


The goal is the definition of points with numbers and primitives with 

equations or functions.  

The definition of points with numbers requires a coordinate system and 

then the measuring of the point with respect to this coordinate system. A 

Cartesian coordinate system contains two orthogonal lines or axes, and a 

unit on them, and we measure how far we should walk along them to arrive 

at the identified point.  

A 2D polar coordinate system is a half line, and a point is defined by an 

angle and a distance. The angle specifies the direction in which we should 

go from the origin and the distance is interpreted between the origin and the 

identified point. Note that while we require that all points can be expressed 

by coordinates, this is not necessarily unambiguous, i.e. in a polar system 

the origin can be defined with arbitrary angle and with distance zero.  

In computer graphics barycentric coordinate systems are also popular. 

Here, the coordinate system is a set of points (at least 3 in 2D) where we put 

weights. The resulting mechanical system has a center of mass somewhere, 

which are identified by the numbers of the weights.  Barycentric coordinates 

are often called homogeneous, due to the property that if we multiply all 

weights with the same non-zero scalar, then the center of mass is not 

affected. 



However, for such constructions we have already applied many non-trivial 

concepts like vectors, distance, angles. First, let us start from scratch and revisit 

these basic building blocks. 



Defining a point as the center of mass of a system where masses placed at 

finite number of reference points is also called the combination of these 

points with barycentric coordinates equal to the weights.  

Note that we can do this in real life without mathematics and coordinate 

systems, center mass exists and is real without mathematics and abstraction. 

If all weights are non-negative, which has direct physical meaning, then we 

talk of convex combination since the points that can be defined in this way 

are in the convex hull of the reference points. By definition, the convex hull 

is the minimal set of points that is convex and includes the original 

reference points. For example, when presents are wrapped, the wrapping 

paper is on the convex hull of the presents. 

Using the term combination or convex combination, we can define a line as 

a combination of two points and a line segment as a convex combination of 

two points. Similarly, the convex combination of three not collinear points is 

the triangle, the convex combination of four points not being in the same 

plane is a tetrahedron. 

  



If we want to specify 1D objects, like curves, then we should simultaneously 

identify (uncountably) infinitely many points. Obviously, defining the points 

one by one with their Cartesian coordinates is not an option. Instead, we 

usually specify an equation that has infinitely many roots and these roots are 

considered as the Cartesian coordinates of points in a set defined by the 

equation. Assume that we are in 2D when the equation should contain 

Cartesian coordinates x and y (in 3D there would be a third coordinate as 

well).  

The most obvious, but the least useful equation type is the explicit form, 

where we express y as a function of x. The problem with this representation 

is for each x there must be exactly one y. This is usually not the case, think 

of a circle or a vertical line, for example. 

 



The equation can have implicit form, which means that x and y are put into 

an algebraic expression that is made equal to zero. We have a single 

equation with two unknowns, thus, we have the hope of having infinitely 

many roots, i.e. x,y pairs.  

For example, a linear equation containing x and y identifies a line. A circle 

contains points that are at distance R from the reference point. Expressing 

this distance with the Pythagoras theorem, we can also develop and equation 

for the circle.  

 



The curve equation may also have parametric form, where we use a free 

parameter t that can run in an appropriate interval.  

Substituting t into two equations defining x and y (or z), we get the 

Cartesian coordinates of the point corresponding to t. 

Parameter t can be imagined as time and the parametric function as the 

definition of a motion or path. 





Curves we meet usually do not belong to the category of classic curves, so 

we do not know their equation. These curves are free form curves. 

As ”everything” can be approximated by polynomials, the unknown 

equations of free form curves are also attacked this way. We approximate 

their parametric equations with polynomials of parameter t. The problem is 

that the polynomial coefficients do not have intuitive interpretation, thus we 

cannot expect the modeler to specify the coefficients directly. Instead, we 

require the user to specify a finite number of control points, and the 

modeling program automatically computes the polynomial coefficients from 

the control points.  This  computation can be an interpolation when the 

resulting curve is expected to go through the control points. Or, the 

computation can also be an approximation, when the resulting curve should 

just somehow follow the control points, but it does not have to go through 

each of them. By requiring approximation instead of interpolation, we ease 

the fitting process so we can impose additional requirements concerning the 

”quality” of the curve.  



The first curve is of interpolation type and is known as the Lagrange interpolation. 

Suppose we specify a sequence of control points r1, …, rn, and search a parametric 

function r(t) (one polynomial for each of the x, y or x, y, z coordinates) that goes through 

them. More precisely, we expect the curve to give control point r1 for parameter value t1, 

r2 for t2, etc. The interpolation requirement means n constraints, thus the polynomials may 

have n unknown coefficients to make the number of unknowns equal to the number of 

equations, and thus obtaining a well defined problem with an unambiguous solution. To 

find the n unknown polynomial coefficients, we need to solve a linear equation generated 

by substituting t1,…,tn into the polynomial and requiring them to be equal to r1,…,rn, 

respectively. If we solve it, we obtain the coefficients, which allow the computation of the 

curve point for arbitrary parameter t.  

Instead of solving the linear equation, the solution can be given directly as a combination of 

the control points with barycentric coordinates Li(t) that depend on parameter t. The 

algebraic form of these weight functions, aka basis functions or blending functions is 

shown here as the ratio of two products.  

To prove that the combination of the control points with these functions satisfies the 

interpolation constraints, let us examine a basis function Li when we substitute tk into it. If 

i=k, the numerator and  the denominator of Li will be similar, so Li(ti) = 1. However, when 

i !=k, there will be some j which equals to k, so one factor of the numerator will be tk-tk=0, 

making Li(tk) also zero. So Li is 1 for ti but is zero for all other discrete parameter values. 

This means that in sum Li(tk) ri, all control points ri get zero weight except rk, which gets 

weight 1, thus r(tk) = rk.  

Note: A point of the Lagrange curve is the combination of control points with weights Li. 

According to the definition of combination, the reference points (which are the control 

points here) should be multiplied with the corresponding weights, the terms should be  



added them up, and finally the sum be divided with the total mass. Where is this division? The 

division can be ignored if the total mass is 1. Is the sum of the weight functions equal to 1 for any 

t??? (Yes). 

 





Let us take an example where there are four control points and we expect 

the curve to interpolate them for t=0, 0.33, 0.67, and 1, respectively. The 

basis functions are depicted in the Figure. When t=0, the weight of the green 

point is 1, and the weight of all other points is zero. The curve is then in the 

green point. When t increases, the weight of the red point gets larger and at 

t=0.33 only the red point has non-zero weight… 

The basis functions oscillate between positive and negative values, thus a 

control point periodically attracts or repels the curve. This is bad since the 

curve will tend to oscillate.  

The other disadvantage of Lagrange interpolation is that it cannot provide 

local control. Local control would mean that the modification of a control 

point modifies only a smaller part of the curve. However, as all basis 

functions are non-zero in the whole domain, the complete curve will change. 



Hermite (H at the beginning and e at the end are silent because he was a 

Frenchman) interpolation is a generalization of Lagrange interpolation, 

where not only the points to be interpolated are given but also the 

derivatives. Here we discuss only the practically relevant special case, when 

the curve is defined by two control points and the first derivatives at these 

control points. We have four constraints, so the polynomial that is 

unambiguously determined by these constraints if a cubic (of four 

polynomical coefficients).  

 

The strategy is (always) similar to that of the Lagrange interpolation. We 

take the polynomial with yet unknown coefficients, substitute the 

constraints, and get a linear equation for the unknown coefficients. This 

linear equation is solved.  

   



Lagrange (and Hermite) interpolation tends to oscillate. Let us find a better 

curve. We still use the center of mass analogy, i.e. the curve will be the 

composition of control points with weights placed at them. The weights are 

basis functions Bi(t) and we can ignore division with the total mass if the 

sum of weights is guaranteed to be equal to 1.  

We do not want the oscillation of the Lagrange curve, so we allow only non-

negative weights. Composition with non-negative weights is a convex 

combination, thus all points of the curve, i.e. the complete curve will be in 

the convex hull of the control points. 



So, the task is to find a basis function system where each basis function is 

non-negative in the allowed domain (in [0,1]) and their sum is everywhere 

1. 

Such basis functions can be constructed by expressing 1 with the Newtonian 

binomial theorem. The terms are called Bernstein polynomials, which are 

indeed non-negative if t is in [0,1], and their creation guarantees that their 

sum is 1. 





If n = 3 (which is good for 4 control points), the basis functions are (1-t)^3, 

3*(1-t)^2*t, 3*(1-t) *t^2, t^3. Note that the first basis function is 1 for t=0, 

while all others are zero, so the curve crosses the first control points. 

Similarly, when t=1, the curve is at the last control point. However, other 

control points are not so lucky, they are usually not interpolated. This is an 

approximation curve. 

 



Let us define a separate curve segments between every two control points 

applying Hermite interpolation. Hermite interpolation needs the start and 

end points (which are available) and the derivatives at these two points 

(which should be found somehow). 

 

If the speed is uniform and the motion is linear in segment i, then its 

constant speed equals to (r{i}-r{i-1})/(t{i}-t{i-1}). 

Similarly the constant speed in segment i+1 would be (r{i+1}-r{i})/(t{i+1}-

t{i}). A good approximation is to set the velocity at the control point shared 

by the two segments to the average of these two velocities. This is the 

Catmull-Rom spline. 

 

Kochanek and Bartels further generalized this spline and allowed an 

additional tension parameter that can scale up or down the average velocity. 

On the other hand, we can use a weighted average when the average of the 

two constant speeds is obtained. 



The Catmull-Rom spline can be found in PowerPoint and in many drawing 

packages. It is an interpolating spline with local control. 

When we move a control point, the average speeds of two linear uniform 

motions are modified. Thus, the averages of these linear motions  are 

changed at three control points, which can affect four curve segments at 

most. 

 





Surfaces are two-dimensional subsets of the 3D space. Their definition is 

very similar to that of curves, but now the parametric equations have two 

free parameters (parametric equations of curves map a line segment onto the 

curve, parametric equations of surfaces map a square onto the surface). 















To get the normal vector of a parametric surface, we exploit isoparametric 

lines. Suppose that we need the normal at point associated with parameters 

u*, v*. Let us keep u* fixed, but allow v to run over its domain. This r(u*,v) 

is a one-variate parametric function, which is a curve. As it always satisfies 

the surface equation, this curve is on the surface and when v=v*, this curve 

passes through the point of interest. We know that the derivative of a curve 

always tangent to the curve, so the derivative with respect to v at v* will be 

the tangent of a curve at this point, and consequently will be in the tangent 

plane. 

Similarly, the derivative with respect to u will always be in the tangent 

plane. The cross product results in a vector that is perpendicular to both 

operands, so it will be the normal of the tangent plane. 

 











The definition of curves traced back the problem to the specification of a 

few control points. We use the same approach here. 

First, we trace back the definition of surfaces to curves. Let us fix one of the 

free variables of the surface, which results in a one-variable parametric 

form, a curve. This curve is on the surface and is called isoparametric 

curve. A curve can be well defined by control points. Now let us fix the 

isoparametric value differently, which leads to another isoparametric curve 

that can be defined with different control points. As the isoparametric value 

changes, the control points of the corresponding isoparametric curve also 

change. These changes are also curves, so we can express the path of the 

control point by blending other control points. 

Substituting this into the equation of the isoparametric curve, we obtain the 

equation of the surface, which is a combination of control points forming a 

control cage or control polyhedron. The blending or weighting function of 

control point rij is the product of basis functions Bi parameterized with u, 

and Bj parameterized with v.  


