


Computer graphics works with shapes. The field of mathematics that describes shapes is 

the geometry, so geometry is essential in computer graphics.

Geometry, like other fields of formal science, has axioms that are based on experience and 

cannot be argued but must be accepted as true statements without arguments. From axioms 

other true statements, called theorems, can be deducted with logic reasoning. 

For example, axioms of the Euclidean geometry include the postulates shown above. 

Axioms have two purposes, on the one hand, they are accepted as true statements. On the 

other hand, axioms implicitly define basic concepts like points, lines etc. because they 

postulate their properties. 

Euclidean geometry is metric, i.e. we can talk of the distance between points or 

separation of lines, called the angle, and size is an important concept. Additional axioms 

introduce the properties of metric quantities (distance and angle).

Having defined the axioms, we can start establishing theorems using logic inference. Such 

theorems will constitute the geometry. For example, theorems are:

T1: Two different lines may intersect each other at most one point.

T2: Two lines are parallel if and only if the angles in which a third line intersects them are 

equal. 

T3: The sum of angles of a triangle is the half angle, i.e. 180 degrees. 

T4: Theorem of Pythagoras.

Prove them using axioms and already proven theorems!







The curvature kappa of a 1D object (a curve) in one of its points is the reciprocal 

of the radius r of the osculating circle. The curvature is proportional to the 

centripetal force needed when we are travelling along the curve with constant 

unit velocity. To distinguish turning right and left, we can say that left turns have 

positive curvature and right turns have negative curvature. Curvature is also the 

second derivative of explicit function form of the function if its derivative is zero.



Let us examine the curvature K of 2D objects (surfaces) in a point. In this point, 

the surface has a tangent plane and a normal vector that is perpendicular to the 

tangent plane. The point and the normal vector define a line. Let us place a plane 

through this line. This plane intersects the surface and the intersection is a curve, 

for which the 1D curvature definition can be used. We call this directional 

curvature since it depends on the direction of the cutting plane. If we test all 

possible directions, we can notice that there are two orthogonal directions in 

which the curvature is maximum and minimum (try to prove it!). These directions 

are called the principal curvature directions.

The curvature of a surface can be described, for example, by the product of the 

minimum and maximum curvatures, which leads to the concept of Gaussian 

curvature. 

What is the Gaussian curvature of a cylinder, plane, sphere or torus?



The curvature of a plane in all directions is zero, thus the Gaussian curvature of 

a plane is zero.

The principal curvature directions of a cylinder are parallel and perpendicular to 

the axis. In the parallel direction, the curvature is zero. In the orthogonal 

direction, the curvature is reciprocal of the radius of the cylinder. Thus, the 

Gaussian curvature of a cylinder is zero. Oops, planes and cylinders are relatives, 

both of them have zero Gaussian curvature. Indeed, we can unfold a cylinder and 

make it a plane without distortions. 

The curvature of a sphere in all directions is the reciprocal of the sphere radius. 

Thus the Gaussian curvature is the reciprocal of the square of the radius. The 

Gaussian curvature of a sphere is positive, and thus is different from the Gaussian 

curvature of a plane, which is zero. It means that a sphere cannot be unfolded into 

a plane without distortions. 

If in one of the principal curvature directions the intersection curve is above the 

tangent plane while it is below in the other principal direction, the two directional 

curvatures have opposite signs, so the Gaussian curvature is negative. 

Examples are the saddle or the trumpet, called tractricoid, which is the rotation of 

a tractrix. The Gaussian curvature of a torus changes from point to point. It is 

positive in the outer half and negative in the inner half. The figure at the bottom 

shows different objects colored according to the curvature information. We used 

rainbow colors, blue corresponds to negative curvature, green to zero curvature, 

and red to positive curvature.





The axioms of the Euclidean geometry are based on experience gathered on 

walking on a flat terrain or not too large distances.  

If Euclid had travelled through continents of the spherical Earth, he would have 

different experience and would have established different axioms. For example, 

on the Earth parallel lines meet at exactly 10 million km from start .

The line on a sphere, using the concept of the shortest path between two points, is 

the main circle, which is the intersection of the sphere and the plane defined by 

the two points and the center of the sphere. Airplanes fly along these spherical 

lines. 

If we interpret spherical points as diameters, the first two axioms of the Euclidean 

geometry remain valid. However, the third axiom is invalid for spherical lines 

and points. Here lines always intersect in a diameter. Consequently, the theorems 

of Euclidean geometry are not true. For example, the sum of the angles of a 

triangle is always larger than 180 degrees. 

Maps are Euclidean unfolding of the non-Euclidean (spherical) plane. As the 

curvature of the sphere is not zero, a map must distort distances and/or angles. 

There are different options, but all of them distort somehow. Mercator’s map, for 

example, preserves angles but apply drastic distance distortions







Spaces of negative curvature need another geometry called hyperbolic 

geometry. We should change just a single word in the axioms: there can be more 

than one parallel line crossing a given point. This small modification may 

invalidate most of the theorems of Euclidean geometry and lead into a “new 

world”.

In hyperbolic geometry the sum of angles of a triangle is less than 180 

degrees, proportionally to the size. 

Hyperbolic geometry is also often studied with maps. Here we show the 

Beltrami-Poincare disc as a map, which is a conformal, i.e. angle preserving map 

of the hyperbolic plane. However, it is not distance preserving, infinity is at the 

boundary of the base circle. Esher loved this model and created many different 

artworks according to its rules.

How can we figure it out whether our universe has positive, negative or zero 

curvature? This is an important question since it determines whether the 

universe will expand without limits or will start shrinking sooner or later. 





The richness and beauty of hyperbolic geometry is often demonstrated with 

tiling, i.e. tessellation of the plane with, for example, regular, congruent 

polygons. The Euclidean plane has only three such tessellations: with triangles, 

squares, and hexagons. However, thanks to the fact that sum of angles of a 

triangle can be smaller than 180 degrees in hyperbolic geometry, a regular 

polygon with any number of vertices can tile the plane, and can do it with 

infinitely many ways. Just the size of the polygon should be set properly. 









In Euclidean geometry parallel lines do not intersect, that is, a point at infinity 

(where parallel line would meet) is not part of the Euclidean plane. However, we 

can see the intersection of parallel lines, so a geometry where infinity is also 

included makes sense.

If we define axioms differently, we can add points at infinity to the plane 

making all lines, even parallel lines, intersecting. Clearly, this is a different 

geometry with different axioms and theorems, which is called the projective 

geometry. Projective geometry is not metric since distance cannot be defined in 

it. The reason is that the distance from points at infinity is infinite, but infinite is 

not a number. As a result, we cannot use coordinate systems that are based on the 

concept of distance, e.g. Cartesian coordinate systems are useless here. We should 

find another algebraic basis. 

Note that the first three axioms of projective geometry are identical to those of 

the spherical geometry. They are close relatives. As a result, a projective line has 

similar properties to a circle. You can go around it.









By definition a translation is a vector, which has direction and length. The 

length is denoted by the absolute value of the vector.

If we select a special reference point, called the origin, then every point has a 

unique vector that translates the origin to here, or from the other point of view, 

every vector unambiguously defines a point that is reached if the origin is 

translated by this vector. Such vectors are called position vectors. The fact that 

there is a one-to-one correspondence between points and position vectors does 

not mean that points and vectors would be identical objects (wife and husband are 

also strongly related and unambiguously identify each other, but are still different 

objects with specific operations).



Concerning vector operations, we can talk of addition that means the execution 

of the two translations one after the other. The resulting translation is independent 

of the order, so vector addition is commutative (parallelogram rule). If we have 

more than two vectors, parentheses can rearranged so it is also associative.

Vector addition has an inverse, because we can ask which vector completes the 

translation of v2 to get a resulting translation v.

Vectors can be multiplied by a scalar, which scales the length but does not 

modify the direction. Scaling is distributive, i.e. scaling a sum of two vectors 

results in the same vector as adding up the two scaled versions.

We have to emphasize that the nice properties of commutativity, associativity, 

and distributivity are usually not evident and sometimes not even true for vector 

operations. They must be proven using the axioms of Euclidean geometry.



Vectors can be multiplied in different ways. The first possibility is the scalar 

product (aka dot or inner product) that assigns a scalar to two vectors. By 

definition, the resulting scalar is equal to the product of the lengths of the two 

vectors and the cosine of the angle between them.

The geometric meaning of scalar product is the length of projection of one vector 

onto the other, multiplied by the lengths of the others.

Scalar product is commutative (symmetric), which is obvious from the 

definition.

Scalar product is distributive with the vector addition, which can be proven by 

looking at the geometric interpretation. Projection is obviously distributive (the 

projection of the sum of two vectors is the same as the sum of the two 

projections.

Scalar product is NOT associative!

There is a direct relationship between dot product and the absolute value. The 

scalar product of a vector with itself is equal to the square of its length according 

to the definition since cos(0)=1.



Vectors can be multiplied with the rules of the vector (aka cross) product as 

well. The result is a vector of length equal to the product of the lengths of the two 

vectors and the sine of their angle. The resulting vector is perpendicular to both 

operands and points into the direction of the middle finger of our right hand if our 

thumb points into the direction of the first operand and our index finger into the 

direction of the second operand (right hand rule).

Cross product can be given two different geometric interpretations. The first is a 

vector meeting the requirements of the right hand rule and of length equal to the 

area of the parallelogram of edge vectors of the two operands.

The second geometric interpretation is the projection of the second vector onto 

the plane perpendicular to the first vector, rotating the projection by 90 degrees 

around the first vector, and finally scaling the result with the length of the first 

vector.

Cross product is NOT commutative but anti-symmetric or alternating, which 

means that exchanging the two operands the result is multiplied by -1.

Cross product is distributive with the addition, which can be proven by 

considering its second geometric interpretation. Projection onto a plane is 

distributive with addition, so are rotation and scaling. Cross product is NOT 

associative.







Having vectors and operations, we are ready to establish a Cartesian coordinate 

system. Let us select one point of the plane and two unit (length) vectors i and j

that are perpendicular to each other. A vector has unit length if its scalar product 

with itself is 1 and two vectors are perpendicular if their scalar product is zero 

since cos(90)=0 (formally:i i =j j =1 and i j= 0).

Now, any position vector v can be unambiguously given as a linear combination 

of basis vector i and j, i.e. in the form v = xi + yj, where x and y are scalars, called 

the coordinates. Having v, scalar products determine the appropriate 

coordinates: x = vi, y = vj . To prove this, let us multiply both sides of v = xi + 

yj by i and j.



As there is a one-to-one correspondence between vectors and coordinate pairs in 2D (and 

coordinate triplets in 3D), vectors can be represented by coordinates in all operations. 

Based on the associative property of vector addition and on distributive property of multiplying a 

vector by a scalar with addition, we can prove that coordinates of the sum of two vectors are the 

sums of the respective coordinates of the two vectors. 

Similarly, based on the distributive property of dot product with vector addition, we can prove that 

the dot product equals to the sum of the products of respective coordinates. Here we also exploit 

that i i =jj=1 and i j= 0.

The absolute value of a vector is the square root of the scalar product of the vector with itself. Note 

that we get the Pythagoras theorem for free.



Finally, based on the distributive property of the cross product with vector addition, we can also 

express the cross product of two vector with their coordinates. We should also use the cross 

products of the base vectors i i =0, i j=k, etc. The result can be memorized as a determinant 

where the first row contains the three basis vectors, the second the coordinates of the first operand, 

the third the coordinates of the second operand.

The absolute value of a vector is the square root of the scalar product of the vector with itself. Note 

that we get the Pythagoras theorem for free.





In computer graphics, we should also take into account that a computer is 

programmed, which cannot do anything else but making calculations with 

numbers. A computer is definitely not able to understand abstract concepts like 

point, line etc. So for the application of a computer, geometric concepts must be 

translated to numbers, calculation and algebra. 

A geometry based on algebra, equations and numbers is called analytic 

geometry or coordinate geometry. To establish an analytic version of a 

geometry, we have to find correspondences between geometric concepts and 

concepts of algebra in a way that axioms of the geometry will not contradict to 

the concepts of algebra. If it is done, we can forget the original axioms and work 

only with numbers and equations.















Using vec4, i.e. four-element vectors, instead of vec3, we can represent not only 

points and vectors, but also planes. The fourth element should be set depending 

on the actual type. 

Note that the test whether or not a point is on a plane is a dot product of the two 

4-element vectors if the fourth component of a point is 1 and the four components 

of a plane is a, b, c, d, the plane parameters. 

We can preserve the validity of vector operations if the fourth element of a vector 

is zero. 

And now, the big news: those operations that are applicable for points remain 

valid even when the fourth element is 1. 





The implementation of the theory discussed so far is a single C++ class 

representing a 3D point or a vector with three Cartesian coordinates. Using 

operator overloading, the discussed vector (and point) operations are also.

Note that – similarly to the GLSL language – we use the same type to represent 

points and vectors. The programmer should be aware whether an object is a point 

or a vector and execute operations valid for this particular type. Mixing different 

types in a single class, we can extend the concept to colors as well. A color can be 

define as additive mixture of red, green, and blue components, so a three-

dimensional vector is just a right representation.  













The set of complex numbers is a special case of hyper numbers of Clifford 

algebras that deal with numbers of form x+yi where x and y are real numbers and 

i is a symbol, and the same arithmetic rules apply for such numbers as for real 

ones. To use the arithmetic rules, we should decide what is the value of i^2. 

Complex numbers define it as -1, in Clifford algebra, this is up to us.

If we take the option of i^2=0, then we have dual numbers and the rules will be 

equivalent to the rules of derivatives assuming x the function value and y the 

derivative. Thus, we can derivate without approximations specifying only the 

function, the derivative is obtained automatically. 



Dnum implements the arithmetic rules of derivation. 





We also need global functions to specify the derivatives of elementary functions.  





Suppose we want to animate an object along a path defined by (x(t), y(t)). The 

position of the object is given by inserting time t into these two functions. 

Objects like trains, cars, birds, etc. follow their front (head, beak) during 

animation, so we should often rotate the object to transform its heading direction 

into the current direction of movement, which is the current velocity, i.e. the 

derivative of the path. 


