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ABSTRACT

The paper proposes a global illumination method that builds up the light paths progres-

sively taking into account all relevant previous information. The basis of the method is a

self-correcting stochastic iteration scheme, which works with a population of photon hits.

In each iteration step a ray is generated randomly either from a light source or by reect-

ing an earlier hit, then the ray is traced to obtain a new hit. In order to limit the size of

the hit population, hits are decimated randomly after certain iteration steps. Comparing

the new approach to random walk techniques, this method can reuse the illumination and

visibility information gathered with previous rays. By de�ning the decimation strategy

properly, the view-importance can be built into the algorithm.
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1 Introduction

Global illumination algorithms are expected

to �nd the possible light paths connecting the

light sources to the camera [16]. Paths can be

build starting at the light sources (shooting)

[14, 4], starting at the camera (gathering) [7],

or even simultaneously starting two paths,

one from the eye and one from the camera

and connecting them (bi-directional meth-

ods) [9, 20]. Random walk algorithms usually

build up the light paths independently, that

is, having a path established and its carried

power computed, this path is thrown away,

and the new path is started from scratch.

This means that random walk methods do

not reuse the visibility and illumination in-

formation gathered by previous walks, which

can be very ineÆcient if the lighting situation

is diÆcult, that is when just a small fraction

of the paths may contribute to the image.

Having the random process eventually found

a light path of non-zero contribution, this

knowledge is used just once, then the hope-

less search is started again. It is not surpris-

ing that methods aiming at faster solutions

try to reuse the previous information, for ex-

ample, by combining the random walk with

�nite-element techniques [3] or using special

data structures and heuristics [23, 22]. The

method called Metropolis light transport [21]

has proposed the perturbation of the current

path to obtain a new light path. Although

it remembers only the last path, even this

limited memory can signi�cantly improve the

speed if the lighting is diÆcult. However,

when the lighting is not diÆcult the start-

up bias problem of this algorithm may in-

validate the bene�ts of the approach [19].

Adaptation can be built into random walk

approaches also by building a data structure

during walks, which can store \discretized

importance" information about regions and

sets of directions [10]. The Rayvolution algo-

rithm [11] demonstrated that the concepts of

genetic algorithms are also worth considering



to �nd adaptive global illumination methods.

Two-phase approaches also o�er the reuse

of the information gathered in the �rst-

phase. An eÆcient way of storing the re-

sult of the �rst phase is the photon map [5].

These methods can be viewed as special bi-

directional methods where a gathering path

is connected to all shooting paths simultane-

ously [8, 6].

In this paper we propose a shooting like one-

phase approach. The adaptation strategy

used in the single phase is di�erent from what

is used in Metropolis sampling and in dis-

cretized importance based techniques. The

new strategy is able to use a much greater

portion of the information about previous

paths than the Metropolis algorithm to guide

the generation of new light paths, and this in-

formation is more precise than that is stored

in discretized importance maps. In theory, it

would be possible to use the gathered knowl-

edge of all previous paths, but it would re-

quire prohibitive memory. In order to reduce

the storage demand, the data structure re-

membering the previous path is decimated

regularly in a way which can extract relevant

information.

Mathematically, the method is based on an

improved stochastic iteration solution of the

rendering equation of the following form

L(~x; !) = Le(~x; !) + (T L)(~x; !) (1)

where L(~x; !) is the radiance at point ~x in

direction !, Le is the emission, and T is the

light-transport operator.

We �rst review how stochastic iteration can

be adapted when the radiance is transferred

by rays carrying power on all wavelengths si-

multaneously and when the local albedo can

only be approximated. Then the concept of

self-correcting iteration is explained and used

with transferring the radiance by single rays.

We also discuss the random hit population

control and �nally present implementation

details and running time statistics.

2 Stochastic iteration with a single

ray

The concept of stochastic iteration has been

proposed in [18] as a tool to attack the non-

di�use global illumination problem. Here we

briey summarize the idea for a single ray

and discuss the calculation of the image con-

tribution. In stochastic iteration a random

transport operator is used instead of the light

transport operator in the iteration sequence,

which gives back the original light transport

operator in the average case:

Lm = Le+ T
�Lm�1; E[T �L] = T L: (2)

Then the pixel colors are computed as an av-

erage of the estimates of all iteration steps

Pm =
1

m
�

mX

i=1

MLi = �m�MLm+(1� �m)�Pm�1

(3)

where �m = 1=m and M is the measuring

operator that computes the pixel color from

the radiance of the surfaces visible in it.

Let the random transport operator use a sin-

gle ray having random origin ~yi and direc-

tion !i generated with a probability den-

sity p(~y; !) that is preferably proportional to

the cosine weighted radiance of this point at

the given direction. This ray transports the

power

�(~y; !0) =
L(~y; !0) cos �~y

p(~y; !0)

to that point ~x which is hit by the ray, where

it is reected, modifying the radiance func-

tion. On a single wavelength, the probability

of reection is the BRDF times the cosine of

the outgoing angle, i.e.

fr(!i; ~x; !) � cos �~x;

but the cosine angle is compensated when the

power is converted to radiance. Formally, the

random transport operator is

(T �L)(~x; !) =

L(~y; !0) cos �~y

p(~y; !0)
� Æ(~x� h(~yi; !i)) � fr(!i; ~x; !);

(4)



where h(~yi; !i) is the visibility function which

selects that point which is visible from ~yi in

direction !i. Using the de�nition of the solid

angle, d!~y = d~x � cos �0
~x
=j~y � ~xj2; a symmetry

relation can be established

d~y � d!~y � cos �~y = d~y �
d~x � cos �0

~x

j~y � ~xj2
� cos �~y =

d~x �
d~y � cos �~y

j~y � ~xj2
� cos �0

~x
= d~x � d!0

~x
� cos �0

~x
;

which allows us to easily prove that the re-

quirement of equation (2) holds, that is, the

expectation of the random transport opera-

tor de�ned in equation (4) really gives back

the original light transport operator.

Let us discuss how this algorithm works.

Suppose that the �rst random operator T �

1 is

applied to Le thus the light sources should be

sampled with probability density pe resulting

in a point ~y1, direction !1, and ray power

�1(~y1; !1) =
Le(~y1; !1) cos �~y1

pe(~y1; !1)
:

This power is sent to a single point ~x1 =

h(~y1; !1) that is hit by the ray. Before con-

tinuing with the second step of the iteration,

the radiance should be measured, that is,

an image estimate should be computed from

Le + T �

1 L
e. We can separately calculate the

e�ect of the light sources on the image and

then add the e�ect of T �

1 L
e. Note that T �

1 L
e

is concentrated in a single point, thus its con-

tribution can be computed by tracing a ray

from the eye to this point, and if this point

is not occluded, then adding

�1 � fr(!1; ~x; !eye) � cos �~x � g(~x)

to that pixel in which ~x is visible. Function

g is the weight associated with the pixel in

which ~x is visible [4]:

g(~x) �
f2

j~x� ~eyej2 � Sp � cos3 �pix

where f is the focal distance of the camera,

i.e. the distance between the eye and the

plane of the window, ~eye is the eye position,

Sp is the area of the pixel, and �pix is the an-

gle between the pixel normal and the viewing

direction.

The second operator T �

2 should be applied to

L1 = Le+T �

1 L
e; thus the domain of non-zero

radiance is modi�ed, which requires a new

probability density to be constructed. Sup-

pose that �rst it is decided randomly whether

the selected point is the new point ~x or the

light source is sampled again. Let the prob-

ability of selecting the new point be s~x;!1

which may depend on both point ~x and pre-

vious direction !1. If the hit point is selected,

then the direction is sampled with a proba-

bility density p~x;!1
(!2). If the light source is

selected, then we can use again the probabil-

ity density pe that was applied in the previous

step. The new combined probability density

is

p~x;!1
(~y2; !2) =

pe(~y2; !2) � (1�s~x;!1
)+p(!2) �Æ(~y2�~x) �s~x;!1

:

Having de�ned the ray, it is traced and the

contribution of the hit onto the camera is

computed.

The algorithm keeps doing this in each itera-

tion. First it is decided randomly whether

the new ray will start at the hit point or

at the light source. Then either the light

source or the directions around the hit point

are sampled, and the resulting ray is traced,

which de�nes a hit point of the following it-

eration step. Before repeating the random

selection, the e�ect of the hit point and the

light sources on the camera is computed and

averaged in an image. This average will con-

verge to the �nal solution. Interestingly this

iteration is similar to a sequence of variable

length random walks, since at each step the

point that is last hit by the ray is selected

with a given probability as the starting point

of the next ray. If not the hit is selected,

then the iteration is continued by sampling

the light source, which can be considered as

terminating the previous walk. The termina-

tion probability is s~x;!i at each step.

So far, we have had complete freedom to

choose probabilities pe(~y; !), p~x;!i(!i+1) and

s~x;!i . According to the concept of impor-

tance sampling, these should be set to force

the random variable representing the trans-

ported power to have low variance, that

is close to constant. The variance of the
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Figure 1: Four possible evolutions of two iteration steps

transported ray is reduced if pe is propor-

tional to Le(~y; !0) cos �~y or its luminance

if the calculation takes place on di�erent

wavelengths. Similarly p~x;!i(!i+1) should be

proportional to the cosine weighted BRDF,

i.e. to fr(!i; ~x; !i+1) cos �~x(!i+1) or its cor-

responding luminance. Finally probability s

should mimic the ratio of the power (or lumi-

nance) reected at the last visited point and

the total power (total luminance). It can be

shown that for closed scenes s will converge

to the average albedo. For open scenes, s will

be smaller and equal to the average contrac-

tion of the light-transport operator.

3 Self-correcting iteration

Note that stochastic iteration uses the radi-

ance estimate Lm only for the calculation of

the �nal pixel colors (equation (3)). A better

iteration scheme can be obtained if it is also

used to continue the iteration in the following

way:

L0

m
= Le + T

�

m
Lm�1; (5)

Lm = �m � L0

m
+ (1� �m) � Lm�1; (6)

Pm = MLm: (7)

This scheme is called as the self-correcting

iteration since it is similar to the radiosity it-

eration of [12]. Comparing self-correcting it-

eration to the discussed stochastic iteration,

we can conclude that while in stochastic it-

eration the last hit point competes with the

light source surface to be the origin of the

next ray, in self-correcting iteration all pre-

vious hit points have some chance to spawn

the next ray. Since it uses more information

about the past, it converges faster.

Hit point i is characterized by its incoming

direction hits[i]:!in, incoming power hits[i]:�

and location hits[i]:~x. Suppose that at stepm

hit point i is selected with probability si, and

the light source is sampled with probability

1�s1�: : :�sn if n is the number of hit points.

If hit point i is selected, then the direction of

the ray is sampled from density pi(!m) and

the ray carries

�i �
fr(!i; ~xi; !m) cos �~x

pi(!m)

power to a new hit point. This step corre-

sponds to equation (5).

Then, according to equation (6), this new hit

point is merged with the current hit popula-

tion. This is done by multiplying the incom-

ing power of the newly born hit point by �m



and the incoming power of all previous hit

points by 1� �m.

The following program summarizes a self-

correcting iteration step, where \hits[]" is the

array of photon hits, nhit is the number of

hits, and m is the current index of the itera-

tion.

Iterate( hits[], nhit, m )
Select i with prob. si or the light source with 1�

P
si

if light source is selected then

Sample light source with pe(~x; !) to get ~x and !

� = Le(~x; !) � cos �=pe(~x; !)=(1�
P

si)
else

~x = hits[i]:~x
Sample the directional sphere with

phits[i]:~x;hits[i]:!in(!) resulting in !

� = hits[i]:� � fr( hits[i]:!
in, hits[i]:~x, !) � cos �~x=

phits[i]:~x;hits[i]:!in(!)=si
endif

for i = 1 to nhit do hits[i]:� *= (1� 1=m)
~y = Trace Ray(~x; !)
if ray hits object then

hits[nhit + 1] = (~y; !;�=m)
nhit = nhit++

endif

end

Running the iteration for a number of steps,

the light source and the hit population are

measured by operatorM in the sense of equa-

tion (7).

Before iteration:
a hit point is selected

After iteration:
a new hit point is born and
the powers of all hits decrease

selected 
hit BRDF 

sampling

new hit

Figure 2: A self-correction iteration step

As in stochastic iteration, probabilities s~x;!in

and p~x;!in should be de�ned to decrease the

variance of the carried power, which corre-

sponds to importance sampling. Thus it is

recommended to set the directional proba-

bility p~x;!in to be proportional to the cosine

weighted BRDF. Similarly, if we aim at the

reduction of the variance of the output radi-

ance, then hit selection probability si should

be approximately proportional to the prod-

uct of the incoming power of hit i and the

local albedo at the hit point. However, con-

sidering the fact that just a fraction of the

paths may eventually reach the camera, and

our ultimate objective is to reduce the vari-

ance of the image, other hit selection proba-

bilities are also worth considering.

3.1 De�nition of hit selection proba-

bilities

From the point of view of the impact on the

image, the hit selection strategy should em-

phasize those hits whose children are likely

to contribute the image and the contribution

power should be made approximately con-

stant. The image impact is proportional to

the outgoing power and to the visibility in-

dicator and is inversely proportional to the

square distance. Thus we should prefer those

hits that can generate large outgoing power

and their possible children are not hidden

from the camera and are close to it.

To achieve this goal, heuristics can be used,

which build some form of view-importance

into the algorithm. It is reasonable to be-

lieve that if the children of a hit have had

large contribution to the image so far, then

the neighborhood of this hit is not hidden

and this hit is worth keeping as a mother of

new hit points. From this point of view, the

importance of a hit point can be character-

ized by the luminance of the average image

contribution of the hit's children. Note that

the impact of the child hit is the luminance

of

�i � fr(!i; ~xi; !eye) cos �~x � g(~x) (8)

if ~x is visible through some pixel and zero

otherwise.

On the other hand, important hits may exist

which have no children or their children have

had no impact on the image yet. To take into

account also these hits, we can also de�ne the

importance of a hit as the weighted sum of

its output luminance (i.e. the luminance of

the product of the incoming power and the

local albedo). In order to convert this im-

portance to a form similar to equation (8),



we have to estimate how much contribution

a hit could have if it were visible and its ori-

entation allowed to reect into the direction

of the camera. This consideration leads to

the following estimated potential impact of a

parent:

�i �
a(!i)

j~x� ~eyej2 � 4�
�
f2

Sp
= �i �a(!i)�g

�(~x); (9)

where a(!i) is the albedo. Note that here

the reection probability density fr �cos � has

been replaced by its average a=4�.

The importance of a hit can then be de�ned

as the weighted average of its potential im-

pact and the real impact of its children. The

weighting factor is denoted by �.

The algorithm of computing the hit selection
probabilities is as follows:

ComputeImportance( hits[], nhit )
Itotal = 0
for i = 1 to nhit do

hits[i]:s = 0 // hit selection probability

hits[i]:nchild = 0 // number of children

endfor

for i = 1 to nhit do
hits[i]:s += Lum( potential impact of hits[i]
pi = hits[i]:parent // id of the parent hit

hits[pi]:s += � � Lum(impact of hits[i]
hits[pi]:nchild ++

endfor

for i = 1 to nhit do
hits[i]:s /= (hits[i].nchild+1)
Itotal += hits[i]:s

endfor

for i = 1 to nhit do hits[i]:s /= Itotal
end

4 Random purge of the hit population

The self-correction iteration in the version

proposed so far is not appropriate for prac-

tical implementations since each iteration

step may increase the hit population by one,

which results in memory overow sooner or

later. To avoid the overpopulation of hits, the

algorithm is broken into phases. Each phase

is like the presented self-correcting iteration.

The image estimates are computed at the end

of each phase and the �nal image is obtained

as the average of images of the phases. The

phases can either start from scratch or con-

tinue the previous phase with a strongly dec-

imated hit population. The killing of hits

happens in a way that the expectation of the

power does not change. Each hit point is con-

sidered for killing. Suppose that the survival

of hit i happens with probability ki. If it is

killed then its power will be zero. However,

when it is given clemency, then its power is

divided by ki, which guarantees the correct

expectation:

E[�new

i
] = ki �

�i

ki
+ (1� ki) � 0 = �i:

During this, those hits should stay alive

which are likely to spawn ancestors that can

have signi�cant contribution on the image.

Note that this is the same requirement as se-

lecting the hit point to spawn the next hit,

thus setting ki proportional to si seems to be

a good strategy.

5 Implementation details and simula-

tion results

In the current implementation a hit-point is

represented by the following parameters: in-

coming power on all wavelengths, incoming

direction, location, pointer to the surface in

order to get the BRDF, the surface normal,

luminance of the product of the incoming

power and the local albedo, image contribu-

tion, number of children, importance and the

index of its parent. The hit structure is sim-

ilar to the photon-map [5, 6]. The algorithm

is broken into phases of 400 steps and at the

end of each phase the image computation and

the hit selection probability calculation hap-

pen simultaneously. Then the population is

decimated keeping just a few hits and the it-

eration is continued.

Figure 3 shows the used test scene where

the lighting is made diÆcult by placing the

camera and the light source into two sepa-

rate rooms connected by a small gap. The

image on the right side has been computed

by the proposed method. The walls are dif-

fuse, but the objects have both specular and

di�use reections. Figure 4 compares the
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Figure 3: Geometry of the test scene (top view) and the image obtained with self-correcting

iteration

new self-correcting iteration with the clas-

sical light tracing, where both images have

been computed with the same computational

e�ort (30 million rays). The variance of the

image obtained with the new method is 14

times smaller than that of the light tracing.

However, this does not mean that the algo-

rithm is 14 times faster since the manipula-

tion of the hit population has some overhead.

For the current scene this overhead �nally re-

sults in 7 times improvement. For more dif-

�cult scene, the overhead amortizes, making

the relative speed even higher.

6 Conclusions and future develop-

ments

This paper presented a global illumination al-

gorithm that works with a population of pho-

ton hits. At each iteration a randomly se-

lected hit gives birth to a new hit point, and

at the end of each phase an image estimate of

the hit population is obtained and the hits are

decimated randomly to start the next phase

with a low number of hits. The hit selection

can prefer those hits that have possibly large

contribution on the image. This is similar to

importance sampling, but when comparing to

classical random walks we have to note two

important di�erences. On the one hand, not

only the outgoing luminance of the hit can

be taken into account but also how far and

how hidden its neighborhood is from the cam-

era. On the other hand, a hit is not forgotten

right after its selection, but may be selected

again if it is important enough which allows

to reuse previous information. This reuse is

particularly important if the lighting situa-

tion is diÆcult and only a few paths can reach

the light source.
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