
Quadratic Interpolation in Hardware Rendering
Category: research

Abstract

Rendering systems often represent curved surfaces as a
mesh of planar polygons that are shaded to add realism and
to restore a smooth appearance. To increase the rendering
speed, complex operations such as the solution of the ren-
dering equation or texture transformation are executed just
for a few knot points and the values at other points are in-
terpolated. Usually linear transformation is used since it
can be easily implemented in hardware. However, color
distribution and texture transformation can be strongly
non-linear for which linear interpolation may introduce se-
vere artifacts. Thus this paper proposes quadratic interpo-
lation to tackle this problem and demonstrates that it can
be implemented in hardware. The software simulation and
the VHDL description of the shading hardware are also
presented.

1 Introduction

Computer graphics aims at rendering complex virtual
world models and presenting the image for the user. To
obtain an image of a virtual world, surfaces visible in pix-
els are determined, and the rendering equation or its sim-
plified form is used to calculate the intensity of these sur-
faces, defining the color values of the pixels. The render-
ing equation, even in its simplified form, contains a lot
of complex operations, including the computation of the
vectors, their normalization and the evaluation of the out-
put radiance, which makes the process rather resource de-
manding. Real-time systems, however, allow just a few
tens of nanoseconds for the computation of a single pixel,
which results in a continuous driving force to develop
faster graphics hardware [14, 20, 15, 8].

The speed of rendering could be significantly increased
if it were possible to carry out the expensive computations
just for a few points or pixels, and the rest could be inter-
polated from these representative points by much simpler
expressions. One way of obtaining this is the tessellation
of the original surfaces to polygon meshes and using the
vertices of the polygons as representative points. In this
paper only triangle mesh models are considered. A simple
interpolation scheme would compute the color at the ver-
tices and linearly interpolate it inside the triangle (Gouraud
shading [10]). However linear interpolation can introduce
severe artifacts (left of figure 2). The core of the problem
is that the color can be a strongly non-linear function of
the pixel coordinates, especially if specular highlights oc-
cur on the triangle, and this non-linear function can hardly
be well approximated by a linear function (figure 1).

Ambient

Diffuse

Specular LightsourceEye

Figure 1: Intensity of ambient, diffuse, and specular re-
flections

The artifacts of Gouraud shading can be eliminated by
a non-linear interpolation called Phong shading [16] (right
of figure 2). In Phong shading, vectors used by the render-
ing equation are interpolated from the real vectors at the
vertices of the approximating triangle. In simpler algo-
rithms only the normal vectors are interpolated while the
light and view vectors are constant. In more precise com-
putations, the view and light vectors are also interpolated.
The interpolated vectors are normalized and the rendering
equation is evaluated at each pixel for diffuse and specular
reflections and for each light source, which is rather time
consuming. The main problem of Phong shading is that
it requires complex operations on the pixel level, includ-
ing interpolation and normalization of the normal, view-
ing and the light vectors, calculation of their dot products,
exponentiation if Phong reflection model is used, and mul-
tiplications and additions. The hardware implementation
is not feasible only if the number and type of lightsources
are limited and the underlying formulae are simplified [2].

The superior rendering quality of Phong shading forced
research to try to find a reasonable compromise between
Gouraud and Phong algorithms, that keeps the image qual-
ity but also allows for hardware implementation. In Tex-
tronix terminals, for example, the method called pseudo-
Phong shading was implemented. Pseudo-Phong shading
recursively decomposes the triangles into small triangles
setting the vectors at the vertices according to a linear
formula, and uses Gouraud shading when the small tri-
angles are rendered. If the sizes of the small triangles
are comparable to the size of the pixels, then this corre-
sponds to Phong shading. However, when they are close
to the original triangle, this corresponds to Gouraud shad-
ing. Unfortunately, the artifacts of Gouraud shading are
visible even in highly tessellated surfaces (figure 11). An-
other family of algorithms used highlight tests [22] to de-

Figure 2: Comparison of linear (Gouraud) interpolation (left) and non-linear interpolation by Phong shading (right).

termine whether or not a specular highlight intersects the
triangle. If there is no intersection, then Gouraud shad-
ing is used, otherwise the triangle is rendered with Phong
shading. Duff [7] extended the incremental approach of
Gouraud shading to Phong shading supposing only diffuse
reflection. He obtained the reflected radiance of a single
light source as a direct function of the pixel coordinates
and evaluated this function using forward differences. His
incremental formulae separately calculated the dot prod-
uct of the normal and the light vector, and the length of
the normal vector, thus a division and a square-root oper-
ation were still needed for the evaluation of a single pixel.
Based on this, Bishop proposed a simplification using Tay-
lor’s approximation for both the diffuse and the Phong-
Blinn reflection in [3]. The determination of the deriva-
tives of the reflected radiance is quite complicated and re-
quires expensive computation, and this computation must
be repeated separately for diffuse and specular reflections
and for each light source. Besides, according to the na-
ture of Taylor’s series, the approximation is good around
the point where the derivatives were computed. Neighbor-
ing triangles may have different color variation on their
edges, which leads to Mach banding over the edges of the
triangles. Claussen [5] compared different simplification
strategies of the Phong illumination formulae and vector
interpolation. Spherical interpolation elegantly traces back
the interpolation to the interpolation of a single angle in-
side a scan-line [13]. However, finding the parameters
of a scan-line is also rather complicated and the method
requires the evaluation of the rendering equation at each
pixel and for each light source. The computational cost is
also proportional to the number of light sources. Reflec-
tion shading [21, 12] tackles the problem of vector nor-

malization by finding a vector that is halfway between the
interpolated unnormalized vector and a given normalized
vector, and then the halfway vector is interpolated and the
given vector is reflected on the halfway vector each time.
Finally, Phong shading can also be replaced by texturing
[4] in special cases.

 Texture
 transform

Diffuse
lighting

 Specular
reflection

Texture
memory

~~ Σ l * cos θ l

kd

Σ

u

v

X Y

Specular

Diffuse
Color

1 l
N,V,L . . . L
 vector
interpolator

*

k s , n

l

Figure 3: Conventional rendering with Phong shading and
texture mapping without interpolation

Another non-linear problem arises in image order tex-
ture mapping. For triangles, the screen coordinates and
the texture coordinates are connected by a homogeneous
linear transformation [19] thus for a pixelX;Y the corre-
sponding texel coordinatesu;v can be obtained as

u=
auX+buY+cu

duX+euY+ fu
; v=

avX+bvY+cv

dvX+evY+ fv
;

whereau; : : : fv depend on the positions of the triangle in
the texture and image spaces. Note that this operation also
contains divisions that are quite intensive computationally
and makes the mapping non-linear. Implementing divi-

2

 Texture
 transform
at the vertices

 Diffuse
 lighting
at the vertices

 Specular
 reflection
at the vertices

 Linear
 texture
interpolator

Linear diffuse
 lighting
 interpolator

 Specular
 reflection
interpolator

Texture
memory

∼∼ Σ l * cos θ l

kd

Σ

u

v

X Y

Specular

Diffuse
Color

*

l

Figure 4: Linear interpolation, i.e. Gouraud shading and
linear texture mapping

sion in hardware is difficult and can be the bottleneck of
texture mapping [1]. Approximating this function by a lin-
ear transformation, on the other hand, makes the perspec-
tive distortion incorrect [9, 17] (figure 12). Demirer [6]
proposed a Chebishev polynomial approximation to avoid
division.

Summarizing, the main problem of the original shad-
ing pipeline used by Phong shading (figure 3) is that it
involves complex operations such as lighting calculations
and texture transformations, which makes its direct hard-
ware realization impossible. Traditionally, this problem is
attacked by linear interpolation as shown in figure 4, but
the linear interpolation of the strongly non-linear functions
degrades the image quality [18].

In this paper we propose a new interpolation scheme
(figure 5) that uses appropriately selected quadratic func-
tions which can be implemented in hardware and can be
initialized without the computational burden of the Tay-
lor’s series approach. Unlike previous techniques the new
method can simultaneously handle arbitrary number of
light sources and arbitrary BRDF models.

 Texture
transform at
 6 points

 Diffuse
 lighting at
3 or 6 points

 Specular
reflection at
 6 points

 Quadratic
 texture
 coordinate
 interpolator

 Linear or
 quadratic
diffuse lighting
 interpolator

 Quadratic
 specular
 reflection
 interpolator

Texture
memory

∼∼ Σ l * cos θ l

kd

Σ

u

v

X Y

Specular

Diffuse
Color

*

l

Figure 5: Quadratic rendering

2 Quadratic interpolation

Our approach is in between linear interpolation and brute
force methods not using interpolation at all. The function
of interest, as for example the rendering equation or the
texture transformation, is evaluated in a few representative
points and the interpolation is done in image space as in
Gouraud shading. However, the interpolation is not lin-
ear, but rather quadratic. Since a quadratic form has six
degrees of freedom, the function will be evaluated at six
representative points on the triangle and it is interpolated
from the values at these representative points. Let us ap-
proximate functionI inside the triangle by the following
two-variate quadratic form:

I(X;Y) = T5X2
+T4XY+T3Y

2
+T2X+T1Y+T0: (1)

To find the unknown parametersT0; : : : ;T5, the function
values are substituted into this scheme at six points, and
the six variate linear equation is solved for the parame-
ters. The selection of these representative points should
take into account different criteria. The error should be
roughly uniform inside the triangle but should be less on
the edges and on the vertices in order to avoid Mach band-
ing. On the other hand, the resulting linear equation should
be easy to solve in order to save computation time. An
appropriate selection meeting both requirements uses the
three vertices:

I(X1;Y1) = I1; I(X2;Y2) = I2; I(X3;Y3) = I3;

and other three points on the edges half way between the
two vertices, as follows:

I(
X1+X2

2
;
Y1+Y2

2
) = I12;

I(
X1+X3

2
;
Y1+Y3

2
) = I13;

I(
X2+X3

2
;
Y2+Y3

2
) = I23:

Translating the triangle to have its bottom vertex at the
coordinate origin yields:

I1 = T0;

I2 = T5X2
2 +T4X2Y2+T3Y

2
2 +T2X2+T1Y2+T0;

I12 = T5
X2

2

4
+T4

X2Y2

4
+T3

Y2
2

4
+T2

X2

2
+T1

Y2

2
+T0;

I3 = T5X2
3 +T4X3Y3+T3Y

2
3 +T2X3+T1Y3+T0;

I13 = T5
X2

3

4
+T4

X3Y3

4
+T3

Y2
3

4
+T2

X3

2
+T1

Y3

2
+T0;

I23 = T5
(X2+X3)

2

4
+T4

X2+X3

2
�
Y2+Y3

2
+

+ T3
(Y2+Y3)

2

4
+T2

X2+X3

2
+T1

Y2+Y3

2
+T0:

3

This system of linear equations can be solved in a straight-
forward way resulting in:

T0 = I1;

T1 =
C3X2�C2X3

X2Y3�Y2X3
;

T2 =
C2Y3�C3Y2

X2Y3�Y2X3
;

T3 =
2C12�T5X2

2 �T4X2Y2

Y2
2

;

T4 =
(4C13Y2�C23Y3)D23� (4C12Y3�C23Y2)D32

E32D23�E32D32
;

T5 =
(4C12Y3�C23Y2)E32� (4C13Y2�C23Y3)E23

E32D23�E32D32
;

where

C2 = 4I12�3I1� I2;

C12 = I1+ I2�2I12;

C3 = 4I13�3I1� I3;

C13 = I1+ I3�2I13;

C23 = 4I1�4I12�4I13+4I23;

D23 = 2X2
2Y3�2X2Y2X3;

D32 = 2Y2X2
3 �2X2X3Y3;

E23 = X2Y2Y3�Y2
2 X3;

E32 = Y2X3Y3�X2Y
2
3 :

The calculation ofT0; : : : ;T5 parameters requires 25 ad-
ditions, 51 multiplications, and 5 divisions. Having de-
termined theT0; : : : ;T5 values, if I(X;Y) is needed, then
X andY are substituted into equation (1). This quadratic
form will be evaluated by simple additions according to
the incremental concept.

3 Error control

The method proposed in the previous section approxi-
mates a non-linear function by a quadratic formula. This
function is either the radiance or the texture address in our
case. If the triangles are too big and the radiance or the
texture address change quickly due to a highlight or to the
expansion of the texture transformation, then this approx-
imation can still be inaccurate. In order to avoid this prob-
lem, the accuracy of the approximation is estimated, and
if it exceeds a certain threshold, then the triangle is adap-
tively subdivided into 4 triangles by halving the edges.

Recall that the knot points of the interpolation are the
vertices and the middle points of the edges. Thus a reason-
able point where the error can be measured is the center of
the triangle. This leads to the following highlight test al-
gorithm. Having computed theT0; : : : ;T5 parameters, the
function value is estimated at the center of the triangle us-
ing equation (1), and the result is compared with the real
value ofI(X;Y). In case of big difference, adaptive sub-
division takes place. Note that the overhead of one more

Test
point

Difference of the
test pairs is small

Difference of the
 test pairs is big

X1,Y1

X2,Y2

X3,Y3

X1+X2

X2+X3
2 2

2 2

2 2

X1+X3

, Y2+Y3

Y1+Y2,

Y1+Y3,

Figure 6: Highlight test and adaptive subdivision

function evaluation is affordable and during subdivision
the already computed function values can be reused.

4 Hardware implementation of
the quadratic interpolation

This section reviews the implementation strategies of sim-
ple functions on scan-lines that are used to fill horizontal
sided image space triangles. If the image space triangle
is not formed as horizontal sided triangle, then it should
be divided into two parts, a lower and an upper. In this
section we will consider only the lower horizontal sided
triangle. Image space triangle and horizontal sided trian-
gle are shown in figure 7.

Image space
 triangle

x

y

 Single
 scan-line

Single
 pixel

X1,Y1

X2,Y2

X3,Y3

 Horizontal
 sided triangle
 (lower part)

y

xX1,Y1

X2,Y2

 Horizontal
 sided triangle
 (upper part)

Figure 7: Image space and horizontal sided triangles

If we implemented equation (1) directly, the hardware
should compute floating point multiplications and addi-
tions for each value, which are rather demanding. To elim-
inate the multiplications, the incremental concept is used,
which traces back the evaluation of the functionI(X;Y)
to the computation of an increment from the previous val-
ues, for instance, fromI(X� 1;Y). The increments can
then be evaluated by simple additions. A triangle filling
algorithm should generate the sequence of(X;Y) integer
values called pixels that are inside a horizontal sided trian-
gle. The algorithm generates the pixels scan-line by scan-
line. In a single scan-line theY coordinate is constant. To
simplify equation (1), we use the incremental concept for

4

the scan-lines and for their start edges. First, the quadratic
function is reduced to a linear one for the scan-lines:

I(X+1;Y) = I(X;Y)+∆I(X;Y)

where
∆I(X;Y) = 2T5X+T4Y+T5+T2: (2)

Then we apply the incremental concept once more for
the linear function∆I(X;Y) to obtain the incremental
value inside the scan-line:

∆I(X+1;Y) = ∆I(X;Y)+2T5:

When we step onto the next scan-line,Y is incremented,
and the startXstart and the endXend coordinates should be
determined by the following equations:

Xstart(Y) =
Y�Y1

Y2�Y1
� (X2�X1)+X1;

Xend(Y) =
Y�Y1

Y3�Y1
� (X3�X1)+X1:

SinceXstart(Y) andXend(Y) are linear functions, they can
be simplified by applying the incremental concept:

Xstart(Y+1) = Xstart(Y)+Astart;

Xend(Y+1) = Xend(Y)+Aend;

where

Astart =
X2�X1

Y2�Y1
; Aend=

X3�X1

Y3�Y1
:

Now let us discuss the computation on the start edge.
When the algorithm steps onto the next scan-line, both
I(X;Y) and∆I(X;Y) should be recomputed with the data
of the new scan-line. The incremental concept can also be
used for these computations, which traces back these up-
dates to two additions. The first application of the incre-
mental concept reduces the computation of the quadratic
functionI(X;Y) to a linear one:

I(X+Astart;Y+1) = I(X;Y)+∆Istart(X;Y)

where

∆Istart(X;Y) = T5A2
start+(2T5X+T4Y+T4+T2)Astart

+ T4X+2T3Y+T3+T1:

Applying the incremental concept once more for the linear
function∆Istart(X;Y), we obtain a constant addition:

∆Istart(X+Astart;Y+1) =

∆Istart(X;Y)+2(T5A2
start+T4Astart+T3):

To obtain the incremental value∆I(X;Y) at the start edge,
we should apply the incremental concept only once since
it is already a linear function (equation (2)):

∆I(X+Astart;Y+1) = ∆I(X;Y)+2T5Astart+T4:

Let us group these formulae in the following algorithm:

Xstart = X1, Xend = X1

ComputeIstart(X;Y), ∆Istart(X;Y), ∆I(Xstart;Y) at X1;Y1

for Y = Y1 to Y2 do
I(X;Y) = Istart(X;Y)
∆I(X;Y) = ∆I(Xstart;Y)
for X = Xstart to Xend do

write (X, Y, I(X;Y))
I(X;Y) += ∆I(X;Y)
∆I(X;Y) += 2T5

endfor
∆I(Xstart;Y) += 2T5Astart+T4

Istart(X;Y) += ∆Istart(X;Y)
∆Istart(X;Y) += 2(T5A2

start+T4Astart+T3)

Xstart += Astart, Xend += Aend

endfor

Note that functionI and the parameters are not integers,
and if we ignored the fractional part, the incremental for-
mula would accumulate the error to an unacceptable level.
The realization of floating point arithmetic is not at all sim-
ple. Non-integers, fortunately, can also be represented in
fixed point form where the lowbI bits of the code word
represent the fractional part. The number of bits in the
fractional part has to be set to avoid incorrectI calculations
due to the cumulative error inI . In order to obtainI(X;Y)
for someX;Y pixel,MY �max(Y2�Y1) iteration steps are
executed on the start edge andMX �max(X3�X2) steps
on the horizontal span. A single iteration step involves the
calculation of increments∆I or ∆Istart as an addition with
a constant, then the increase ofI or Istart by the current
increment values. The maximum error introduced by an
addition with a constant is 2�bI , thus aftermsteps, the cu-
mulative error of the increment is less thanm�2�bI . Con-
sequently, the cumulative error in valuesI andIstart after
M steps is less than

M

∑
m=1

m�2�bI =M(M�1) �2�(bI+1)
:

Incorrect calculations ofI is avoided if the cumulative er-
ror is less one. Since a single value requires at mostMY

steps on the start edge andMX steps on the span, we ob-
tain:

(MX(MX�1)+MY(MY�1)) �2�(bI+1)
< 1=)

bI > log(MX(MX�1)+MY(MY�1))�1:

If the display has 1280� 1024 resolution, this results in
the requirement of 22 fractional bits.

The hardware implementation is shown in figure 8. The
registers usually have two data inputsL andS. L is the
input to the register when theload signal is active, andS
is the input to the register for each clock. The clock signal
of the subsystem responsible for the internal pixels of the
scan-lines is the system clock. However, the clock signal
controlling the elements that compute the interpolation at
the start edge is the output of the comparator detecting the
end of the scan-line.

5

2T

I(X,Y)

I start

∆

∆ I (X,Y)

Σ

Σ

Σ

Σ

Register

Register

start
2

start

 counter

X

CLK

X
X

 comp.

>

<

comp.

 counter

Y1

STOP

Y

<

Y2

>

>

>

>

<

start

end

Register

X

X

Y

Y

2(T A
5 4 3

T TA+ +)

5

(X,Y)

start

Register

Register

Σ

>

2T
5

A start +T4

∆ I ,Y)

I(X,Y)

(X start

L S

S L

load

load

Figure 8: Hardware implementation of two-variate quadratic functions

Figure 9: Timing diagram of the hardware generated by the VHDL simulator

6

5 Simulation results

The proposed algorithm has been implemented first in Mi-
crosoft Visual C++ and tested as a software. In figures
10 and 11, spheres tessellated on different levels are com-
pared. Gouraud shading evaluates the rendering equation
for every vertex, quadratic shading for every vertex and
edge centers and Phong shading for each pixel. The dif-
ference of the algorithms is significant when the tessella-
tion is not very high. The measured times of drawing of
the coarsely tessellated spheres are as follows: Gouraud
shading 230 msec, quadratic shading 250 msec, and Phong
shading 450 msec. Note that Gouraud shading performs
poorly on coarsely tessellated surfaces, but the visual qual-
ity of quadratic shading and Phong shading is similar. On
the other hand, concerning the speed and the suitability
for hardware implementation, quadratic shading is close
to Gouraud shading. Figure 13 shows a more complex
scene with normal tessellation level. Looking at these im-
ages we can conclude that quadratic shading is visually
superior to Gouraud shading and indistinguishable from
classical Phong shading.

In order to compare the quality of linear and quadratic
approximation of texture transformation a tiger and a tur-
tle texture were assigned to a rectangle divided into two
triangles (figure 12). Note that linear transformation dis-
torts the textures in an unacceptable way, while quadratic
approximation handles the perspective shrinking properly.

Having tested the software implementation, the hard-
ware realization was specified in VHDL and simulated in
ModelTech environment. The timing diagram of the algo-
rithm is shown by figure 9. The delay times are according
to XILINX XCV300-6 FPGA. In this figure we can follow
the operation of the hardware. The hardware can generate
one pixel per one clock cycle. The length of the clock cy-
cle — which is also the pixel drawing time — depends on
FPGA devices and on the screen memory access time. For
the mentioned device it can be less than 50 nsec. While the
hardware draws the actual triangle, the software can com-
pute the initial values for the next triangle, so initialization
and triangle drawing are executed parallely.

6 Conclusions

This paper proposed a new rendering strategy where the
color and the texture coordinates are evaluated by the ren-
dering equation at six representative points, three on the
vertices and the other three halfway between the vertices,
then they are interpolated inside the triangle according to
a quadratic scheme. The algorithm has also been trans-
formed to a hardware design that has been simulated in
VHDL demonstrating that 50 nsec pixel drawing time can
be obtained. Even if the screen has about 1000�1000 res-
olution, the complete image can be redrawn 16 times per
second which provides the illusion of continuous motion.

Figure 10: Rendering coarsely tessellated spheres (168 tri-
angles) of specular exponentsn= 5 (top) andn= 50 (bot-
tom) with Gouraud shading (left), quadratic shading (mid-
dle) and Phong shading (right)

Figure 11: Rendering highly tessellated spheres (690 tri-
angles) of specular exponentsn= 5 (top) andn= 50 (bot-
tom) with Gouraud shading (left), quadratic shading (mid-
dle) and Phong shading (right)

7

Figure 12: Texture mapping with linear (left), quadratic (right) texture transformation

Figure 13: The mesh of a chicken (left) and its image rendered by classical Phong shading (middle) and by quadratic
shading (right)

8

Figure 14: Coarsly tessellated textured and specular tiger with Gouraud (left) Phong (middle) and quadratic (right) shading

Figure 15: A pawn with Gouraud, Phong and Quadratic shading

Figure 16: An apple with Gouraud, Phong and Quadratic shading

9

References

[1] H. Ackermann. Single chip hardware support for
rasterization and texture mapping.Computers and
Graphics, 20(4):503–514, 1996.

[2] K. Bennebroek, I. Ernst, H. R¨usseler, and O. Wit-
ting. Design principles of hardware-based Phong
shading and bump-mapping.Computers and Graph-
ics, 21(2):143–149, 1997.

[3] G. Bishop and D.M. Weimar. Fast Phong shading.
Computer Graphics, 20(4):103–106, 1986.

[4] D. Blythe, B. Grantham, M Kilgard, T. McReynolds,
S. Nelson, C. Fowler, S. Hui, and P. Womack.
Advanced graphics programming techniques using
OpenGL: Course notes. Technical report, SIG-
GRAPH’99, 1999.

[5] U. Claussen. On reducing the Phong shading
method.Computer & Graphics, pages 73–81, 1990.

[6] D. Demirer and R. Grimsdale. Approximation tech-
niques for high performance texture mapping.Com-
puters and Graphics, 20(4):483–490, 1996.

[7] T. Duff. Smoothly shaded rendering of polyhedral
objects on raster displays. InComputer Graphics
(SIGGRAPH ’79 Proceedings), 1979.

[8] M. Eldridge, H. Igehy, and P. Hanrahan.
Pomegranate: A fully scalable graphics archi-
tecture. InSIGGRAPH’00, 2000.

[9] M. Gangnet, P. Perny, and P. Coueignoux. Perspec-
tive mapping of planar textures. InEUROGRAPH-
ICS ’82, pages 57–71, 1982.

[10] H. Gouraud. Computer display of curved surfaces.
ACM Transactions on Computers, C-20(6):623–629,
1971.

[11] P. Haeberli and M. Segal. Texture mapping as
a fundamental drawing primitive. Technical re-
port, Silicon Graphics, Inc., 1993. http://www-
europe.sgi.com/grafica/texmap/.

[12] A. Hast, T. Barrera, and E. Bengtsson. Improved
shading performance by avoiding vector normaliza-
tion. In Winter School of Computer Graphics ’01,
pages 1–8, 2001. Short paper.

[13] A. M. Kuijk and E. H. Blake. Faster Phong shading
via angular interpolation.Computer Graphics Fo-
rum, pages 315–324, 1989.

[14] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-
speed rendering using image composition. InSIG-
GRAPH’92, pages 231–240, 1992.

[15] J. Montrym, D. Baum, D. Digman, and C. Migdal.
InfiniteReality: A real-time graphics system. InSIG-
GRAPH’97, pages 293–302, 1997.

[16] B. T. Phong. Illumination for computer generated
images.Communications of the ACM, 18:311–317,
1975.

[17] M. Samek, C. Slean, and H. Weghorst. Texture map-
ping and distortion in digital graphics.Visual Com-
puter, 3:313–320, 1986.

[18] M. Segal, K. Akeley, C. Frazier, and J. Leech. The
OpenGL graphics system: A specification (version
1.2.1). Technical report, Silicon Graphics, Inc.,
1999.

[19] L. Szirmay-Kalos (editor).Theory of Three Dimen-
sional Computer Graphics. Akadémia Kiadó, Bu-
dapest, 1995. http://www.iit.bme.hu/˜szirmay.

[20] J. Torborg and J. Kajiya. Talisman: Commodity real-
time 3D graphics for the PC. InSIGGRAPH’96,
pages 353–364, 1996.

[21] D. Voorhies and J. Foran. Reflection vector shading
hardware. InComputer Graphics (SIGGRAPH ’94
Proceedings), pages 163–166, 1994.

[22] A. Watt. Fundamentals of Three-dimensional Com-
puter Graphics. Addision-Wesley, 1989.

10

Quadratic Interpolation in Hardware Rendering

Ali Mohamed Abbas, L´aszló Szirmay-Kalos, G´abor Szijártó, Tamás Horváth and Tibor F´oris
Department of Control Engineering and Information Technology, Technical University of Budapest

Budapest, P´azmány P. s. 1/D, H-1117, HUNGARY
szirmay@iit.bme.hu

Category: research

Format: print

Contact: László Szirmay-Kalos
Department of Control Engineering and Information Technology,
Technical University of Budapest
Budapest, P´azmány P. s. 1/D, H-1117, HUNGARY

phone: (361) 463–2030
fax: (361) 463–2204
email: szirmay@iit.bme.hu

Estimated # of pages: 8

Keywords: Phong shading, texture mapping, interpolation, computer graphics hardware

Rendering systems often represent curved surfaces as a mesh of planar polygons that are
shaded to add realism and to restore a smooth appearance. To increase the rendering speed,
complex operations such as the solution of the rendering equation or texture transformation
are executed just for a few knot points and the values at other points are interpolated. Usu-
ally linear transformation is used since it can be easily implemented in hardware. However,
color distribution and texture transformation can be strongly non-linear for which linear in-
terpolation may introduce severe artifacts. Thus this paper proposes quadratic interpolation
to tackle this problem and demonstrates that it can be implemented in hardware. The soft-
ware simulation and the VHDL description of the shading hardware are also presented.

