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Abstract

This paper proposes the application of a variance reduction
technique called weighted importance sampling in shoot-
ing type global illumination algorithms. The sampling ap-
plied by shooting type Monte-Carlo global illumination al-
gorithms can mimic the power transfer, but not the BRDFs
at the visible target of the transfer. Consequently, these al-
gorithms are poor in rendering visible specular surfaces. In
order to eliminate these drawbacks, the BRDFs at the vis-
ible targets are taken into account as an additional weight-
ing of the sampling density. After discussing the basic
concepts we demonstrate the proposed idea with two al-
gorithms. The first one uses conventional rays, while the
second one ray-bundles to transfer the light in the scene.

Keywords: Monte-Carlo integration, variance reduction,
importance sampling.

1 Introduction

Global illumination algorithm should compute the average
of the radiance values on the area visible through a pixel
or leaving surface patches in the direction of the eye:

CA =
1

A
·

∫

A

L(~x, ωeye)d~x,

where A is the area of the surface on which the average
is computed. We shall call this area as the area of inter-
est, which can either be the area visible through a pixel or
the area of a patch if finite-element representation is used.
According to the rendering equation, the radiance is the
sum of the emission and a reflected component that can
be obtained by reflecting the radiance of all points that are
visible from here. Let us concentrate on the reflected com-
ponent since the emission is easy to compute. The average
of the reflected radiance is:

CA =
1

A
·

∫

A

∫

Ω

Lin(~x, ω′) ·fr(ω
′, ~x, ωeye) ·cos θ′~x dω′d~x,

where Lin is the incoming radiance at point ~x, fr is the
BRDF and θ′~x is the angle between the surface normal
and incoming direction ω′. The product of the BRDF and
the cosine of the incoming angle is the scattering density
w(ω′, ~x, ωeye) that expresses the probability density that
scattering connects directions ωeye and ω′.

This integral is often evaluated by Monte-Carlo quadra-
ture. Classical Monte-Carlo quadrature would take M ran-

dom samples with probability density p(~x, ω′) and approx-
imate the integral as follows:

CA =
1

A
·

∫

A

∫

Ω

Lin(~x, ω′) · w(ω′, ~x, ωeye) dω′d~x ≈

1

M
·

M
∑

n=1

Lin(~xn, ω′
n) · w(ω′

n, ~xn, ωeye)

A · p(~xn, ω′
n)

. (1)

In order to reduce the variance, probability density p
should mimic the integrand. This approach is called im-
portance sampling. Sampling according to a given prob-
ability density is carried out by transforming uniformly
distributed numbers provided by the pseudo or quasi ran-
dom number generator. This transformation requires the
inverse of the cumulative probability distribution, thus p
should be analytically integrable and we should be able
to compute the inverse of its integral. These requirements
can be met only if p is algebraically simple, which makes
it impossible to accurately mimic the integrand. On the
other hand, the incoming radiance Lin is not available, but
we have to use another Monte-Carlo estimation to approx-
imate it.

Eye

window

Figure 1: Shooting-type walks

Examining the integrand we can note that this is the
product of the incoming radiance and the scattering den-
sity. Since it seems hopeless to sample according to this
product, Monte-Carlo algorithms try to mimic either the
scattering probability at the eye transfer, or the incoming
radiance. The first approach is followed in gathering al-
gorithms, such as in path tracing, while the second is in
shooting algorithms (figure 1).

In random walk algorithms paths are initiated at the
light sources and are terminated by the rules of Russian



roulette. If Russian roulette decides on terminating the
walk, then a new walk is initiated. In iteration algorithms,
on the other hand, not only the target of the last transfer,
but all previous transfers and the light source are potential
sources.

Both in random walk and in iteration, an elementary op-
eration of the solution is finding the source of the light
transfer, sampling the destination (or the direction towards
the destination), then computing the transfer between the
source and the destination as the ratio of the integrand and
the probability density of sampling. Camera contributions
are computed in both cases by connecting each visited
point with the eye deterministically. At the end of each
transfer, shooting algorithms should check whether or not
this transfer has any effects on the camera, i.e. the target is
in the area of interest. If this transfer has a camera contri-
bution, then the light is reflected towards the eye using the
local BRDF and the estimate is obtained as the product of
the estimate of the transfer and the scattering density. The
final result will be the average of such estimates. These
deterministic connections pose problem if the surfaces are
specular since they cannot mimic the important directions
of the given BRDFs.

Another problem which needs to be addressed is that we
have many areas of interest simultaneously. The color of
all pixels or the eye radiance of all patches should be com-
puted at the same time. The calculation of different areas
of interest can be considered as a single sampling process
if the domain of the integration is extended from the area
visible in a pixel to the total surface area S, while the in-
tegrand is multiplied by an indicator function ξA(~x). This
indicator function is 1 if ~x is in area of interest A, other-
wise it is zero. Using this indicator function, the Monte-
Carlo estimation is the following:

1

A
·

∫

S

∫

Ω

Lin(~x, ω′) · w(ω′, ~x, ωeye) · ξA(~x) dω′d~x ≈

1

M
·

M
∑

n=1

Lin(~xn, ω′
n) · w(ω′

n, ~xn, ωeye) · ξA(~x)

A · p(~xn, ω′
n)

, (2)

where p(~xn, ω′
n) is a probability density in S × Ω and not

only in A × Ω. In image synthesis we should evaluate
these integrals for all areas of interest. We concluded that
the integrand of the visible colors is a product of the trans-
ferred radiance and the scattering density at the target. As
we shall see, shooting algorithms can sample according to
the transferred radiance, but not according to the scattering
probability at the target and not according to indicator ξA.
This is exactly the place where the proposed technique,
the application of weighted importance sampling comes
into play.

Weighted importance sampling is a rather old method
[6] which has received just little attention in rendering so
far. The exception is the pioneering paper [2], which ap-
plied this technique in stochastic iteration of the radios-
ity equation. However, we believe that this technique has

more potential in other algorithms, and particularly in the
non-diffuse setting.

The structure of this paper is the following. In the next
section we review the theory of weighted importance sam-
pling then discuss how it can be incorporated in shoot-
ing algorithms. In order to demonstrate its application, a
ray-based and a ray-bundle based algorithms are equipped
with this improvement.

2 Weighted Importance Sam-
pling

Suppose that integral F =
∫

V
f(z) dz needs to be eval-

uated by Monte-Carlo quadrature. The classical Monte-
Carlo approach would compute the following sum:

F =

∫

V

f(z) dz ≈
1

M
·

M
∑

n=1

f(zn)

p(zn)
,

where p is the sampling density, which should mimic in-
tegrand f . In practical cases p cannot mimic f accurately
and be appropriate for sample generation at the same time.
Weighted importance sampling [6, 2] attacks this problem
by working with two probability densities simultaneously.
Suppose we have probability density g(z) that is quite
good in mimicking integrand f but we are unable to sam-
ple according to this density due to its algebraic complex-
ity. On the other hand, we also have another probability
density p(z) which is possibly poorer in mimicking f but
is appropriate to construct a sampling scheme. Weighted
importance sampling proposes the following quadrature
formula to estimate the integral:

∫

V

f(z) dz ≈

∑M
n=1 f(zn)/p(zn)

∑M
n=1 g(zn)/p(zn)

,

where samples zn are obtained with probability density p.
In order to demonstrate that this quadrature is asymptot-
ically equivalent to the original Monte-Carlo quadrature,
let us divide both the numerator and the denumerator by
the number of samples M :

1
M

·
∑M

n=1 f(zn)/p(zn)
1
M

·
∑M

n=1 g(zn)/p(zn)
.

The new numerator is the same as the original integral
quadrature, thus it converges to the integral. The denu-
merator, on the other hand, is the Monte-Carlo estimate of
integral

∫

V
g(z) dz. Since g is a probability density func-

tion, its integral is 1, thus the new quadrature converges to
the same value as the old quadrature.

The question is whether or not this new estimate is bet-
ter than the old one. This depends on whether or not den-
sity g is better in mimicking f than p. The formal analysis

2



[6] results in the following formulae. The mean square er-
ror after M samples obtained with weighted importance
sampling, including both the bias and the variance, is

εWIS ≈
1

M
·

∫

V

(

f(z)

p(z)
− F ·

g(z)

p(z)

)2

· p(z) dz. (3)

For the sake of comparison, we also present the mean
square error of the classical Monte-Carlo estimator:

εCMC ≈
1

M
·

∫

V

(

f(z)

p(z)
− F

)2

· p(z) dz. (4)

Instead of repeating the proof, we provide an intuitive ex-
planation. Suppose that p is poor in sampling a particu-
lar sub-domain S, i.e. it does not generate samples here
as frequently as would be required by the large integrand
values (if classical Monte-Carlo method is used, when we
are lucky enough to generate a sample in sub-domain S,
we get a large integrand value that is divided by a small
probability, which results in a huge term in the average
approximating the integral). These infrequent but huge
values are responsible for large fluctuations. However, if
this method is used with a probability density g accord-
ing to weighted importance sampling, then the approxi-
mating sum is also divided by the sum of g(zn)/p(zn)
terms. When we are not lucky to sample the important re-
gions, g will also be small, thus the denumerator will be
smaller than one. Dividing by the denumerator, the ap-
proximation will be scaled up. However, when the sample
is in important sub-domain S, the Monte-Carlo estimate
and the denumerator will be increased simultaneously by
a larger value. Since the fluctuations of the numerator and
the denumerator are thus synchronized, the fluctuation of
their ratio is decreased.

However, weighted importance sampling may have not
only advantages but disadvantages as well. It has a small
bias, which disappears quickly. On the other hand, if p is
already good enough to mimic integrand f , then the nu-
merator will be stable. The fluctuation of the denumerator
around 1 appears just as an additional noise.

Thus we can conclude that weighted importance sam-
pling should be used carefully, since it can reduce and
increase the variance depending on the mimicking capa-
bilities of the two probability densities. Let us examine
the difference of the mean square errors of the estimator
of classical Monte-Carlo and the estimator of weighted
Monte-Carlo:

εCMC − εWIS =

1

M
·

∫

V

F ·

(

g(z)

p(z)
− 1

)

·

(

2f(z)

p(z)
− F

(

g(z)

p(z)
+ 1

))

·p(z) dz

In order to get improvement, this difference should be
positive. Note that the integrand of the error difference
is a product where the first factor cannot be negative, but
the second and the third factors can. Thus improvement is

guaranteed if the second and the third terms change their
signs simultaneously. There are two cases. The quadrature
overestimates in z if f(z)/p(z) > F . On the other hand,
the quadrature underestimates in z if f(z)/p(z) < F .

In case of overestimation the new probability density g
should meet the following requirement in order to make
the integrand of the error difference positive:

f(z)

F
≥ g(z) > p(z).

It means that g should also result in overestimation but its
level should be decreased. This statement can be proven
by checking that in this case both the second and the third
factors are positive.

In case of underestimation, the requirement of the inte-
grand of the error difference being positive is

f(z)

F
≤ g(z) < p(z),

thus the level of underestimation should be decreased. In
this case the second and third factors are both negative.

Generally these requirements are not easy to met. We
shall consider a particularly important case when this
problem can be solved. Suppose that there is a consid-
erable sub-domain in V where integrand f and density g
are zero but p is not. That is, g can mimic these zero in-
tegrand points but p cannot. In this sub-domain the inte-
grand is underestimated since f(z)/p(z) = 0 < I . When
f is non-zero then f/p should usually be larger than I
in order to compensate the zero values. Thus when f is
non-zero, then usually overestimation happens. Density g
should also be usually larger than p here since their inte-
grands are 1 and g has a smaller domain where it is non
zero.

3 Application of weighted impor-
tance sampling in shooting al-
gorithms

Suppose that we use a sampling method (i.e. a shooting
algorithm) that transfers light to point ~x from direction ω′

with probability density p(~x, ω′). As we shall see, shoot-
ing algorithms can make p more or less proportional to
the radiance or power of this transfer and the cosine of
the incoming angle, but the sampling density is unable to
mimic BRDF fr(ω

′, ~x, ωeye) and indicator ξA at the tar-
get of the shooting. Thus these factors appear as addi-
tional weighting that can be responsible for a large varia-
tion. The variation is especially high if the target surface is
specular or the probability of hitting the area of interest is
small. In such situations, gathering would be better, which
mimics the indicator of the area of interest and the scat-
tering probability of the receiver point. We intend to use
shooting, but to incorporate the more efficient density of
gathering when these difficult situations happen. Weighted
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importance sampling allows us to pretend we follow gath-
ering even when the sample was obtained with shooting.
Whether or not it is worth doing may change from area
of interest to area of interest. It is definitely worth do-
ing when the surfaces are specular, thus we shall use this
approach for the specular component of the reflection. We
note that weighted importance sampling might also be also
good for diffuse surfaces if the probability of hitting the
area of interest is small since it can eliminate the variation
of caused by the indicator, as recognized in [2]. However,
we shall not analyze this possibility in this paper.

The reflected radiance, the BRDF and the scattering
density are decomposed to diffuse and specular terms:

Lr = Ld + Ls,

fr(ω
′, ~x, ω) = fd + fs(ω

′, ~x, ω),

w(ω′, ~x, ω) = fd · cos θ′~x + ws(ω
′, ~x, ω).

We propose density g to mimic the specular scatter-
ing density and the indicator of the area of interest when
the specular component is computed, that is the densities
of the corresponding gathering algorithm. If the light is
transferred on several wavelengths simultaneously, then
the specular BRDF and the specular scattering density are
functions of the wavelength. In this case, we can use the
luminance of the specular scattering density. The lumi-
nance function is denoted by L. Function g should be a
probability density, thus we have to ensure that its inte-
gral is 1. To meet this requirement, the specular scattering
density is divided by its integral and the indicator by the
size of the area of interest. The integral of the specular
scattering density is the specular albedo:

as(~x, ω) =

∫

Ω

ws(ω
′, ~x, ω) dω′.

In fact the albedo is only a function of the incoming angle
θ′ for isotropic materials. Thus an appropriate g, which is
a probability density, is

g(~x, ω′) =
L(ws(ω

′, ~x, ωeye))

L(as(~x, ωeye))
·
ξA(~x)

A
.

Substituting this density into the formula of weighted im-
portance sampling we obtain :

CA =

∑M
n=1

Lin(~xn,ω′

n)·ws(ω′

n,~xn,ωeye)·ξA(~xn)
p(~xn,ω′

n)

A ·
∑M

n=1
g(~xn,ω′

n)
p(~xn,ω′

n)

=

∑M
n=1

Lin(~xn,ω′

n)·ws(ω′

n,~xn,ωeye)·ξA(~xn)
p(~xn,ω′

n)
∑M

n=1
L(ws(ω′

n,~xn,ωeye))·ξA(~xn)
L(as(~x,ωeye))·p(~x,ω′

n)

.

Note that the size of area of interest disappears from
the formula, since the effect of averaging is compensated
by making g a probability density. In order to apply this
formula in practice, an accumulating specular radiance LA

and an accumulating probability dA are assigned to each
area of interest. These values are incremented only if this
area of interest is the target of the current transfer. The
accumulating radiance is incremented by

Lin(~xn, ω′
n) · ws(ω

′
n, ~xn, ωeye)

A · p(~xn, ω′
n)

.

The accumulating probability is incremented by

L(ws(ω
′
n, ~xn, ωeye))

L(a(~xn, ωeye)) · A · p(~xn, ω′
n)

.

The estimate of the eye radiance is expressed as the sum
of the specular reflected radiance and diffuse radiance Ld:

Lr(ωeye) ≈
Ls

A

dA

+ Ld.

In the following subsections we examine two different
shooting like algorithms and discuss how the presented
weighted importance sampling method can be applied to
them. These algorithms apply random transport operators
T ∗ to the radiance estimate of the given iteration step in a
way that its expected value gives back the effect of the ap-
plication of the original light transport operator. Iterating
the radiance such a way, the iterated functions will fluctu-
ate around the expected radiance function. Computing the
averages from the estimates of different iteration steps, the
final, converged result can be obtained.

3.1 Method 1: Ray-shooting
In order to solve the global illumination problem this al-
gorithm simulates the light transfer by random rays. A
temporary random radiance approximation is stored on the
patches obtained tessellating the original surfaces. From
this temporary radiance approximation, we can estimate
the output radiance of each patch in each direction. Ray-
shooting transfers the radiance between two random points
connected by a ray. In order to use importance sampling,
the source point and the direction are sampled proportional
to the cosine weighted radiance.

Let us sample ~y and ω′ proportional to L(~y, ω′) cos θ~y

and then ~x by the ray shooting process. This can be real-
ized by first finding patch i of ~y proportional to its power,
i.e. the selection probability is the ratio of the power of
patch j:

Φj = Aj ·

∫

Ω

Lj(ω
′) cos θ~y dω′,

and the total power of the scene:

Φ =

∫

S

∫

Ω

L(~y, ω′) cos θ~y dω′d~y =
∑

k

Φk.

Then source ~y is sampled on this patch uniformly, finally,
direction ω′ is sampled proportional to directional distri-
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Figure 2: A Beethoven scene rendered by classical Monte-Carlo (left) and weighted Monte-Carlo (right) using 54 seconds
on a P4 1.4 Ghz computer. The scene consists of 21 thousand patches. We used stochastic ray-shooting for the calculation
of the indirect illumination while the direct illumination was obtained by a deterministic method.

bution L(~y, ω′). The final sampling density of ~y and di-
rection ω′ is

p~y(~y, ω′) =
L(L(~y, ω′)) cos θ~y

L(Φ)
.

It often happens that we are unable to sample exactly with
this distribution, thus p~y(~y, ω′) is only roughly propor-
tional to the radiance.

When the area of interest is examined, probability den-
sity p~y(~y, ω′) should be transformed to the probability
density of hitting ~x from direction ω′:

p(~x, ω′) =
p~y(~y, ω′) · cos θ~x

cos θ~y

.

The random transfer operator results in non-zero radiance
just at the hit point ~x. The contribution to the area of in-
terest is

CA =
1

A
·
L(~y, ω′) cos θ~y

p~y(~y, ω)
· fs(ω

′, ~x, ωeye) · ξA(~x).

Note that this estimator is quite smooth except for the
BRDF and indicator ξA since the variation of the incom-
ing radiance approximation is compensated by the corre-
sponding factor in the sampling probability. Thus when
the variation of the BRDF exceeds the variation of the in-
coming illumination, then weighted importance sampling
can improve the estimate.

Weighted importance sampling will maintain an accu-
mulating eye radiance and an accumulating probability at
each areas of interest. The accumulating eye radiance Ls

A

is incremented by

1

A
·
L(~y, ω′) cos θ~y

p~y(~y, ω′)
· fs(ω

′, ~x, ωeye).

when the ray hit this area (i.e. when ξA(~x) = 1). At the
same time, the accumulated probability is incremented by

L(ws(ω
′
n, ~xn, ωeye))

L(as(~x, ω′)) · A · p(~xn, ω′
n)

=

L(fs(ω
′
n, ~xn, ωeye))

L(as(~xn, ωeye)) · A · p~y(~y, ω′)
.

The estimate of the eye radiance is expressed as the ratio
of the accumulated eye radiance and accumulated proba-
bility:

Lr(ωeye) ≈
Ls

A

dA

+ Ld.

Let us interpret the results. Classical Monte-Carlo esti-
mate would use the estimate Ls

A/M , and in our case dA

converges to M , thus asymptotically, the two estimates
are equivalent. Suppose that we have two areas of inter-
est having similar specular reflectance and similar illumi-
nation conditions. The number of hits is expected to be
proportional to the incoming power. On the other hand,
the direction of the hits follow the directional variation of
the illumination. If we have moderate number of samples,
it can happen, for example, that due to the random nature
of sampling, the first patch gets more samples and from
the important directions of the specular reflection, while
the second patch less samples from the unimportant di-
rections. Both estimates are divided by the same M in
classical Monte-Carlo. Thus, although their expected val-
ues are similar, the first patch can be much brighter than
the second, which is responsible for large variance (left of
figure 2). However, when weighted importance sampling
is used, the accumulating probability will also be much
larger for the first patch since it is incremented more times
and by larger values. Thus when dividing with accumulat-
ing probability dA, the difference between the lucky and
the unlucky patches disappears (right of figure 2).
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3.2 Method 2: Ray-bundle shooting
In this second algorithm we use bundle of rays to transfer
the radiance in the scene.

Parallel ray-bundle tracing transfers the radiance of all
patches parallel to a randomly selected global line in each
iteration cycle [8]. Bundles carry out surface integration
on the fly, thus only the directional integral should be com-
puted. If the global directions are sampled from a uniform
distribution and the radiance is transferred into two oppo-
site directions, then the directional density is:

p(ω′) =
1

2π
.

The random transport operator generates a random ap-
proximation of the reflected radiance at each step:

Lr ≈ T ∗

parL =
L(~y, ω′) · fr(ω

′, ~x, ω) · cos θ′~x
p(ω′)

=

2π · L(~y, ω′) · fr(ω
′, ~x, ω) · cos θ′~x.

where ~y is the point visible from ~x at direction −ω′ or at
ω depending the orientation of the surface.

The radiance transfer needs the identification of those
points that are mutually visible in the global direction. In
order to solve this global visibility problem, a window is
placed perpendicular to the global direction. The window
is decomposed into a number of pixels. A pixel is ca-
pable to store a list of patch indices and z-values. The
lists are sorted according to the z-values. The collection of
these pixels are called the transillumination buffer[4]. The
patches are rendered one after the other into the buffer us-
ing a modified z-buffer algorithm which keeps all visible
points not just the nearest one. Traversing the generated
lists the pairs of mutually visible points can be obtained.
For each pair of points, the radiance transfer is computed
and the transferred radiance is multiplied by the BRDF,
resulting in a random estimate of the reflected radiance.

global direction window

1

2

3
3

1

1

2

2

2

3

3

3

transillumination buffer

Figure 3: Organization of the transillumination buffer

The random estimate of the contribution in iteration step
n is:

CA =
1

A
·

∫

A

T ∗

parLn−1 d~x ≈ 2π · In · fr(ω
′, ~x, ω),

where
In =

δP

A
·
∑

P

Lin
n−1(P )

is the irradiance received by this area in iteration step n.
In this formula P runs on the pixels covering the projec-
tion of area of interest A, Lin

n−1(P ) is the radiance of the
surface point visible in pixel P in iteration step n − 1,
fr(ω

′, ~x, ω) is the BRDF of that point which receives this
radiance coming through pixel P , and δP is the area of the
pixels.

Concerning the eye radiance 2π · In ·fr(ω
′, ~x, ωeye) the

fluctuation can stem from both the fluctuation of the irra-
diance In and from the fluctuation of the BRDF. The latter
type of fluctuation can be reduced by weighted importance
sampling.

The first variable of weighted importance sampling is
the accumulating eye radiance coming from specular re-
flections, which is incremented by

I(~x, ω′) · fs(ω
′, ~x, ω)

p(ω′)
= 2π · I(~x, ω′) · fs(ω

′, ~x, ω)

in each iteration step. The accumulating probability is in-
cremented by

L(ws(ω
′
n, ~x, ωeye))

L(as(~xn, ωeye)) · p(ω′
n)

=
2πL(w)s(ω′

n, ~x, ωeye))

L(as(~xn, ωeye))
.

The final radiance is obtained as dividing the specular eye
radiance by the accumulated probability and then adding
the diffuse component.
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Figure 4: Comparison of the classical Monte-Carlo and
the Weighted Importance Sampling methods with parallel
ray bundles

Figure 4 compares the error curves of classical Monte-
Carlo method with the proposed weighted importance
sampling. Note that the error of weighted importance sam-
pling is not only smaller, but the large error fluctuation is
eliminated (figure 5). This means that even at early stages,
when the result is not accurate, the disturbing large varia-
tions will not be present in the image.
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Figure 6: The same scene rendered without (left) and with weighted importance sampling (right). The images have been
rendered on 800 × 800 resolution in 28 seconds, including an initial first shot that replaced the light sources by their first
reflection.
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Figure 5: Convergence of a single area of interest

Conclusions

This paper proposed the application of a known vari-
ance reduction technique in non-diffuse global illumina-
tion problems. In our approach the weighting empha-
sizes the points and directions from which significant eye
contribution is possible. In this way, we could incorpo-
rate a probability density used in gathering algorithms into
shooting methods. Thus, while preserving the advantages
of shooting techniques (i.e. they can efficiently distribute
the illumination of the light sources), we could reduce
its drawbacks (i.e. measuring specular surfaces). The
algorithm is cheap computationally and requires just the
separation of diffuse and specular radiance and one addi-
tional scalar value to store the accumulated radiance per
patch or per pixel. The proposed idea was implemented
in ray-shooting and ray-bundle shooting algorithms. In
ray-shooting we can expect that weighted importance sam-
pling reduces both the variance stemming from not follow-
ing the BRDFs at the target and from the random fluctua-
tion of the number of hits per target. In the method apply-
ing bundles, the random fluctuation of the number of hits
has already been eliminated, thus we could observe less
improvement.
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This paper proposes the application of a variance reduction technique called weighted im-
portance sampling in shooting type global illumination algorithms. The sampling applied
by shooting type Monte-Carlo global illumination algorithms can mimic the power trans-
fer, but not the BRDFs at the visible target of the transfer. Consequently, these algorithms
are poor in rendering visible specular surfaces. In order to eliminate these drawbacks, the
BRDFs at the visible targets are taken into account as an additional weighting of the sam-
pling density. After discussing the basic concepts we demonstrate the proposed idea with
two algorithms. The first one uses conventional rays, while the second one ray-bundles to
transfer the light in the scene.


