


Let us consider the rendering problem when the virtual world is two 

dimensional, so objects are in a plane. The virtual world should be represented 

by numbers, for which we need a world coordinate system. A convenient 

reference system is a Cartesian coordinate system with an origin, two axes and 

also a unit. Using these every point of the plane can be specified by two 

numbers defining the distance traveled along the two axes and measured with 

respect to the unit. 

With pairs of numbers, points can be defined, which can form primitives by 

adding topology information. For example, we can say that these three points 

define a triangle. Primitives are given material properties, which usually 

include the color.

The rendering process takes a photograph of the virtual world and presents the 

photo on the computer screen. The rectangle of the photo is called the 

viewport. 

Pixels on the computer screen are identified in screen coordinates that identify 

the row and column of each pixel. In other words, the unit of the screen 

coordinate system is the pixel. To implement the photographing process, we 

introduce a camera in the virtual world. In 2D, the camera is just a rectangle, 

called the camera window. This rectangle has edges parallel with the 



coordinate axes. Similarly, the viewport edges are also parallel with the axes of the 

screen coordinates.

Rendering finds a correspondence between the pixels of the viewport and the objects 

of the virtual world. This correspondence can be established from two opposite 

directions. We can start the process in the virtual world, transforms objects one by one 

on the screen, and color pixels covered by the transformed objects. This approach is 

object-driven.



Alternatively, we can also start at the pixels of the viewport, when the method 

is called pixel-driven. Each pixel is transformed back to the world coordinate 

system and the object containing the transformed point is identified. The pixel 

color is then the color of the identified object. If more than one object contains 

the transformed point (in the Figure this is the case where the green fish and 

the yellow rectangle overlap), then that object is selected which has the higher 

priority. 

Note that in popular drawing packages, actions line ”bring forward” or ”Send 

back” manipulate the priority of objects.



The core of a pixel driven algorithm is the containment test, i.e. the 

determination whether a point is in the set of a 2D object. If the object is 

defined implicitly, this is usually equivalent to the check of the sign of the 

implicit equation. 

If the boundary of the object is defined, e.g. with parametric curve, whether or 

not a point is inside should be determined by counting how many times the 

boundary is crossed until infinity is reached from this point. If this is an odd 

number the point is inside, otherwise, outside.



Here we show the implementation of a simple pixel-driven 2D drawing 

package (the complete code can be downloaded from the cg.iit.bme.hu web 

page).

Object is the abstract base class of all object. It has a color, which will be the 

pixel color if this particular object is visible in that pixel. Additionally, it has a 

pure virtual function In that checks whether point r given in world coordinates 

is contained by this object.

The implementation of the In function depends on the type of the object. 

Therefore, different types are derived from the base class Object, and In is 

given a particular implementation, for which type dependent parameters may 

be needed. For example, a Circle is defined by a center and a radius R. Based 

on these parameters, the In function checks whether the square distance of 

point r from the center is smaller than the squared of the radius. If it is smaller, 

the point is in. In case of equality, the point is on the boundary. If the 

difference is positive, the point is outside.

Halfplane has a line boundary defined by position vector r0 and normal vector 

n, and we assume that normal vector n point outwards. Thus, substituting a 

point r into the equation of the line, the sign of the result tells us whether the 

point is in the outer section (dot product is positive), on the boundary line (dot 



product is zero), or inside (dot product is negative).

GeneralEllipse is based on the geometric definition of the ellipse: set of points for 

which the sum of distance from the two focal points is less than constant C.

Parabola is also the direct implementation of the definition: set of points for which 

the distance from a line called directrix is greater than the distance from its focal 

point. 



The Scene is a heterogeneous collection of objects. We use the list since 

deletion and priority management require the dynamic erase and insertion of 

elements. We have a special data member to show the picked or selected object 

that is the target of the future operations. 

Add adds a new object to the list and the new object becomes the selected one 

(this is the typical strategy in drawing packages).

Pick takes the pixel coordinate, transforms it to the world coordinate system, 

and tests objects for containment of this point in the order of the priority. If an 

object is found, it will be the picked one and terminate testing since we need 

that object to the picked which is in front of others.

BringToFront moves the picked object to the front of the list, i.e. gives the 

highest priority to it. Send to back and Delete are not shown here, because 

their implementation is very similar. Sent to back would move the picked 

object to the end of the list, Delete would simply erase it.

Render computes the two dimensional image array by computing the colors of 

pixels. Each pixel is visited in a double loop. The pixel is transformed to world 

coordinates. Objects are tested for containment of the transformed point 

selecting the one with maximum priority if more than one object contains the 

point. The selected object’s color is written into the pixel.



The Pixel-driven solution is simple and elegant. However, it is two slow, interactive 

frame rates are impossible even with moderate number of objects. Therefore, we need 

another strategy.



Let us consider the rendering problem when the virtual world is two 

dimensional, so objects are in a plane. The virtual world should be represented 

by numbers, for which we need a world coordinate system. A convenient 

reference system is a Cartesian coordinate system with an origin, two axes and 

also a unit. Using these every point of the plane can be specified by two 

numbers defining the distance traveled along the two axes and measured with 

respect to the unit. 

With pairs of numbers, points can be defined, which can form primitives by 

adding topology information. For example, we can say that these three points 

define a triangle. Primitives are given material properties, which usually 

include the color.

The rendering process takes a photograph of the virtual world and presents the 

photo on the computer screen. The rectangle of the photo is called the 

viewport. 

Pixels on the computer screen are identified in screen coordinates that identify 

the row and column of each pixel. In other words, the unit of the screen 

coordinate system is the pixel. To implement the photographing process, we 

introduce a camera in the virtual world. In 2D, the camera is just a rectangle, 

called the camera window. This rectangle has edges parallel with the 



coordinate axes. Similarly, the viewport edges are also parallel with the axes of the 

screen coordinates.

Rendering finds a correspondence between the pixels of the viewport and the objects 

of the virtual world. This correspondence can be established from two opposite 

directions. We can start the process in the virtual world, transforms objects one by one 

on the screen, and color pixels covered by the transformed objects. This approach is 

object-driven.



Object-driven 2D rendering is a sequence, called pipeline, of computation steps. We start with 

the objects defined in their reference state, which can include points, parametric or implicit 

curves, 2D regions with curve boundaries. As we shall transform these objects, they are 

vectorized, so curves are approximated by polylines and regions by polygons. The rendering 

pipeline thus processes only point, line (polyline) and triangle (polygon) primitives. 

Modeling transformation places the objects in world coordinates. This typically involves 

scaling, rotation and translation to set the size, orientation and the position of the object. In 

world, objects meet each other and also the 2D camera, which is the window rectangle or 

AABB (axis aligned bounding box or rectangle). We wish to see the content of the window in 

the picture on the screen, called viewport. Thus, screen projection transforms the world in a 

way that the window rectangle is mapped onto the viewport rectangle. This can be done in a 

single step, or in two steps when first the window is transformed to a square of corners (-1,-1) 

and (1,1) and then from here to the physical screen. Clipping removes those object parts that 

are outside of the camera window, or alternatively outside of the viewport in screen, or outside 

of  the square of corners (-1,-1) and (1,1) in normalized device space. The advantage of 

normalized device space becomes obvious now. Clipping here is independent of the resolution 

of the viewport or the size of the window, so can be easily implemented in a fixed hardware. 

Having transformed primitives onto the screen, where the unit is the pixel, they are rasterized. 

Algorithms find those sets of pixels which can provide the illusion of a line segment or a 

polygon. 



Object-driven rendering is implemented with the help of the GPU. This figure shows which 

hardware is responsible for different stages of the rendering pipeline. The management of the 

virtual world and the vectorization of the objects are done by our CPU program written 

typically in C++. Vectorized point, line and triangle primitives are copied to the GPU where 

they are organized in Vertex Array Objects or VAOs for short. A VAO is a collection of 

arrays storing vertices and vertex properties. These arrays are called vertex buffer objects or 

VBOs. The GPU feeds the vertex shader processor by the vertices and their attributes. A 

vertex shader processor gets one vertex with its attributes at a time and is responsible for 

computing the location of the vertex in normalized device coordinates. Additionally, the vertex 

shader may modify the attributes. Vertices output by the vertex shader form primitives like 

points, lines or triangles, which are processed by the fixed algorithm pipeline of the GPU. 

This hardware clips the primitives, transforms them to screen space and  rasterizes them to 

produce a sequence of pixels. During these steps vertex attributes are interpolated to generate 

attributes for each pixel that gradually change inside the primitive. For each pixel of this 

sequence, the fragment shader processor can determine the color of the pixel based on the 

interpolated attributes. The output of the fragment shader goes into the frame buffer.

Vertex shader and fragment shader processors are programmed in the GLSL (OpenGL 

Shading Language). The fixed algorithm pipeline cannot be programmed as it is hardwired.



Vectorization approximates model objects with points, lines (or polylines), and triangles (or 

polygons). The main reason is that homogeneous linear transformations preserve only these 

types (and for the same reason, OpenGL accepts only these primitive types). A positive side 

effect of this decision is that pipeline stages like clipping and rasterization should be solved 

only for points, lines and triangles.

Vectorization is trivial for parametric curves. The parametric range is decomposed and 

increasing sample values are substituted into the equation of the curve, resulting in a sequence 

of points on the curve. Introducing a line segment between each subsequent pair of points, the 

curve is approximated by line segments. 

If the curve is closed, using the same strategy, a polygon approximation of the region can be 

found. 

If we had a software implementation of the output pipeline, we would work with line strips or 

polygons or arbitrary number of vertices. However, in GPU implementation, the hardware

prefers records of fixed size, therefore polylines should be converted to line segments and 

polygons to triangles. The conversion of line strips to line segments is straightforward. 

However, the conversion of polygons to triangles is not.



A polygon is broken down to smaller polygons and eventually to triangles by 

cutting them along diagonals. A diagonal is a line segment connecting two 

non-neighboring vertices, that is fully contained by the polygon. We need to 

clip along diagonals since only this clipping guarantees that the resulting 

polygons have less number of vertices than the original polygon, thus the 

method will terminate in finite step. 

If the polygon is convex, then any line segment connecting two non-

neighboring vertices is fully contained by the polygon (this is the definition of 

convexity), thus all of them are diagonals. 

This is not the case for concave polygons, when line segments connecting 

vertices can intersect edges or can fully be outside of the polygon. The good 

news is that all simple polygons, even concave ones, have diagonals, so they 

can be broken to triangles by diagonals. A polygon is said to be simple if its 

boundary is a single polyline that does not intersect itself.

The sketch of the proof is shown in the right bottom corner. Let us find a 

vertex that is extremal in one direction, for instance, that has the maximum x 

coordinate. Consider the triangle defined by this vertex, the previous and the 

next vertices. If this triangle does not contain vertices, then the previous and 

next vertices form a diagonal, so the theorem is proven for this case. If the 



triangle has vertices, let us find the one with the maximum x coordinate. Connecting 

this point to the original extremal point, the line segment is inside and cannot intersect 

any edge, so it is a diagonal.

An algorithm based on this idea would search for diagonals, and having found one, the 

polygon would be cut into two, for which the same algorithm is executed recursively 

until all polygons are triangles.

This approach has cubic complexity in terms of the number of vertices. Fortunately,

there is a simpler and more efficient algorithm for polygon triangulation.





This triangulation algorithm searches for special vertices called ears. A vertex 

is an ear if the line segment between its previous and next vertices is a 

diagonal. According to the two ears theorem, every simple polygon of at 

least 4 vertices has at least two ears. So triangle decomposition should just 

search for ears and cut them until a single triangle remains. 

The proof of the two ears theorem is based on the recognition that any polygon 

can be broken down to triangles by diagonals. Let us start with one possible 

decomposition, and consider triangles as nodes of a graph, and add edges to 

this graph where two triangles share a diagonal. This graph is a tree since it is 

connected (the polygon is a single piece) and cutting any edge, the graph falls 

apart, so there is no circle in it. By induction, it is easy to prove that every tree 

of at least 2 nodes has at least two leaves, which correspond to two ears.



For every step, we check whether or not a vertex is an ear. The line segment of 

its previous and next vertices is tested whether it is a diagonal. This is done by 

checking whether the line segment intersects any other edge inside (if it does, 

it is not a diagonal). We can skip those edges that share a vertex with the tested 

diagonal candidate since there cannot be a second intersection between two 

lines. One way of testing two line segments for intersection is the solution of 

the system of linear equations stating that the intersection point is in both line 

segments. A line segment is the convex combination of its two endpoints. 

Solving the linear system, we should check whether the intersection is inside 

the line segment, i.e. t_1 and t_2 are in (0, 1). The test of a diagonal candidate 

should go on for all edges.

If there is no intersection, we should additionally determine whether the line 

segment is fully outside. Selecting an arbitrary inner point, e.g. the middle, we 

check whether this point is inside the polygon. By definition, a point is inside 

if traveling from this point to infinity, the polygon boundary is intersected odd 

number of times. 

In the above example, vertex 1 is not an ear because candidate 0-2 is not a 

diagonal as it intersects edge 3-4. Neither Vertex 2 is an ear since its middle 

point is outside of the polygon. Vertex 3 is an ear, so a triangle 2-3-4 can be cut 



from the polygon, and we proceed with the remaining simpler polygon until a single 

triangle is left.



After vectorization, the first relevant step of rendering is placing the reference 

state primitives in world, typically scaling, rotating and finally translating its 

vertices. Recall that it is enough to execute these transformations to vertices, 

because points, lines and polygons are preserved by homogeneous linear 

transformations. These are affine transformations, and the resulting modeling 

transformation matrix will also be an affine transformation. If the third column 

is 0,0,1, then other matrix elements have an intuitive meaning, they specify 

what happens with basis vector i, basis vector j, and the origin itself. 







Screen projection maps the window rectangle, which is the camera in 2D, onto 

the viewport rectangle, which can be imagined as the photograph. This simple 

projection is usually executed in two steps, first transforming the window onto 

a normalized square, execute clipping, and then transforming the square to the 

viewport. 

Transforming the window to normalized device space, i.e. an origin centered 

square of corners (-1,-1) and (1,1) is also a sequence of two transformations: 

The first is the View transformation denoted by V: a translation that moves the 

center of the camera window to the origin. The translation happens with the 

negative center of the camera window, so after the translation, the camera 

window center will be in the origin. 



The second transformation is the Projection denoted by P: a scaling that 

modifies the window width and height to 2. 

Projection transformation scales by 2/wx in direction x and by 2/wy in 

direction y where (wx, wy) are the width and height of the camera window to 

make sure that after scaling the camera window will be a square of edge length

2. 



A 2D camera is thus represented by the center wCenter and the size wSize of the camera 

window. We use w initials since these data are interpreted in world coordinates. A 2D camera 

is associated with view and projection transformations, as well as their inverse. Zoom and pan 

are just the modifications of the size and center, respectively. 



Having transformed the objects to normalized device space, the next step is clipping that 

removes object parts outside of the camera window or the viewport.

Clipping is executed usually in normalized device space where the camera window or the 

viewport is a square of corner points (-1,-1) and (1, 1), 

therefore for a point to survive, its x, y coordinates must be between -1 and 1. To be general, 

we denote the limits by xmin, xmax, ymin, ymax.

A point is preserved by clipping if it satisfies x > xmin= -1, x < xmax= +1, y > ymin= -1, y < 

ymax= +1. Let us realize that each of these inequalities is a clipping condition for a half-plane. 

A point is inside the clipping rectangle if it is inside all four half planes since the clipping 

rectangle is the intersection of the half planes. 

This concept is very useful when line segments or polygons are clipped since testing whether 

or not the two endpoints of line segment or vertices of a polygon are outside the clipping 

rectangle cannot help to decide whether there is an inner part of the primitive. 



Thus clipping on a rectangle is replaced by the sequence of four clipping steps on four half 

planes. 









Let us consider a line segment and its clipping on a single half plane, for example, the plane of 

x < xmax. If both endpoints are inside, then the complete line segment is inside since the inner 

region, which is a half plane, is convex. If both endpoints are outside, then the line segment 

is completely outside, since the outer region, which is also a half plane, is also convex. If 

one endpoint is inside while the other is outside, then the intersection of the line segment and 

the clipping line is calculated, and the outer point is replaced by the intersection.

For the intersection calculation, we take the parametric equation of the line segment, which 

expresses the line segment points as the convex combination of the two endpoints, and also the 

equation of the clipping boundary, e.g. x = xmax. This system of linear equations is solved and 

we obtain the intersection point.



Polygon clipping is traced back to line clipping. We consider the edges of the polygon one-by-

one. If both endpoints are in, the edge will also be part of the clipped polygon. If both of them 

are out, the edge is ignored. If one is in and the other is out, the inner part of the segment is 

computed and added as an edge of the clipped polygon. 

The input of this implementation is an array of vertices p and number of points n. The output is 

another array of vertices q and number of vertices in it m.

Usually, we can assume that the edge i has endpoints p[i] and p[i+1]. However, the last edge is 

an exception since its endpoints are p[n-1] and p[0]. Either the last point should be handled in 

a special way, or we can store the first element once again at the end to avoid overindexing the 

array.



In Cartesian coordinates, the limits of the clipping are -1 and 1. We shall adopt this requirement 

for the third coordinate as well when clipping is extended to 3D. Transformation to normalized 

device space is a homogeneous linear transformation, which may be non affine, so it may 

happen that the result is in real homogeneous form where the forth homogeneous coordinate is 

not 1 anymore. To prepare for this general case, clipping operation is executed in homogeneous 

coordinates. So we should find the equation of the clipping volume in homogeneous 

coordinates. Substituting Cartesian coordinate X by Xh/h, etc. these equations can be obtained. 

To make it simpler we wish to multiply both sides by the fourth homogeneous coordinate h. 

However, an inequality cannot be multiplied by an unknown variable since should this variable 

be negative, the relations must be negated. The further calculations should be done separately 

for the positive h and for the negative h case.

Alternatively, we add requirement h>0 and consider only one case, which simplifies the 

problem and OpenGL also applies this simplification.

This requirement seems to be arbitrary but is typically true in 2D graphics when homogeneous 

coordinates are obtained by extending Cartesian coordinates with an extra value 1, i.e. h is 

indeed positive. In 3D, h>0 corresponds to the requirement the volume must be in front of the 

eye, so we can accept this extra requirement in 3D too.

The collection of six inequalities defines a cube. A point is inside the cube if all inequalities are 

met. We clip onto 6 half-spaces one after the other. The intersection of these half-spaces is the 

cubical view frustum. Each half space is associated with a single inequality and the border 

plane of the half-space is defined by the equation where < is replaced by =. 



We consider here just one half-space of inequality Xh < h, whose boundary is the plane of 

equation Xh = h . The half-space inequality is evaluated for both endpoints. If both of them are 

in, the line segment is completely preserved. If both of them are out, the line segment is 

completely ignored. If one is in and the other is out, we consider the equation of the boundary 

plane (Xh = h ) and the equation of the line segment (a line segment is the convex combination 

of its two endpoints), and solve this for unknown combination parameter t. Substituting the 

solution back to the equation of the line segment, we get the homogeneous coordinates of the 

intersection point. This intersection point replaces the endpoint that has been found outside.



Having executed the clipping step homogenous coordinates are converted to Cartesian 

coordinates. Because of clipping, all three Cartesian coordinates are in [-1, 1]. The last 

transformation maps this normalized device space to real pixel space so that (-1,-1) goes to the 

lower left corner of the viewport and (1,1) to the upper right corner. OpenGL transforms the 

third coordinate as Z = (zc +1)/2, i.e. the [-1,1] interval is mapped onto [0,1].

The viewport lower left corner, width and height are specified by the glViewport OpenGL 

function.



Before starting the discussion of rasterization it is worth looking at the pipeline and realizing 

that rasterization uses a different data element, the pixel, while phases discussed so far work 

with geometric primitives. A primitive may be converted to many pixels, thus the performance 

requirements become crucial at this stage. In order to maintain real-time frame rates, the 

process should output a new pixel in every few nanoseconds. It means that only those 

algorithms are acceptable that can deliver such performance.



Line drawing should provide the illusion of a line segment by coloring a few pixels. A line is 

thin and connected, so pixels should touch each other, should not cover unnecessary wide area 

and should be close to the geometric line. If the slope of the line is moderate, i.e. x is the faster 

growing coordinate, then it means that in every column exactly one pixel should be drawn 

(connected but thin), that one where the pixel center is closest to the geometric line. The line 

drawing algorithm iterates on the columns, and in a single column it finds the coordinate of the 

geometric line and finally obtains the closest pixel, which is drawn.

This works, but a floating point multiplication, addition and a rounding operation is needed in 

a single cycle, which are too much for a few nanoseconds. So we modify this algorithm 

preserving its functionality but getting rid of the complicated operations.



The algorithm transformation is based on the incremental concept, which realizes that a linear 

function (the explicit equation of the line) is evaluated for an incremented X coordinate. So when X 

is taken, we already have the Y coordinate for X-1. The fact is that it is easier to compute Y(X) from 

its previous value rather than directly from X. The increment is m, the slope of the line, thus a single 

addition is enough to evaluate the line equation. This single addition can be made faster if we use 

fixed point number representation and not floating point format. As these numbers are non integers 

(m is less than 1), the fixed point representation should use fractional bits as well. It means that an 

integer stores the Tth power of 2 multiple of the non-integer value. Such values can be added as two 

integers.

The number of fractional bits can be determined from the requirement that even the longest iteration 

must be correct. If the number of fractional bits is T, the error caused by the finite fractional part is 

2^{-T} in a single addition. If errors are accumulated, the total error in the worst case is N 2^{-T} 

where N is the number of additions. N is the linear resolution of the screen, e.g. 1024. In screen space 

the unit is the pixel, so the line will be correctly drawn if the total error is less than 1. It means that 

T=10, for example, satisfies all requirements.

The line drawing algorithm based on the incremental concept is as follows. First the slope of the line 

is computed. The y value is set according to the end point. This y stores the precise location of the 

line for a given x, so it is non integer. In a for cycle, the closest integer is found, the pixel is written, 

and – according to the incremental concept – the new y value for the next column is obtained by a 

single addition.

Rounding can be replaced by simple truncation if 0.5 is added to the y value. 

If fixed point representation is used, we shift m and y by T number of bits and rounding ignores the 

low T bits. 



This algorithm can be implemented in hardware with a simple counter that generates 

increasing x values for every clock cycle. For y we use a register that stores both its fractional 

and integer parts. The y coordinate is incremented by m for every clock cycle. 





For triangle rasterization, we need to find those pixels that are inside the triangle and color 

them. The search is done along horizontal lines of constant y coordinate. These lines are called 

scan lines and rasterization as scan conversion. For a single scan line, the triangle edges are 

intersected with the scan line and pixels are drawn between the minimum and maximum x 

coordinates. 

The incremental principle can also be applied to determine scan-line and edge intersections. 

Note that while the y coordinate is incremented by 1, the x coordinate of the intersection grows 

with the inverse slope of the line, which is constant for the whole edge, and thus should be 

computed only once. 

Again, we have an algorithm that uses just increments and integer additions.



Rasterization selects those pixels that belong to an object. The only remaining task is to obtain 

a color and write it into the selected pixel. There are different options to find the color. It can 

be uniform for all points. 

Alternatively, colors or any property from which the color is computed can be assigned to the 

vertices. Then the colors of internal pixels are generated by interpolation. Finally, we can also 

define the object vertices on a pattern image, called texture. The pattern is then mapped or 

wallpapered onto the object. 




