitor.

One crucial question will be what physical quantity should be computed for the surfaces that 

describes the strength of the light intensity and when the pixel is controlled accordingly, 

provides the same color perception as the surface. Note that the pixel is at a different distance 

than the visible surface. The orientations of the display surface and of the visible surface are 

also different. The total emitted power would definitely be not good since it would mean less 

photons for the eye for farther sources.  



Light is an electromagnetic wave, color is just an illusion created by the human eye and the 

brain. As the eye is a poor spectrometer, we can cheat it with a different spectrum, the eye 

cannot tell the difference. This fact is exploited by displays, which can emit light just around 

three wavelengths. So the task is to convert the computed spectrum to the intensities of the 

three lamps associated with a pixel. To solve this, we should understand how the illusion of 

color is created. As the illusion is deep in our brain, we can use only subjective comparative 

experiments to find out what color means. 

In our experiment, we have two white sheets, the first is illuminated by a unit radiance 

monochromatic light beam of wavelength lambda, the other is by three lamps of controllable 

intensities and of wavelengths, say, 444, 526, 645 nanometers, which could be seen as red, 

green and blue (we could choose other reference wavelengths as well, they just have to be far 

enough; this particular selection is justified by the fact that there exist materials that emit light 

on these wavelengths). A human observer sits in front of the two white sheets and his task is to 

control the intensities of the three lamps in order to eliminate any perceived difference 

between the two sheets. If it happens, the monochromatic light and the controlled three 

component light provide the same color and are called metamers. If the same experiment is 

repeated in many discrete wavelengths, three color matching functions can be obtained, 

which are going to be our model of the human color perception.

Note that the red and the green matching function have negative parts as well, which means, 

for example, that the 500 nm light can be matched only if some red is added to it. So negative 

light here means light that is added to the other side of the matching experiment.

In the second experiment we can try to match two, three, etc. component light beams and 

beams of non-unit intensity. We will come to the conclusion that the corresponding r,g,b

values of polychromatic light are the sums of the r,g,b, primaries of the monochromatic 

components, and also that if the intensity of the beam is not unit, then the r,g,b intensities 



should also be multiplied by the same factor. This means that colors are linear objects. 



Based on these experiments, we can establish the Grasmann laws of color science. Any 

spectrum can be matched with three primaries by weighting the monochromatic components 

by the color matching functions and adding (integrating) different monochromatic 

components.



A physically plausible simulation would be executed on many wavelengths (note that 

wavelengths can be handled independently) resulting in a visible spectrum. The final step of 

rendering is the conversion of this spectrum to red, green, blue intensities, which can be set in 

the frame buffer, and ultimately on the display. 

However, in many cases, we use an approximation. We assume that light sources emit light 

directly on the wavelengths of the red, green, blue. Thus, we can immediately get the r,g,b, 

values without any integration. Note, however, that the rendering process is not linear since the 

products of light source intensities and material reflection parameters are computed, so this 

simpler option is just an approximation.



If we want some efficient computation scheme, we should work with power density instead of 

the power, that is computed with respect to the solid angle in which the light is emitted and 

with respect to the size of the projected surface. The density computed as the power divided by 

the projected surface and the solid angle of emission is called the radiance.

Experience and an important theorem state that if two surfaces have the same radiance, then 

they look identical no matter whether they are at a different distance or have different 

orientation. The proof is based on the fact that if in a solid angle the eye gathers the same 

number and frequency of photons, then the eye would not be able to distinguish the source of 

the surface. Let us compute this power for two surfaces that are seen in the same solid angle 

and have the same radiance. The formula is obtained from the definition of the radiance, 

multiplying both sides by the denominator. 

If the surface is closer, then  its real area is smaller, but the solid angle in which the pupil of 

the eye can be reached from this surface is larger. Both the solid angle and the surface changes 

with the square of the distance and the two factors compensate each other. If the surface is not 

perpendicular to the viewing direction, then the surface seen in a given solid angle is larger, 

but the cosine factor will be proportionally smaller, so again we see no difference.

So, the conclusion is that we should compute the radiance of a surface and set the pixel of the 

display to have the same radiance. Then the two surfaces will be identical for the eye.

The fact that surfaces having the same radiance but at different distances look similar can also 

be interpreted as that the radiance does not change along a ray.

An important remark is that this independence of the distance holds only if the surface is large, 

or in other words when we get farther, we can see a larger part of the same surface. Point like 

phenomena, like small light bulbs or very distant stars, do not fall into this category. For point 

like objects, the radiance is inversely proportional to the square of the distance as expected. 
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If we have, for example, red monochromatic light source in our room, then only this red color 

show up in the room with different intensities (with zero intensity, the red becomes black). We 

would never experience, say, green or yellow colors in this situation. Monochromatic light 

intensity may be modified but its frequency remains the same.

During the simulation of light transfer, different wavelength can be handled independently, 

which simplifies the computation considerably. But, what is the physical explanation of this 

phenomenon?

In computer graphics we consider photons in the visible wavelength range, roughly from 300 

to 700 nanometer wavelengths. A photon has zero rest mass, otherwise it would not be able to 

fly with the speed of light. However, it has non-zero energy and impulse. The energy is 

proportional to frequency f of the light as stated by Einstein who invented this law when 

examining the photoelectric effect. He got his Nobel prize for this and not for the theory of 

relativity. Using the equivalence of the energy and mass (E = mc^2), which was also published 

by Einstein as a short paper in 1905, we can assign a relativistic weight to the photon as the 

Planck constant h multiplied by the frequency and divided by the square of the speed of light.

If f is small, then this relativistic mass is small. When photons meet a material, photons collide 

or scatter by the electrons or less probably with the core of atoms. For photons belonging to 

the visible spectrum, the relativistic mass of the photon is much smaller than the mass of the 

electron, thus a photon bounces off the electron like a ball bounces off from a rigid wall or a 

billiard ball bounces off from the edge of the table. If the collision is elastic, then the photon 

energy is preserved and the electron does not change its energy level.

If the collision is inelastic, then the energy of the photons is absorbed by the electron, this is 

the photoelectric effect, and the number of photons gets smaller. The probability of inelastic 

scattering, i.e. the albedo associated with a collision is energy dependent. 



Summarizing when photons meet electrons, their number may get smaller but their energy level and 

consequently their frequency remain the same. This is the reason that in computer graphics wavelengths 

or frequencies are handled independently. 



The simplest arrangement for the light object interaction is a single plane that separates the 

space into two half spaces of air and a given material. Suppose that a light ray arrives at the 

surface from the air. According to the laws of geometric optics, the illumination ray is broken 

to a reflection ray meeting the reflection law and a refraction ray obeying the Snell’s law of 

refraction. Here n is the index of refraction, which expresses the ratio of speeds of light 

outside and inside the material. The Fresnel equations define the amount of reflected energy 

(i.e. the probability that a photon is reflected). The Fresnel function can be calculated from 

index of refraction n, extinction k, which describes how quickly the electromagnetic wave 

diminishes inside the material, incident angle theta^in and refraction angle theta. The 

extinction is negligible for non-metals. Here we show a simplified Fresnel term, which is 

accurate enough for our purposes.

In this formula, F0 expresses the reflection probability of the photon when it arrives from 

perpendicular direction. F0 is a function of the index of refraction and the extinction. Let us 

take glass as an example. The extinction coefficient of glass is negligible since glass is non 

metal. The index of refraction is 1.5. Thus F0 is 4%. Indeed, when we look at a glass window 

perpendicularly, the image is determined by our own reflection with only 4%, while the 

outside view determines its 96%. However, when the direction is not perpendicular, F gets 

larger and reaches 100% at grazing angles. Glass becomes mirrors at grazing angles.



The Fresnel function depends on the wavelength and on the incident angle. When we see an 

object, we can observe surfaces of many different orientations, so we perceive the Fresnel 

function as a whole. This is why we can distinguish gold from copper although both of them 

are yellow.



To render smooth surfaces, we should compute the ideal reflection direction. Assume that 

incident direction v and surface normal N are unit length vectors.

Incident direction v is decomposed to a component parallel to the normal and a component that 

is perpendicular to it. The length of the parallel component is the projection of v onto N, which 

can be obtained with the dot product. The perpendicular component is obtained by requiring 

the sum of parallel and perpendicular components be equal to v.

Then, the reflection direction is built up from these two components.

For the amount of reflected light, we also need the Fresnel function for this direction, which is 

the direct implementation of our approximating formula.

For the computer simulation, we need two functions. Function reflect calculates the ideal 

reflection direction. Function Fresnel determines the portion of light being reflected. As the 

index of refraction and the extinction are wavelength dependent, the Fresnel function is of type 

vec3 since it can have a different value on the wavelengths of red, green, and blue.



The refraction direction calculation is also similar. The refraction direction v_t is expressed as 

a combination of the normal vector and a vector that is perpendicular to the normal, 

N_perpendicular. These vectors should be combined with weights cos(beta) and sin(beta) 

where beta is the refraction angle.

N_perpendicular is expressed from v+N cos(alpha) by dividing it with its length sin(alpha).

Then sin(beta)/sin(alpha) is replaced by the reciprocal of the index of refraction. Function 

cos(beta) is expressed with sin(beta), for which we apply the same trick, and replaced with 

sin(alpha).

Finally, sin(alpha) is expressed from cos(alpha), which is available as the dot product of the 

surface normal and the incident direction. 

The final formula for refraction direction T involves a square root, where the discriminator in 

the square root can be negative if relative refraction index n is less than 1. This relative 

refraction index is less than 1 if the ray arrives at the boundary from the optically denser 

medium, for example, when the ray is originally in water and meets the surface separating 

water from air. Negative discriminator indicates that there is no refraction direction because 

the light gets fully reflected. This situation is called the total internal reflection and the 

threshold angle when it first occurs is the Brewster angle. The picture in the left upper corner 

shows a swimmer (László Cseh, olympic silver medalist) who is below the water while the 

camera is also at the bottom of the pool. The water surface acts as a perfect mirror reflecting 

the back of the swimmer and also the bottom of the pool. 





Surfaces are usually not perfectly smooth, so they reflect light not just in the ideal reflection 

direction but practically in all possible directions. On microscopic scale, we can imagine these 

rough surfaces as a random collection of ideal mirror microfacets that reflect light according 

to their random orientation. 

As we see not a single microfacet in a pixel, but a large collection of them, we perceive the 

average radiance reflected by this collection.

Photons may have a single scattering on these microfacets when the average is maximum 

around the ideal reflection direction of the mean surface. On the other hand, photons may get 

scattered multiple times, when they “forget” their original direction, so the reflection lobe will 

be roughly uniform.

Instead of following a probabilistic reasoning, for the sake of simplicity, we handle these 

rough surfaces as a black-box, i.e. empirical model. That is, we describe the behavior of the 

surface based on everyday experience without any structural analysis. By experience, we say 

that a rough surface reflects light into all directions, but more light is reflected into the 

neighborhood of the ideal reflection direction. 



The reflected radiance of a surface depends on the irradiance and the likelihood of the 

reflection. The irradiance is the incident radiance and a geometric factor that expresses that 

the illumination is weaker if the light arrives from a non-perpendicular direction since a unit 

cross section light beam illuminates a larger surface on which the photons are distributed. The 

likelihood of reflection, or the ration of the reflected radiance and the incident irradiance is 

expressed by the Bi-directional Reflectance Distribution Function (BRDF) f_r. In real life, 

BRDFs are symmetric, which is referred to as the Helmholtz’s reciprocity principle. 

However, in computer graphics, the BRDF is just a formula, so we can work with non-

symmetric BRDFs as well, but these cannot exist in real life.



Our first model is for very rough surfaces where all photons get reflected multiple times. 

Such materials (snow, sand, wall, chalk, cloth etc.) have a matte look, they look the same from 

all viewing directions. Thus, the radiance, which equals to the incident radiance times the 

BRDF times the geometry factor, is independent of the viewing direction. Incident radiance 

and the geometry term are already independent of the viewing direction, thus the BRDF must 

also be independent of the viewing direction. According to Helmholtz reciprocity, if the BRDF 

is independent of the viewing direction, it must be independent of the illumination direction as 

well, so the BRDF is direction independent. 

Diffuse surfaces correspond to very rough surfaces where a photon collides many times. The 

Fresnel depends on the wavelength, which is strong for metals and weak for non-metals. Even 

if a single reflection changes the spectrum just a little, multiple reflections amplify this effect, 

so the final reflected light will have a modified spectrum. Diffuse reflection is primarily 

responsible for the “own color” of the surface.



The reflected radiance is the incident radiance times the BRDF, which is constant now, and the 

geometry factor. So for diffuse surfaces, the reflected radiance is proportional to the cosine of 

the orientation angle. This cosine can be computed as a dot product of the unit surface normal 

and the unit illumination direction.

If the cosine is negative, i.e. the angle between the surface normal and the illumination 

direction is greater than 90 degrees, then the illumination is blocked by the object whose 

surface is considered. In such cases, the negative value is replaced by zero.



Shiny, glossy or specular surfaces also reflect the light in all possible directions, but they look 

differently from different viewing directions. We can observe the blurred reflection of the light 

sources, thus they reflect more light close to the ideal reflection direction. 

We model such surfaces as a combination of diffuse reflection where the radiance is constant 

and a specular reflection where the radiance is great around the ideal reflection direction. 

According to the microfacet model, diffuse reflection is caused by multiple light microfacet

interaction while specular reflection is the result of a single light microfacet interaction.  In 

order to model the specular reflection lobe, we need a function that is maximum at the 

reflection direction and decreases in a controllable way if the viewing direction gets farther 

from the reflection direction. Phong and Blinn proposed the cos^shininess(delta) function 

where delta is the angle between the macroscopic surface normal and the microfacet

normal. The shininess exponent defines how shiny the surface is. Considering the microfacet

model, this factor is proportional to the probability density that a random microfacet reflects 

the given light direction L exactly to the given view direction V, that is, the normal vector of 

the microfacet is equal to halfway vector H in between light direction L and view direction V.  



Diffuse reflection simulates multiple light-surface interaction and is colored. Specular 

reflection is the model of the single light-surface interaction and it is proportional to the 

Fresnel function. For non metals, the wavelength dependence of the Fresnel is moderate, so for 

non metals the specular reflection is said to be ”white”.



To simulate a rough material, we need a shade function that computes the reflected radiance 

for incident radiance inRad, incident direction lightDir, surface normal vector normal, and 

view direction viewDir. Since the reflected and incident radiances are spectra, we use vec3 

type for them that can be different on the wavelength of red, green and blue. The function first 

computes the geometry factor cosTheta. If this geometry factor is negative, then the back of 

the surface is illuminated, so the object itself occludes the light source, so the reflected 

radiance is zero. Then, the diffuse radiance is computed, which is increased by the glossy term 

if cosDelta is not negative. 



Real light sources are defined by their emission radiance, L^e. When the reflected radiance of 

a point is considered, the contribution of all those light source points should be added which 

are visible from the point of interest. This means integration. Thus, we often prefer abstract 

light source models, that can illuminate a surface just from a single direction, which saves 

integration. 

In case of directional light sources, the radiance is constant everywhere, so is the illumination 

direction. In other words, the illumination rays are parallel. The Sun is an example for 

directional light source if we are on the Earth. 

For point light sources, the illumination direction points from the location of the source to the 

illuminated point. The radiance decreases with the square of the distance.

If we ignore the dependence of the radiance on the distance, directional light sources can be 

considered as point sources being at infinity.



Rendering requires the determination of the surface that is visible through a pixel, then the 

computation of the radiance of this surface in the direction of the eye. There are different 

tradeoffs between accuracy of the light transport computation and the speed of the 

computation. 

In the local illumination setting, when the radiance of a surface is calculated, we consider only 

the direct contribution of the light sources and ignore all indirect illumination. 

In recursive ray tracing, indirect illumination is computed only for smooth surfaces, in the 

ideal reflection and refraction directions.

In the global illumination model, indirect illumination is taken into account for rough surfaces 

as well. In engineering applications we need global illumination solutions since only these 

provide predictable results. However, in games and real time systems, local illumination or 

recursive ray tracing will also be acceptable. 


