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Abstract. The paper presents a single-pass, view-dependent method to solve the
general rendering equation, using a combined finite element and random walk
approach. Applying finite element techniques, the surfaces are decomposed into
planar patches that are assumed to have position independent, but not direction
independent radiance. The direction dependent radiance function is then com-
puted by random walk using bundles of parallel rays. In a single step of the walk,
the radiance transfer is evaluated exploiting the hardware z-buffer of worksta-
tions, making the calculation fast. The proposed method is particularly efficient
for scenes including not very specular materials illuminated by large area light-
sources or sky-light. In order to increase the speed for difficult lighting situations,
walks can be selected according to their importance. The importance can be ex-
plored adaptively by the Metropolis sampling method.

1 Introduction

The fundamental task of computer graphics is to solve a Fredholm type integral equa-
tion describing the light transport. This equation is called therendering equationand
has the following form:

L(~x; !) = Le(~x; !) +

Z



L(h(~x;�!0); !0) � cos �0 � fr(~x; !
0; !) d!0 (1)

whereL(~x; !) andLe(~x; !) are the radiance and emission of the surface in point~x at
direction!, 
 is the directional sphere,h(~x; !0) is the visibility function defining the
point that is visible from point~x at direction!0, �0 is the angle between the surface
normal and direction�!0, andfr(~x; !0; !) is the bi-directional reflection/refraction
function. Since the rendering equation contains the unknown radiance function both
inside and outside the integral, in order to express the solution, this coupling should be
resolved. Generally, two methods can be applied for this: finite element methods or
random walk methods.

Finite element methodsproject the problem into a finite function base and approx-
imate the solution here. The projection transforms the integral equation to a system
of linear equations for which straightforward solution techniques are available. Finite
element techniques that aim at the solution of the non-diffuse case can be traced back to
the finite element approximation of the directional functions usingpartitioned sphere
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[8] or spherical harmonics[23], and to the application ofextended form factors[22].
Since the radiance function is not smooth and is of 4-variate if non-diffuse reflection
should also be considered, finite element methods require a great number of basis func-
tions, and thus the system of linear equations will be very large. Although, hierarchical
or multiresolution methods [4] and clustering [3] can help, the memory requirements
are still prohibitive for complex scenes.

Random walk methods, on the other hand, resolve the coupling by expanding the
integral equation into a Neumann series, and calculate the resulting high-dimensional
integrals by numerical quadrature from discrete samples. A single discrete sample cor-
responds to a complete photon-path (called thewalk) from a lightsource to the eye,
which is usually built byd ray-shooting steps if the photon is reflectedd times. Since
classical quadrature rules are useless for the calculation of very high dimensional inte-
grals, Monte-Carlo or quasi-Monte Carlo techniques must be applied.

In computer graphics the first Monte-Carlo random walk algorithm — calleddis-
tributed ray-tracing— was proposed by Cook et al. [5], which spawned to a set of vari-
ations, includingpath tracing[9], light-tracing[7], Monte-Carlo radiosity[20][14][17],
and two-pass methods which combine radiosity and ray-tracing [29].

The problem of naive generation of walks is that the majority of the paths do not
contribute to the image at all, and their computation is simply waste of time.

Thus, on the one hand, random walk must be combined with a deterministic step that
forces the walk to go to the eye and to find a lightsource.Light tracingconnects each
bounce position to the eye deterministically [7].Bi-directional path-tracingmethods
start a walk from the eye and a walk from a lightsource and connect the bounce positions
of the two walks [11],[27].

On the other hand, importance sampling [24] should be incorporated to prefer useful
paths along which significant radiance is transferred. Note that although the contribu-
tion on the image is a function of the complete path, computer graphics applications
usually assign estimated importance to individual steps of this path, which might be
quite inaccurate. In a single step the importance is usually selected according to the
BRDF [7] [11], or according to the direction of the direct lightsources [21]. Combined
methods that find the important directions using both the BRDF and the incident illumi-
nation have been proposed in [26], [12]. Just recently, Veach and Guibas [28] proposed
the Metropolis method to be used in the solution of the rendering equation. Unlike
other approaches, Metropolis sampling [13] can assign importance to a complete walk
not just to the steps of this walk, and it explores important regions of the domain adap-
tively while running the algorithm.

In order to reduce the noise of these methods, very many samples are required,
especially when importance sampling cannot help significantly — that is when the
lightsources are large and the surfaces are not very specular. One way of reducing
the ray-object intersection calculation cost is storing this information in the form of
illumination networks[1], but it has large memory requirements, and representing the
light-transport of small number of predefined rays might introduce artifacts.

The proposed new method also combines the advantages of finite-element and random-
walk approaches and can solve the general non-diffuse case. The method needs no
preprocessing, the memory requirements are modest, and it is particularly efficient for
scenes containing larger area lightsources and moderately specular surfaces — that is
where other importance-sampling walk methods become inefficient.



2 Informal discussion of the new algorithm

Walk methods proposed so far use individual ray-paths as samples of the integrand
of the rendering equation. However, ray-shooting may waste a lot of computation by
ignoring all the intersections but the one closest to the start of the ray. Thus it seems
worth using a set ofglobal directions[18][14] for the complete scene instead of solving
the visibility problem independently for different points~x. Moreover, ray-shooting
is a simple but by no means the most effective visibility algorithm since it is unable
to take advantage of image coherence. Other methods based on the exploitation of
image coherence, such as the z-buffer, painter’s, Warnock’s, etc. algorithms can be
considered as handling a bundle of parallel rays and solving the visibility problem for
all of them simultaneously. Continuous (also called object-precision) methods can even
determine the visibility problem independently of the resolution, which corresponds
to tracing infinitely many parallel rays simultaneously. This paper aims at using ray-
bundles instead of individual rays to solve the rendering equation.

These visibility algorithms assume that the surfaces are decomposed into planar
patches, thus the proposed method also uses this assumption. On the other hand, the
patch decomposition is also used for the finite-element structure, where each surface
element is assumed to have uniform radiance (note that this does not mean that the
radiance function itself is uniform or diffuse, just the same radiance function is valid
anywhere inside a patch). In order to simulate multiple interreflections, ray-bundles
should be traced several times in different directions. The series of directions is called
aglobal random walk.

2.1 Computation of global ray-bundle walks

image plane

direction 1

direction 2

direction 3

Fig. 1. A path of ray-bundles

The algorithm takes samples of these global walks and uses them in the quadrature.
A single walk starts by selecting a direction either randomly or quasi-randomly, and the
emission transfer of all patches is calculated into this direction (figure 1). Then a new
direction is found, and the emission is transferred and the irradiance generated by the
previous transfer is reflected from all patches into this new direction. The algorithm
keeps doing this for a few times depending on how many bounces should be consid-
ered, then the emission is sent and the irradiance caused by the last transfer is reflected
towards the eye. Averaging these contributions results in the final image. When the
radiance reflection is calculated, the radiance is attenuated by the BRDF of the corre-
sponding surface element.



In order to make this method work, efficient algorithms are needed that can compute
the radiance transfer of all patches in a single direction. A new global visibility method
capable of taking advantage of the built-in z-buffer is proposed for this task.

In the following sections, first the formal aspects of the combination of finite ele-
ment and random walk techniques are discussed, then the global visibility method is
presented.

3 Reformulation of the rendering equation using the finite-elements

According to the concept of finite-elements, the radiance, emission and the BRDF of
patchi are assumed to be constant and are denoted byLi(!), Lei (!) and ~fi(!; !

0),
respectively. Using these assumptions, integrating the rendering equation on patchi we
obtain:

Li(!) � Ai = Le
i
(!) � Ai +

Z



Z
Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!
0; !) d~x d!0: (2)

Taking into account that the integrand of the inner surface integral is piece-wise
constant, it can also be presented in closed form:Z
Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!
0; !) d~x =

nX
j=1

~fi(!
0; !) �A(i; j; !0) � Lj(!

0); (3)

whereA(i; j; !0) expresses the projected area of patchj that is visible from patchi in
direction!0. In the unoccluded case this is the intersection of the projections of patch
i and patchj onto a plane perpendicular to!0. If occlusion occurs, the projected areas
of other patches that are in between patchi and patchj should be subtracted as shown
in figure 2.
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Fig. 2. Interpretation ofA(i; j; !0)

Using equation (3) and dividing both sides byAi, the matrix form of the rendering
equation can be obtained as:

L(!) = Le(!) +
Z



F(!0; !) � A(!0) � L(!0) d!0; (4)

whereL(!) is the vector of radiance values,F(!0; !) is a diagonal matrix of BRDFs,
andgeometry matrixA contains the relative visible areas:A(!0)jij = A(i; j; !0)=Ai.

Note that equation (4) is highly intuitive as well. The radiance of a patch is the sum
of the emission and the reflection of all irradiances into this direction. The role of the
patch-direction-patch “form-factors” is played byA(i; j; !0)=Ai.



3.1 Random walk

The solution of integral equation (4) can be obtained in the form of a Neumann series:

L(!) =
1X
i=0

T
iLe(!); where T L(!) =

Z



F(!0; !) � A(!0) � L(!0) d!0: (5)

The terms of this infinite Neumann series have intuitive meaning as well:T 0Le(!) =
Le(!) comes from the emission,T 1Le(!) comes from a single reflection (called 1-
bounce),T 2Le(!) from two reflections (called 2-bounces), etc.

In practice the infinite sum of the Neumann series is always approximated by a finite
sum. The number of required terms is determined by the contraction of the operatorT

— that is the overall reflectivity of the scene. Let us denote the maximum number of
calculated bounces byD. The truncation of the Neumann series introduces a bias in the
estimation, which can be tolerated ifD is high enough.

In order to simplify the notations, we introduce themaxd-bounce irradianceId for
d = 1; 2; : : : as follows:

I0 = A(!0
D
) � Le(!0

D
)

Id = A(!0
D�d

) �
�
Le(!0

D�d
) + 4� � F(!0

D�d+1; !
0

D�d
) � Id�1

�
;

whereId is ad+ 1 dimensional function of directions(!0
D�d

; !0
D�d+1 : : : ; !

0

D
). The

maxd-bounce irradiance represents the irradiance arriving at each patch after complet-
ing a path of lengthd following the given directions, and gathering and then reflecting
the emission of the patches.

Limiting the solution to consider at mostD+1 bounces, the solution of the render-
ing equation can be obtained as a2D-dimensional integral:

L(!) = (
1

4�
)D
Z



: : :

Z



[Le(!) + 4� � F(!01; !) � ID(!01; : : : ; !
0

D
)] d!0

D
: : : d!01:

(6)
This high-dimensional integral can be estimated by Monte-Carlo quadrature.

3.2 Simple Monte-Carlo, or quasi-Monte Carlo integration

In order to evaluate formula (6),M random or quasi-random [10] walks should be gen-
erated (the difference is that in Monte-Carlo walks the directions are sampled randomly
while in quasi-random walks they are sampled from a2D-dimensional low-discrepancy
sequence, such as the2D-dimensionalHalton or Hammersleysequence [16]). When
theD-bounce irradiance is available, it is multiplied by the BRDF defined by the last
direction!1 and the viewing direction! to find a Monte-Carlo estimate of the radiance
that is visible from the eye position. Note that this step makes the algorithm view-
dependent. There are basically two different methods to calculate the estimate of the
image. On the one hand, evaluating the BRDF once for each patch, a radiance value
is assigned to them, then in order to avoid “blocky” appearance, bi-linear smoothing
can be applied. Using Phong interpolation, on the other hand, the radiance is evaluated
at each point visible through a given pixel, based on the irradiance field, the surface
normal and on the BRDF of the found point. In order to speed up this procedure, the
surface visible at each pixel and the surface normal can be determined in a preprocess-
ing phase and stored in a map. Phong interpolation is more time consuming but the
generated image is not only numerically precise, but is also visually pleasing.



The final image is the average of these estimates. The complete algorithm — which
requires just one variable for each patchi, the maxd-bounce irradianceI [i] — is sum-
marized in the following:

for m = 1 to M do // samples of global walks
Generate themth random or low-discrepancy point:(!(m)

1 ; !
(m)

2 ; : : : ; !
(m)

D
)

I = 0
for d = 0 to D � 1 do // a random or quasi-random walk

I = A(!0D�d) �
�
Le(!0D�d) + 4� � F(!0D�d+1; !

0

D�d) � I
�

endfor
Calculate the image estimate from the irradianceI
Divide the estimate byM and add to the final image

endfor
Display Image

3.3 Combined and bi-directional walking techniques

The algorithm that has been derived directly from the quadrature formulae uses direc-
tion!1 to evaluate the contribution of 1-bounces, directions(!1; !2) for the 2-bounces,
(!1; !2; !3) for the 3-bounces, etc. This is just a little fraction of the information that
can be gathered during the complete walk. We could also use the samples of!1, !2,
!3, etc. to calculate the 1-bounce contribution,(!1; !2), (!1; !3), : : :, (!2; !3), etc.
combinations of directions for 2-bounces, etc. This is obviously possible, since if the
samples of(!1; !2; : : : !D) are taken from a uniform sequence, then all combinations
of its elements also form uniform sequences in lower dimensional spaces.
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Fig. 3. Combined and bi-directional walking techniques versus normal walk

If all possible combinations are used, then each random walk generates
�
D

d

�
sam-

ples for thed-bounces, which can be used to increase the accuracy of the method. Note
that the increased accuracy of this “combined” method is for free in terms of additional
computation. However, due to the dependence of the BRDF functions on two directions
and due to the fact that different bounces will be estimated by different numbers of sam-
ples, the required storage per patch is increased toD(D+1)=2 variables. SinceD is 5
to 8 in practical cases, this storage overhead is affordable. Furthermore, when the radi-
ance is transferred to a direction, the required information to transfer the radiance to the



opposite direction is also available. Taking advantage of this, a single “bi-directional”
walk will generate

�
D

d

�
� 2d samples for thed-bounce transfer.

The additional samples of the “combined” and particularly the “bi-directional” walk-
ing techniques increase the accuracy as shown by figure 3. The test scene was the ho-
mogeneous Cornell-box where all surfaces have constant 0.5 diffuse reflectance and
emission, which allowed to solve the rendering equation analytically [10] (the solution
is L = 1 � 2�(D+1)) to find a reference for the error analysis. Note that although
quasi-Monte Carlo sampling is generally better, the improvement provided by the com-
bined and bi-directional methods is less for the quasi-Monte Carlo walk than for the
Monte-Carlo walk since the low-discrepancy points are so “well-designed” that mixing
different sets of them does not improve the quadrature much further.

4 Metropolis solution of the directional integrals

The global illumination method proposed so far is particularly efficient if the lighting
distribution in the scene does not exhibit high variations. For difficult lighting con-
ditions importance sampling can help, that prefers those sequences of directions that
transport significant radiance towards the eye. Since no a-priori information is avail-
able which these important directions are, some kind of adaptive technique must be
used. In this section the application of Metropolis sampling is considered.

The Metropolis algorithm is a Monte-Carlo quadrature method that incorporates
adaptive importance sampling by exploring the properties of the integrand automat-
ically. Suppose that integralI =

R
V
f(z) dz needs to be evaluated. Let us define

importanceI(z) that should be approximately proportional tof . Importance sampling
requires the generation of samplesfz1; z2; : : : zMg according to a probability density
p(z) — which is proportional toI(z) = b � p(z) — and using the following formula:

I =

Z
V

f(z)
I(z)

� I(z) dz = b �

Z
V

f(z)
I(z)

� p(z) dz = b �E[
f(z)
I(z)

] �
b

M
�

MX
i=1

f(zi)
I(zi)

(7)

In order to generate samples according top(z) = 1=b � I(z) a Markovian process is
constructed whose stationary distribution is justp(z).

The definition of this Markovian processfz1; z2; : : : zi : : :g is as follows:

for i = 1 to M do
Based on the actual statezi, choose another random, tentative pointzt
if the tentative point is more important (I(zt) � I(zi)) then accept(zi+1 = zt)
else // accept randomly with probability of the importance degradation

Generate random numberr in [0; 1].
if r < I(zt)=I(zi) then zi+1 = zt // accept
else zi+1 = zi // keep the previous

endif
endfor

The generation of the next tentative sample is governed by atentative transition
functionT (x ! y). In the algorithm we use a symmetric tentative transition function,
that isT (x ! y) = T (y ! x). The transition probability of this Markovian process is:

P (x ! y) =

(
T (x ! y) if I(y) > I(x);

T (x ! y) � I(y)=I(x) otherwise:
(8)



In equilibrium state, the transitions between two statesx andy are balanced, that is
p(x) � P (x ! y) = p(y) � P (y ! x). Using this and equation (8), and then taking
into account that the tentative transition function is symmetric, we can prove that the
stationary probability distribution is really proportional to the importance:

p(x)
p(y)

=
P (y ! x)
P (x ! y)

=
T (y ! x)
T (x ! y)

�
I(x)
I(y)

=
I(x)
I(y)

: (9)

If we select initial points according to the stationary distribution — that is propor-
tionally to the importance — then the points visited in the walks originated at these
starting points can be readily used in equation (7).

4.1 Definition of the importance function

Let the importance functionI be the sum of luminances of all pixels of the image,
resulting from the walk. This importance function really concentrates on those walks
that have a significant influence on the image. Using the luminance information is
justified by the fact that the human eye is more sensitive to luminance variations than
to color variations.

The Metropolis method achieves the sampling according to this probability by es-
tablishing a Markovian process on the space of global walks, whose limiting distribution
is proportional to the selected importance function.

The Metropolis approximation of the radiance vector is:

L(!) = (
1

4�
)D
Z



: : :

Z



[Le(!) + 4� � F(!01; !) � ID(!01; !
0

2; : : : ; !
0

D
)] d!0

D
: : : d!01 �

(
b

M
)

MX
m=1

Le(!) + 4� � F(!01; !) � ID(!
(m)

1 ; !
(m)

2 ; : : : ; !
(m)

D
)

I(!
(m)

1 ; !
(m)

2 ; : : : ; !
(m)

D
)

: (10)

whereM is the number of mutations andb is the integral of the importance function
over the whole space.

4.2 Definition of the tentative transition function

The statespace of the Markovian process consists ofD-dimensional vectors of direc-
tions that define the sequence of directions in the global walks. Thus the tentative
transition function is allowed to modify one or more directions in these sequences.

4.3 Generating an initial distribution

The Metropolis method promises to generate samples with probabilities proportional
to their importance in the stationary case. To ensure that the process is already in
the stationary case from the beginning, initial samples are also selected according to
the stationary distribution, i.e. proportionally to the importance function. Selecting
samples with probabilities proportional to the importance can be approximated in the
following way. A given number of seed points are found in the set of sequences of
global directions. The importances of these seed points are evaluated, then, to simulate
the distribution following this importance, the given number of initial points are selected
randomly from these seed points using the discrete distribution determined by their
importance.



4.4 Automatic exposure

Equation (10) also contains an unknownb constant that expresses the luminance of the
image. The initial seed generation can also be used to determine this constant. Then
at a given point of the algorithm the total luminance of the current image — that is the
sum of the importances of the previous samples — is calculated and an effective scaling
factor is found that maps this luminance to the expected one.

5 Calculation of the radiance transport in a single direction

In order to compute the irradiances of different bounces recursively by formula (6),
the geometry matrixA must be determined for the actual direction and used to weight
the radiance vector. Since the geometry matrix contains the relative areas of patches
as visible from other patches of the scene, the determination of the geometry matrix
requires the solution of a global visibility problem where the eye position visits each
patch of the scene.

A possible solution is the application of the painter’s algorithm that renders patches
having sorted according to the given direction into an image buffer and computes the
radiance transfer during rendering for each “pixel” [25].

In this section another method is proposed that traces back the visibility problem to a
series of z-buffer steps to allow the utilization of the z-buffer hardware of workstations.

The proposed algorithm solves the discretized visibility problem placing a raster-
ized window perpendicularly to the given direction.
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Fig. 4. Calculating the power transfer

The radiance is transferred by dynamically maintaining two groups of patches, an
emitter group and a receiver group, in a way that no patch in the receiver group may
hide a patch in the emitter group looking from the given direction.

Let the two classes of patches be rendered into two image buffers — called the
emitter and receiver images, respectively — setting the color of patchj to j and letting
the selected direction be the viewing direction for the receiver set and its inverse for the
emitter set. Looking at figure 4, it is obvious that a pair of such images can be used to
calculate the radiance transfer of all those patches which are fully visible in the receiver
image. The two images must be scanned parallely and wheni (that is the index of patch
i) is found in the receiver image, the corresponding pixel in the emitter image is read
and its value is used as a patch index to find the source radiance which is then added to
the irradiance of patchi. Finally, the irradiance is scaled byP=Ai whereP is the size



Fig. 5. A scene after the “first-shot”(left) and after 500 Metropolis walks (right)

of a pixel andAi is the size of the receiver patch.
In order to find out which patches are fully visible in the receiver image, the number

of pixels they cover is also computed during scanning and then compared to the size of
their projected area. For those patches whose projected area is approximately equal to
the total size of the covered pixels, we can assume that they are not hidden and their ac-
cumulated irradiances are valid, thus these patches can be removed from the receiver set
and rendered into the emitter image to calculate the radiance transfer for other patches
(this is the strategy to maintain the emitter and receiver sets automatically). This leads
to an incremental algorithm that initially places all patches in the receiver set. Having
calculated the receiver image by the z-buffer algorithm, the radiance transfer for the
fully visible patches are evaluated, and then they are moved from the receiver set to the
emitter set. The algorithm keeps doing this until no patch remains in the receiver set
(cyclic overlapping would not allow the algorithm to stop, but this can be handled by
a clipping as in the painter’s algorithm [15]). The number of z-buffer steps required
by the algorithm is quite small even for complex practical scenes [18]. Exploiting the
built-in z-buffer hardware of advanced workstations, the computation can be fast.

6 Preprocessing of point lightsources

As other global radiosity methods, this method is efficient for large area lightsources
but loses its advantages if the lightsources are small [19]. This problem can be solved
by a “first-shot” that shoots the power of the point lightsources onto other surfaces,
then removes them from the scene [2]. Since the surfaces can also be non-diffuse, the
irradiance received by the patches from each point lightsource should be stored (this
requiresl additional variables per patch, wherel is the number of point lightsources).
The secondary, non-diffuse emission to a direction is computed from these irradiances.



7 Simulation results

Figure 5 shows a scene as rendered after the first shot and after 500 walks of length 5.
The scene contains specular, metallic objects tessellated to 9602 patches, and is illu-
minated by both area (ceiling) and point (right-bottom corner) lightsources. A global
radiance transfer took about 0.7 seconds on a Silicon Graphics O2 computer. Since the
radiance information of a single patch is stored in 18 float variables (1 for the emission,
1 for the irradiance generated by the point lightsource,D(D + 1)=2 = 15 for the irra-
diances and 1 for the accumulating radiance perceived from the eye), the extra memory
used in addition to storing the scene is only 0.7 Mbyte.

The color plate shows a fractal terrain containing 14712 patches after 500 walks
which provide an accuracy within 2 percents. A global radiance transfer took approxi-
mately 1.1 seconds and the radiance information required 1 Mbyte.

8 Conclusions

This paper presented a combined finite-element and random-walk algorithm to solve the
rendering problem of complex scenes including also glossy surfaces. The basic idea of
the method is to form bundles of parallel rays that can be traced efficiently, taking ad-
vantage of the z-buffer hardware. Unlike other random walk methods using importance
sampling [7] [11] [28], this approach cannot emphasize the locally important directions,
but handles a large number (1 million) parallel rays simultaneously instead, thus it is
more efficient then those methods when the surfaces are not very specular.

The memory requirement is comparable to that of the diffuse radiosity algorithms
although the new algorithm is also capable to handle non-diffuse reflections or refrac-
tions. Since global ray-bundle walks are computed independently, the algorithm is very
well suited for parallelization.

In order to incorporate importance sampling, the Metropolis sampling technique
was applied. However, for homogeneous scenes, we could not demonstrate significant
noise reduction compared to quasi-Monte Carlo walks. This is due to the fact that the in-
tegrand of equation (4) is continuous and is of finite variation unlike the integrand of the
original rendering equation, thus if its variation is modest then quasi-Monte quadrature
is almost unbeatable. If the radiance distribution has high variation (difficult lighting
conditions), then the Metropolis method becomes more and more superior. Future re-
search should concentrate on the tuning of the Metroplis method in this application and
on other adaptive importance sampling techniques.
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