”In jeder besonderen Naturlehre nur so viel

eigentliche Wissenschaft angetroffen werden

kénne, als darin Mathematik anzutreffen ist.”
Immanuel Kant

Geometries and algebras
1. Classical geometries

Szirmay-Kalos Laszlo




E u CI | d ean p | anar Axioms of Euclidean geometry of the plane:

1. Two distinct points define one line.

2. Aline has at least two points.
_ ge om et ry 3. There is exactly one line that goes through a
Axioms point and does not intersect a given line
— Basic truth (experience) (parallelism).

— Implicit definition of basic concepts | 4. Plane is uniform an isotropic.

b

Size of the whole is the sum of its parts.
\O\O\ 6'

Computer graphics works with shapes. The field of mathematics that describes shapes is
the geometry, so geometry is essential in computer graphics.

Geometry, like other fields of formal science, has axioms that are based on experience and
cannot be argued but must be accepted as true statements without arguments. From axioms
other true statements, called theorems, can be deducted with logic reasoning.

For example, axioms of the Euclidean geometry include the postulates shown above.

Axioms have two purposes, on the one hand, they are accepted as true statements. On the
other hand, axioms implicitly define basic concepts like points, lines etc. because they
postulate their properties.

Euclidean geometry is metric, i.e. we can talk of the distance between points or
separation of lines, called the angle, and size is an important concept. Additional axioms
introduce the properties of metric quantities (distance and angle).

Having defined the axioms, we can start establishing theorems using logic inference. Such
theorems will constitute the geometry. For example, theorems are:

T1: Two different lines may intersect each other at most one point.

T2: Two lines are parallel if and only if the angles in which a third line intersects them are
equal.

T3: The sum of angles of a triangle is the half angle, i.e. 180 degrees.
T4: Theorem of Pythagoras.
Prove them using axioms and already proven theorems!




E u Cl |d ea n p I a n a r Axioms of Euclidean geometry of the plane:

1. Two points define a line.

geom et ry 2. Aline has at least two points.
3.

There is exactly one line that goes through a

* Axuoms' . point and does not intersect a given line
— Basic truth (experience) (parallelism).
— Implicit definition of basic concepts 4. Plane is uniform an isotropic.
* Definitions and theorems 5. Size of the whole is the sum of its parts.
T1. Two different lines intersect each other =

at most one point

m T3. The sum of angles of a triangle is the half
angle, i.e. 180 degrees.
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—
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T2. Two lines are parallel if and only if the angles in
which a third line intersects them are equal.




Is Euclidean geometry good for
earth (Geo) measurement (meter)?
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Curvature of curves

k = 1/r

* Centripetal acceleration of a unit speed motion

* Reciprocal of the radius of the osculating circle

The curvature kappa of a 1D object (a curve) in one of its points is the reciprocal
of the radius r of the osculating circle. The curvature is proportional to the
centripetal force needed when we are travelling along the curve with constant
unit velocity. To distinguish turning right and left, we can say that left turns have
positive curvature and right turns have negative curvature. Curvature is also the
second derivative of explicit function form of the function if its derivative is zero.




- Curvature of Surfaces: Principal curvature
\?:-"-:.}-‘> . . . ¥
4 directions and Gaussian curvature (Krimmung)

K = k%,

Let us examine the curvature K of 2D objects (surfaces) in a point. In this point,
the surface has a tangent plane and a normal vector that is perpendicular to the
tangent plane. The point and the normal vector define a line. Let us place a plane
through this line. This plane intersects the surface and the intersection is a curve,
for which the 1D curvature definition can be used. We call this directional
curvature since it depends on the direction of the cutting plane. If we test all
possible directions, we can notice that there are two orthogonal directions in
which the curvature is maximum and minimum (try to prove it!). These directions
are called the principal curvature directions.

The curvature of a surface can be described, for example, by the product of the
minimum and maximum curvatures, which leads to the concept of Gaussian
curvature.

What is the Gaussian curvature of a cylinder, plane, sphere or torus?



x| Gauss curvature: K = kK,

— o WO O b=

Square Sphere Tractricoid Cylinder Torus Mobius Klein Boy

The curvature of a plane in all directions is zero, thus the Gaussian curvature of
a plane is zero.

The principal curvature directions of a cylinder are parallel and perpendicular to
the axis. In the parallel direction, the curvature is zero. In the orthogonal
direction, the curvature is reciprocal of the radius of the cylinder. Thus, the
Gaussian curvature of a cylinder is zero. Oops, planes and cylinders are relatives,
both of them have zero Gaussian curvature. Indeed, we can unfold a cylinder and
make it a plane without distortions.

The curvature of a sphere in all directions is the reciprocal of the sphere radius.
Thus the Gaussian curvature is the reciprocal of the square of the radius. The
Gaussian curvature of a sphere is positive, and thus is different from the Gaussian
curvature of a plane, which is zero. It means that a sphere cannot be unfolded into
a plane without distortions.

If in one of the principal curvature directions the intersection curve is above the
tangent plane while it is below in the other principal direction, the two directional
curvatures have opposite signs, so the Gaussian curvature is negative.
Examples are the saddle or the trumpet, called tractricoid, which is the rotation of
a tractrix. The Gaussian curvature of a torus changes from point to point. It is
positive in the outer half and negative in the inner half. The figure at the bottom
shows different objects colored according to the curvature information. We used
rainbow colors, blue corresponds to negative curvature, green to zero curvature,
and red to positive curvature.



Spherical geometry
x4+ y- +2° = R°

* Constant positive curvature
* Line =maincircle
= shortest path

Euclidean axioms are wrong:

Two points not always define a line.

A line has at least two points.

Two lines always intersect.

Plane is uniform and isotropic.

Size of the whole is the sum of its parts.

S




. . Only the parallel axiom changes:

E | | | pt| C ge O m et ry 1. Two points (=diameter) determine a
line (=geodesic, main circle).

A line has at least two points.

Two lines always intersect (=diameter).

Movement does not modify size

Size of the whole is the sum of its parts.

Line = main circle
Lines always intersect

Al AE o o

Sum of triangle angles > 180

(proportionally to the area)
Pythagoras: a? + b? > c?
Similarity = Congruence

Circumference of a circle:

\/2—% sin(rvK)

The axioms of the Euclidean geometry are based on experience gathered on
walking on a flat terrain or not too large distances.

If Euclid had travelled through continents of the spherical Earth, he would have
different experience and would have established different axioms. For example,
on the Earth parallel lines meet at exactly 10 million km from start .

The line on a sphere, using the concept of the shortest path between two points, is
the main circle, which is the intersection of the sphere and the plane defined by
the two points and the center of the sphere. Airplanes fly along these spherical
lines.

If we interpret spherical points as diameters, the first two axioms of the Euclidean
geometry remain valid. However, the third axiom is invalid for spherical lines
and points. Here lines always intersect in a diameter. Consequently, the theorems
of Euclidean geometry are not true. For example, the sum of the angles of a
triangle is always larger than 180 degrees.

Maps are Euclidean unfolding of the non-Euclidean (spherical) plane. As the
curvature of the sphere is not zero, a map must distort distances and/or angles.
There are different options, but all of them distort somehow. Mercator’s map, for
example, preserves angles but apply drastic distance distortions




Maps of the sphere

Central projection Stereographic projection
* Preserves lines * Preserves circles and angles




A =longitude
¢ = latitude




Axioms of hyperbolic geometry:
. 1. Two points define a line.

Hype rbOI IC geo m etry 2. Aline has at least two points.

3. There are many lines that go through a
point and do not intersect a given line
(parallelism).

4. Movement does not modify size

5. Size of the whole is the sum of the sizes

* Constant negative curvature
* Line =shortest path
* Many parallels Qtits parts

* Sum of triangle angles < 180
(proportionally to the area)

* Pythagoras: a? + b? < c?
e Similarity = Congruence

Spaces of negative curvature need another geometry called hyperbolic
geometry. We should change just a single word in the axioms: there can be more
than one parallel line crossing a given point. This small modification may
invalidate most of the theorems of Euclidean geometry and lead into a “new
world”.

In hyperbolic geometry the sum of angles of a triangle is less than 180
degrees, proportionally to the size.

Hyperbolic geometry is also often studied with maps. Here we show the
Beltrami-Poincare disc as a map, which is a conformal, i.e. angle preserving map
of the hyperbolic plane. However, it is not distance preserving, infinity is at the
boundary of the base circle. Esher loved this model and created many different
artworks according to its rules.

How can we figure it out whether our universe has positive, negative or zero
curvature? This is an important question since it determines whether the
universe will expand without limits or will start shrinking sooner or later.




i

Poincaré: Angles and Klein: Lines are preserved Minkowski space
circles are preserved; Sphere!
Lines are circular arcs




Tiling with regular, congruent polygons
36°

(e

* Euclidean geometry

V4
X7\

(3, 6) (4,4)
* Hyperbolic geometry

3,7 3. 8) 5, 4)

The richness and beauty of hyperbolic geometry is often demonstrated with
tiling, i.e. tessellation of the plane with, for example, regular, congruent
polygons. The Euclidean plane has only three such tessellations: with triangles,
squares, and hexagons. However, thanks to the fact that sum of angles of a
triangle can be smaller than 180 degrees in hyperbolic geometry, a regular
polygon with any number of vertices can tile the plane, and can do it with
infinitely many ways. Just the size of the polygon should be set properly.






*‘3:‘5 g.~;;>=;*:'?";.

)

&
v




Hyperbolic geometry




. . Axioms of projective geometry:
PrOJeCt|Ve gecmEtry 1. Two points define a line.

2. Aline has at least two points.
* Infinity is also part of our world 3. Two different lines always intersectin a
single point.

* There are no parallel lines

* Programming advantage: no singularity

* Cartesian or polar coordinates are not good (no distance)
* Geometry of shadows or of the straight edge without scale

In Euclidean geometry parallel lines do not intersect, that is, a point at infinity
(where parallel line would meet) is not part of the Euclidean plane. However, we
can see the intersection of parallel lines, so a geometry where infinity is also
included makes sense.

If we define axioms differently, we can add points at infinity to the plane
making all lines, even parallel lines, intersecting. Clearly, this is a different
geometry with different axioms and theorems, which is called the projective
geometry. Projective geometry is not metric since distance cannot be defined in
it. The reason is that the distance from points at infinity is infinite, but infinite is
not a number. As a result, we cannot use coordinate systems that are based on the
concept of distance, e.g. Cartesian coordinate systems are useless here. We should
find another algebraic basis.

Note that the first three axioms of projective geometry are identical to those of
the spherical geometry. They are close relatives. As a result, a projective line has
similar properties to a circle. You can go around it.




Model geometries

Euclidean

— 1 non-intersecting line (parallel)

— Zero curvature
Spherical

— 0 non-intersecting line /—?_T\
— Positive curvature \—l_l/

Hyperbolic

— More than one non-intersecting line \T—-‘/

— Negative curvature
Projective

— 0 non-intersecting line

— Not metric: includes infinity







“Tant que I'Algébre et la Géométrie ont été séparées, leurs
progrés ont été lents et leurs usages bornés; mais lorsque ces deux
sciences se sont réunies, elles se sont prété des forces mutuelles et
ont marché ensemble d’un pas rapide vers la perfection.”

Joseph-Louis Lagrange

Geometries and algebras
2. Vector algebra

Szirmay-Kalos Laszlé




Universe (geometry)

Transformation: Point:
f(r) Real
Ir(r)
numbers

r t
Vector: v Position ( )

vector ,

o Distance: d(r4, 1)
Vector: erigin Length: d(v)
1. Direction and distance @ | Angle: a(vy,v5)
2. Translation e % 00 2 0
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Measurement: distance and angles

By definition a translation is a vector, which has direction and length. The
length is denoted by the absolute value of the vector.

If we select a special reference point, called the origin, then every point has a
unique vector that translates the origin to here, or from the other point of view,
every vector unambiguously defines a point that is reached if the origin is
translated by this vector. Such vectors are called position vectors. The fact that
there is a one-to-one correspondence between points and position vectors does
not mean that points and vectors would be identical objects (wife and husband are
also strongly related and unambiguously identify each other, but are still different
objects with specific operations).




Operations of vectors

e Addition
v = v, + v, (comm, assoc)

* Substraction
v — 171 - ‘U2

* Scaling -

v, =av (distributive) —
av

Concerning vector operations, we can talk of addition that means the execution
of the two translations one after the other. The resulting translation is independent
of the order, so vector addition is commutative (parallelogram rule). If we have
more than two vectors, parentheses can rearranged so it is also associative.
Vector addition has an inverse, because we can ask which vector completes the
translation of v2 to get a resulting translation v.

Vectors can be multiplied by a scalar, which scales the length but does not
modify the direction. Scaling is distributive, i.e. scaling a sum of two vectors
results in the same vector as adding up the two scaled versions.

We have to emphasize that the nice properties of commutativity, associativity,
and distributivity are usually not evident and sometimes not even true for vector
operations. They must be proven using the axioms of Euclidean geometry.




Definition: v,-v, = |v,||v,|cos(a)

Dot product

[v4|cos(a)

Meaning:

Projection of a vector onto another * other’s length

Properties: Not associative (!), Commutative,

Magic wand (metric):

Disztributive with the addition i V2
V3 (U, + ) = V30, + V30 (2

vy = |v|? P —m—
v =v/Jvv

vy V,/|v4|[v,] = cos(a)

Orthogonality < dot product is zero

Vectors can be multiplied in different ways. The first possibility is the scalar
product (aka dot or inner product) that assigns a scalar to two vectors. By
definition, the resulting scalar is equal to the product of the lengths of the two
vectors and the cosine of the angle between them.

The geometric meaning of scalar product is the length of projection of one vector
onto the other, multiplied by the lengths of the others.

Scalar product is commutative (symmetric), which is obvious from the
definition.

Scalar product is distributive with the vector addition, which can be proven by
looking at the geometric interpretation. Projection is obviously distributive (the
projection of the sum of two vectors is the same as the sum of the two
projections.

Scalar product is NOT associative!

There is a direct relationship between dot product and the absolute value. The
scalar product of a vector with itself is equal to the square of its length according
to the definition since cos(0)=1.




Cross product N

» Definition: |v; X v,| = |v4||v,|sin(a) m

* Meaning:
— Area and orthogonal direction

— Projection of a vector onto a plane orthogonal to another + 90
deg rotation) * other’s length

* Properties: |v,|sin(a)
— Not associative! 90 de
— Alternating: v, x v, = —v, X v, v, X Uy
— Distributive: v, x (v, + v3) = v, X v, + v, X V3

Vectors can be multiplied with the rules of the vector (aka cross) product as
well. The result is a vector of length equal to the product of the lengths of the two
vectors and the sine of their angle. The resulting vector is perpendicular to both
operands and points into the direction of the middle finger of our right hand if our
thumb points into the direction of the first operand and our index finger into the
direction of the second operand (right hand rule).

Cross product can be given two different geometric interpretations. The first is a
vector meeting the requirements of the right hand rule and of length equal to the
area of the parallelogram of edge vectors of the two operands.

The second geometric interpretation is the projection of the second vector onto
the plane perpendicular to the first vector, rotating the projection by 90 degrees
around the first vector, and finally scaling the result with the length of the first
vector.

Cross product is NOT commutative but anti-symmetric or alternating, which
means that exchanging the two operands the result is multiplied by -1.

Cross product is distributive with the addition, which can be proven by
considering its second geometric interpretation. Projection onto a plane is
distributive with addition, so are rotation and scaling. Cross product is NOT
associative.



Gradient: Vf

. * OA = » d > 0 . . . .
lim £+ ASS) LS (rd;”’ *) directional derivative
df , N o
r Vf isthe direction and rate of the maximal increase




Derivation with respect to the parameter

r(t")

Velocity (tangent) vector:
dr(t) . r(t"+At)—r(t")
= = lim
dt At

4
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== =0 x=1 x=2

r(x,y) = xi + yj

r’x - i, r’y :jl

XxX=1ir, y=j-r

i=Vx, j=Vy

Having vectors and operations, we are ready to establish a Cartesian coordinate
system. Let us select one point of the plane and two unit (length) vectors i and j
that are perpendicular to each other. A vector has unit length if its scalar product
with itself is 1 and two vectors are perpendicular if their scalar product is zero
since cos(90)=0 (formally:i -i =j -j=1and i -j=0).

Now, any position vector v can be unambiguously given as a linear combination
of basis vector i and j, i.e. in the form v = xi + yj, where x and y are scalars, called
the coordinates. Having v, scalar products determine the appropriate
coordinates: x = v-i, y = v-j . To prove this, let us multiply both sides of v =xi +
yj byi andj.



Operations in Cartesian coordinates
Addition:

vi+ v, =ity )+ (it y)) =0+ x)i+ (v +y2))

Dot product:

ViV, = (X0 +y )i+ y20) =x1x + V1Yo

Length:

lv| =+Vvv=,/x%?+y? Theorem of Pythagoras!

Gradient:

df(x+vys, y+vys) _ of af  _ (9f A\ .0
ds _axvx+6y y_(ax'ay) v

- (8

As there is a one-to-one correspondence between vectors and coordinate pairs in 2D (and
coordinate triplets in 3D), vectors can be represented by coordinates in all operations.

Based on the associative property of vector addition and on distributive property of multiplying a
vector by a scalar with addition, we can prove that coordinates of the sum of two vectors are the
sums of the respective coordinates of the two vectors.

Similarly, based on the distributive property of dot product with vector addition, we can prove that
the dot product equals to the sum of the products of respective coordinates. Here we also exploit
thati-i=j-j=landi-j=0.

The absolute value of a vector is the square root of the scalar product of the vector with itself. Note
that we get the Pythagoras theorem for free.




Cross product

vy x VU, = (i +y,j+zK)x(x0 +y,j + 2,k) =
(V122- Y221 + (x221-x12,)j + (x1Y,-y1x)k =
i j k
=\1X1 Vi Z
X, Y2 4

Finally, based on the distributive property of the cross product with vector addition, we can also
express the cross product of two vector with their coordinates. We should also use the cross
products of the base vectors i xi =0, i xj=k, etc. The result can be memorized as a determinant
where the first row contains the three basis vectors, the second the coordinates of the first operand,

the third the coordinates of the second operand.
The absolute value of a vector is the square root of the scalar product of the vector with itself. Note
that we get the Pythagoras theorem for free.




“Algebra is the offer made by the devil: Give
me your soul, give up geometry and you will
have this marvelous machine.”

Michael Francis Atiyah

Geometries and algebras
4. Analytic geometry

Szirmay-Kalos Laszlo




With numbers: analytic geometry

* Two points define a line.
ANRE has at least tye®Points.
2 is a point
Qen there is
actly one other lin®wlg
rosses point A but not line®.

axioms

point

plane number .
line correspondenge operation

equation

intersect

is on function

geometry algebra

In computer graphics, we should also take into account that a computer is
programmed, which cannot do anything else but making calculations with
numbers. A computer is definitely not able to understand abstract concepts like
point, line etc. So for the application of a computer, geometric concepts must be
translated to numbers, calculation and algebra.

A geometry based on algebra, equations and numbers is called analytic
geometry or coordinate geometry. To establish an analytic version of a
geometry, we have to find correspondences between geometric concepts and
concepts of algebra in a way that axioms of the geometry will not contradict to
the concepts of algebra. If it is done, we can forget the original axioms and work
only with numbers and equations.




External view
W Ambient space " /C5 a=[x,yw]

Vi

Euc o * addition P
® * scaling T
p=[xy,
y metric
X / \KO\

Euclidean:w =1 Prolectlv

/\W
w=1

a=[xyw|

Minkowski
Euc < 1

Yy / y
X X

Elliptic: x2 + y2 +w? =1 Hyperbolic: x2 + y2 —w? = —1




Euclidean planar geometry

a=[xyw] Dot product in ambient space:

o

A - Ay =X1X + V1Yo W1 Wy
= w=1
q — * Commutative:a-b=b-a
Y * Distributive:a+(b+c)=a-b+a-c

* Scaling: (sa)-b =s(a-b)
Elements of ambient space:

* Points: p=|[x7v,1]
Why not w = 0? Translation would not be linear
* Vectors: v=q—-p, v=|xy,0]

* Other w values: neither points not vectors




Properties of vectors
Separation of two points: v=q — p
Element of ambientspace: v = [x,y,0]
Length: |v| = v -v = \/xz—-l-yz

| v
Unitvector: |[v°] =1, v°-v° =1,v° =

3

Orthogonality: v,-v =0, x,;x+ y,y =0,
v, =[-y,x0]A

Parallelism: V||:)l,v, v": [x,y,O]/l




Lines: parametric equation
Constant speed motion:
r(t) =p+vt
Velocity: 1(t) = v

Acceleration: 7(t) = 0

Zero
curvature

* Constant speed motion with coordinates:
[x(©),y(©), w(t)] = [px, Py, 1] + [vx, 1, 0]t

* Combination of two points: r(t) =p+ (q—p)t =p(1 —t) + qt
[x(©),y(®),w(®)] = [px,py, 1](1 =) + 41, 9y, 1]t

* Intersection of the plane (origin, p, q) and the plane of w = 1




Lines: implicit equation

* Implicitequation. n=v, > n-v=0=>n-(r—-p)=0
[ny,1ny,,0] - [x — e,y — Py, 0] =[x +n,y +d =0
whered =—n-p=-n,p, —n

yPy
* Element of the ambient space: N = [nx, ny,d]

N-r=|n,ny,d|[x,y,w] =n,x+n,y+dw=0,
where r is point, i.e. w = 1. Line = intersection of two planes.
* Two lines are the same if N; = N,A




Euclidean geometry of the 3D space

Ambient space is 4D: a = [x,y,z,w]

Dot product: a, - a, = x1x, + V1V, +212, + Wy Wy
Points: p = [x,y,z,1]

— Distance:d(p,q) = /(q —P) - (q —P)

— Angle: a(u, v) = arccos (|:||1;I)

Vectors: v = [x,y, z,0]

— Lengths: |[v| = Vv - v = /x2 +y2 + 22
Planes in 3D are like the lines in 2D geometry




Vector/Point/Plane/RGBA color

struct vecd {
float x, v, z, w; // vec: w=0; point: w=l; plane: w=d

vec4 (float x0, float y0, float z0, float w0) ({
x =x0; vy =y0; z = z0, w=w0;
}
vec4 operator*(float s) const {
return vecd4(x * s, y * s, z * s, w * s);
}
vec4 operator+(const wvec4& v) const {
return vec4(x + v.x, y + V.y, 2 + V.Z, W + V.W);

}
vec4 operator-(const vec4& v) const {

return vec4(x - v.X, Yy - V.Y, 2 - V.Z, W — V.W);
}

vec4 operator* (const vec4& v) const ({
return vec4(x * v.x, y * v.y, z * v.z, w * v.wW);
}
};

Using vec4, i.e. four-element vectors, instead of vec3, we can represent not only
points and vectors, but also planes. The fourth element should be set depending
on the actual type.

Note that the test whether or not a point is on a plane is a dot product of the two
4-element vectors if the fourth component of a point is 1 and the four components
of a plane is a, b, c, d, the plane parameters.

We can preserve the validity of vector operations if the fourth element of a vector
is zero.

And now, the big news: those operations that are applicable for points remain
valid even when the fourth element is 1.




vecd operations

float dot(const vecd& a, const vecd& b) {
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;

}

float length(const vecdé& v) {
return sqrtf(dot(v, v));
}

vecd4d normalize (const vecds& v) {
return v * (1/length(v));
}

vecd4 lerp(const vecd& p, const vecd& q, float t) {
return p * (1 - ) + g * &£;
}




3D vector/Point/RGB

struct vec3 {

i i

float x, Vv, Z;
vec3 (float x0, float y0, float z0) { x = x0; y = y0; z = z0; }
vec3 operator* (float a) { return vec3(x * a, y * a, z * a); }

vec3 operator+ (vec3& v) { // vector, color, point + vector
return vec3(x + v.Xx, y + V.y, z2 + v.z);

}

vec3 operator-(vec3& v) { // vector, color, point - point
return vec3(x - v.X, y - V.y, Z - V.zZ);

}

vec3 operator* (vec3& v) { return vec3(x*v.x, y*v.y, z*v.z); }

float dot(const vec3& vl, const vec3& v2) {

}

return (vl.x * v2.x + vli.y * v2.y + vl.z * v2.z);

vec3 cross(const vec3& vl, const vec3& v2) {

return vec3(vl.y*v2.z-vl.z*v2.y, vl.z*v2.x-v1l.x*v2.z, vl.x*v2.y-vl.y*v2.x);

The implementation of the theory discussed so far is a single C++ class
representing a 3D point or a vector with three Cartesian coordinates. Using
operator overloading, the discussed vector (and point) operations are also.

Note that — similarly to the GLSL language — we use the same type to represent
points and vectors. The programmer should be aware whether an object is a point
or a vector and execute operations valid for this particular type. Mixing different
types in a single class, we can extend the concept to colors as well. A color can be
define as additive mixture of red, green, and blue components, so a three-
dimensional vector is just a right representation.




Analytic Euclidean geometry

Numbers only please

Coordinates
— External view, +1 coordinate
— Ambient space, +1 coordinate (point=1, vector=0)
— Metric (distance, angle) = dot product
Line:
— Unit speed motion
— Shortest path (geodesic)
Implementation: vec4
— Can be vec3, vec2 if we keep the missing coordinates in mind




“Navigare necesse est, vivere non est necesse.”
Cnaeus Pompeius Magnus

Automatic derivation

Szirmay-Kalos Laszlo




Example: shading, normal vector




Inverse problems

Virtual world

Torus of radii R, p

(R=Vx2+y7) +22=p?=0

Function inverse \ error

fO): —)|=—.(_). y:
Rendering Y é(x) image
X:

model




How N Ot to derivate!

O AR (<

Subtraction: ‘\ 5'& “I}

1234.569??2?? 7 valuable digits X x+Ax+ A\f (X)
—1234.567????? 7 valuable digits _ .
0.002????? 1 valuable digits sin(t) (sin() + 3)4
tan(cos(t) + 2)

A=0.1 A = 0.001 A = 0.0001




(William) Clifford algebra: Hyper numbers
e Teaching C++ to derivate!

| _function_ || derivate |

* Hyper number: z = x + yi, where
—1' complex number; i2 = 1 : hyperbolic number;
: dual number

sum/dif | funct|on sum/dif | [ sum/dif derivate

| (e tyd) £ (otynd) = (xp £ xp) + (v £ )i

roduct function product roduct derlvatlve
(xt Jfll) () Hpsd) = (%) + (Xt %5)i +H( 9 ‘ ratlo

— i

—| i

functlon ratio
Xty (x1+y11)(x7 —V»i) x1x7+(ylx7 xLy»)r(yM X1 y1x2 XL}/Q
Xotni  Ceatyad) (—yad) x5 — ﬁf’ xz

The set of complex numbers is a special case of hyper numbers of Clifford
algebras that deal with numbers of form x+yi where x and y are real numbers and
i is a symbol, and the same arithmetic rules apply for such numbers as for real
ones. To use the arithmetic rules, we should decide what is the value of i*2.
Complex numbers define it as -1, in Clifford algebra, this is up to us.

If we take the option of i"2=0, then we have dual numbers and the rules will be
equivalent to the rules of derivatives assuming x the function value and y the
derivative. Thus, we can derivate without approximations specifying only the
function, the derivative is obtained automatically.




Dual number class

struct Dnum ({
float f, d; // function and derivative values

Dnum (float f0, float d0 = 0) { // constant’ = 0
f =£f0, d = do;
}

Dnum operator+ (Dnum r) { return Dnum(f + r.f, d +

ELd) )

Dnum operator-(Dnum r) { return Dnum(f r.£f, d -

r.d); }

Dnum operator* (Dnum r) { return Dnum(f * r.f, £ *

r.d+d * r.f);

Dnum operator/(Dnum r) {
return Dnum(f / r.f, (d * r.f — f * r.d) / r.f

/ r.f);

}
};

}

Dnum implements the arithmetic rules of derivation.




Application of dual numbers
* Without derivative:

float t = wvalue;
float F =t *a / (t * t + b);

* With derivative:

Dnum F = Dnum(t,1) * Dnum(a,0) /
(Dnum(t,1) * Dnum(t,l) + Dnum(b,0));

* With derivative and more elegantly, exploiting
the default parameterization in the constructor:

Dnum t(value, 1);
Dnum F = t * a / (t * t + b);




Functions

float F, x, y, a;

F=3%*+t + a* sin(t);

struct Dnum ({

float £, d; // function and derivative values
Dnum(float £0, float d0 = 0) { £ = £0, 4 = d0; }

};

Dnum Sin(float t) { return Dnum(sinf(t), cosf(t)); }
Dnum Cos (float t) { return Dnum(cosf(t), -sinf(t)); }

We also need global functions to specify the derivatives of elementary functions.




Composite functions

df(g(®)) _df dg
dt  dg dt

float F, x, y, a;

F=23%*¢t+a* sin(t) + cos(y * 1log(t) + 2);

struct Dnum {
float £, d; // function and derivative values
Dnum(float £f0, float d0 = 0) { £ = £f0, 4 = d0; }

return Dnum(sinf(g.f), cosf(g.f) * g.d); }
return Dnum(cosf(g.f), -sinf(g.f) * g.d); }
Dnum Tan (Dnum g) return Sin(g)/Cos(g); }
Dnum Log(Dnum g) return Dnum(logf(g.f), 1/g.f * g.d); }
Dnum Exp (Dnum g) { return Dnum(expf(g.f), expf(g.f) * g.d); }
Dnum Pow(Dnum g, float n) ({

return Dnum(powf(g.f n), n * powf(g.f,n-1) * g.d);

Dnum Sin(Dnum g)
Dnum Cos (Dnum g)

L B e T e S




Path animation -

heading v(t) = (x(t), y(1))

48 sin®(x) sin®(cos(x) +2) 16 sin®(x) sin®(cos(x) + 2)
4 =

(cos(2 (cos(x) + 2)) - 1) (cos(2 (cos(x) +2)) - 1)
(x(t), )’(t ) 8 sin(x) cos(x) sin(2 (cos(x) + 2)) 12 cos(x) sin(2 (cos(x) + 2))
position cos(2 (cos(x) +2)) - 1 cos(2 (cos(x) +2)) - 1

sin(t)(sin(t)+3)4 (t) __ (cos(sin(t))8+1)12+2
tan(cos(t)+2) ’ ~ (sin(t) sin(t))3+2

Palya: x(t) =

Dnum t(tt, 1) ;

Dnum x = Sin(t)*(Sin(t)+3)*4 / (Tan(Cos(t))+2);

Dnum y = (Cos(Sin(t) *8+1) *12+2) /(Pow(Sin(t)*Sin(t) ,h3)+2) ;
vec2 position(x.f, y.f), velocity(x.d, y.d);

vec2 heading = normalize (velocity) ;

Draw (position, heading) ;

Suppose we want to animate an object along a path defined by (x(t), y(t)). The
position of the object is given by inserting time t into these two functions.

Obijects like trains, cars, birds, etc. follow their front (head, beak) during
animation, so we should often rotate the object to transform its heading direction
into the current direction of movement, which is the current velocity, i.e. the
derivative of the path.




